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ON MAPPINGS IN CONNECTION TO THE FEJER-HADAMARD
INEQUALITY FOR COORDINATED CONVEX FUNCTIONS

G. FARID!, M. MARWAN?2, AND ATIQ UR REHMAN?3

ABSTRACT. In this paper we give and investigate generalization of monotonic
nondecreasing mapping in connection with the Hadamard inequality for convex
functions on coordinates defined in [13]. We also give Lipschitzian mapping
connected to the generalized Hadamard inequalities.

1. INTRODUCTION

A real valued function f: I — R, where [ is an interval in R, is called convex if

(1) flaz+ (1 —a)y) < af(x) + (1 -a)f(y),
where o € [0,1],2,y € 1.
The most classical inequality for convex functions is stated in the following.

Theorem 1.1. Let f: I — R be a convex function and a,b € I with a <b. Then

o) f('”b)—b_ /f o < L0 10

Inequality in (2) is known as the Hadamard inequality for convex functions. For
generalizations, refinements, counterparts, and new Hadamard-type inequalities one
can see for example [4, 5, 10, 11] and references there in.

In [6] Dragomir gave the Hadamard inequality on a rectangle in plane, by defining
convex functions on coordinates.

Let [a,b] and [c,d] be two intervals in R and we define A = [a,b] x [c,d] C R?
which we will use in sequel throughout the paper.

Definition 1.2. A function f : A — R will be called convex on the coordinates
if the partial mappings f, : [a,b0] — R, fy(uv) := f(u,y), and f; : [a,b] = R
fa(0) := f(z,v), are convex where defined for all y € [¢,d] and z € [a, b].

Recall that a mapping f : A — R is said to be convex on A if

holds for all (x,y), (z,w) € A and X € [0, 1].
One can note that every convex mapping f : A — R is convex on the coordinates
but the converse is not true. For example, f(z,y) = xy is convex on the coordinates
in R? but it is not convex.

In 1906, Fejér [12] (see also, [17, p. 138]) gave weighted version of (2) which
appears as its generalization.
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Theorem 1.3. Let f : I — R be convex function on the interval I, with a,b € 1
with a < b and g : [a,b] — RT is symmetric about (a + b)/2. Then the following
inequality holds:

3) f(““’)/ dx</ F(@)g(x)de < f(“);f(b) /abg(x)dx.

In literature inequality (3) is famous as the Fejér-Hadamard inequality for convex
functions. It is extensively studied by many researchers.
In the following we state the Fejér-Hadamard inequality [10] which is generalization
of the Hadamard inequality for coordinated convex functions proved by Dragomir
in 2001.

Theorem 1.4. Let f : A — R be a convez functions on the coordinates in A. Also
let g1 : [a,b] = RT and g3 : [c,d] — RT be two integrable and symmetric functions
about (a +b)/2 and (¢ + d)/2 respectively. Then one has the following inequalities

a+b c+d

f(g, 2)

1 (1 0 c+d . 1 (% [a+b p

_2G1af($,2)()x+02 f<2,y)gz(y)y
1 b d

. <oa | [ 1ena@ai

i b b

<3 Gil Cn@i, c)dx+Gil g1(x) f(z, d)da:

+G/92 fla,y)dy + = /92 bydy]

(@0 + fla,d) + 0,0+ (b, d),

I /\

where
b d
G1 :/ g1(z)dz and Go :/ 92(y)dy.
These inequalities are sharp.

In [13] authors have introduced some mappings in connection to the Hadamard
inequality in two coordinates and discussed their interesting properties. In this
paper we define and study properties of mapping in connection with the Fejér-
Hadamard inequality for coordinated convex functions. Results of this paper are
actually generalizations of results given in [13].

2. MAIN RESULTS
The following lemma is given in [13].

Lemma 2.1. Let f : [a,b] — R be convex function and let a < y1 < 21 < 29 <
Yo < b and x1 + x5 =y1 +ys. Then

f(@1) + f(z2) < fy1) + f(y2)-
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Theorem 2.2. Suppose that f : A CR? — R is coordinated convex on /A and the
mapping Fy, g, : 0,112 — R is defined by

e | [ () (592 (%) (529
(5 (593 (5)9)

(59 (59 (5o (5
(1590 (5= (5o (5 i

Then the followings are valid:
(i) The mapping Fy, 4, is coordinated convez on [0,1]2.
(i1) The mapping Fy, 4, is coordinated monotonic nondecreasing on [0,1]%.

(i13) Fy, g, have bounds

inf F, t
(, s)lg[O 12 9192( ,S)

4+ N

+ f
+ f

\]

d+

N}

flz,9)g1(2z — a)g2(2y — ¢)dydx

G1G2
(‘+d

/ / (7,y)91 (22 — b)g2(2y — c)dydx
t [ Hntar - iz dyi

+ / / F(,9)ar (22 — b)ga(2y — d)dydx]

Fg192(030)7
fla,c)+ f(a,d) + f(b,c)+ f(b,d
sup  Fy,q,(t,5) = L) ( )4 b.¢) ( ):Fmgz
(t,s)€[0,1]2

Proof. (i) If s € [0, 1] is fixed, then for all ¢1,¢2 € [0,1] and «, 5 > 0 with a4+ 3 =1,
we have

1 b
Fy g, (at1 + Bta, s) = m/ /

{f( 1+ ( at1+ﬁt2)>a+<1(at;+ﬂt2))z <1;s>c+<125)y> .

—|—o¢t1+ﬁt2 b <l—at1+5t2 m( s

() )
((1+ at1 + Bta) ) (1— aty + fBta) )x(l
(( ) )

1-‘1- at1+5t2 (1— Oétl-i-ﬂtg (1 S
x’

(1,1).

+

~

b+

~

91(2)g2(y dyd:v
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Since we have for z = a, b

1+ (aty + Sta) . 1— (aty + Bta) .
( (1 +t?)z+ (1>—t1)x( ?1 +t2)z>+ (1—ta)z
e A G

therefore

Fygg: (a1 + B2, 5) 4G1G2 /b /d
[f( (<1+t1a+ ) 5(1“2“ l_t”) (Hs) (1§S)y>

( <1+t1b+ 1—t1x>+5((1+t2)b;(1_t2 ) (1;8)C+(1;S)y>
+f<<”““ () (50 (7))
( ’

2

a( 1+t1b+ (1—t)z >+ﬁ((1+t2)b42—(1—t2)x> (1—;s)d+(lgs>y>]

x g1(x)g2(y)dydx.

_|_

~

By using the definition of coordinated convexity on first coordinate,

1
4G Gy

Fglgz (atl + Bt?a

= aFglg2 (t17 ) + ﬁ gi192 (t2) 8)'

If t € [0,1] is fixed, then for all s1,s2 € [0,1] and «, 8 > 0 with a + 8 =1, we also
have

Fig5(t, st + Bs2) < aFy g, (t,81) + By, g, (1, 52).



ON MAPPINGS IN CONNECTION TO THE FEJER-HADAMARD INEQUALITY ... 5
This proves that F, 4, is coordinated convex on [0, 1]%.

ii) Now to prove Fy,,, is coordinated monotonic nondecreasing on [0, 1] we fix
se€0,1] and let 0 <t; <ty <1,a <2x <b We have

L L) (59 (5 ()
At

1+
wr((F52)ar :
1—|—t1 1—t1 1+s
(50 (50) - (5
Since f is coordinated convex on A and
14t 11—t 141t 11—t
<
(52) e (557) = (557)+ (557)
1+t 1—t 14t 1—1t
S( ;1)b+( 21>@+ax)§<;2>b+<22)@+az)

with
14+t 11—t 1+t 1—t
(55290 () (590 (52000
. 1+4+ts 1—1t5 1+, 1—1t5
) (50) [0 (557 0]
Then by using Lemma 2.1, we have

(5)

Fglgz (t]-’ ) 4G1G2

[ (<1+t2> (12152)3;, <1;S>C+ <125) yﬂ 91(2)g2(y)dydz
/ [UACSE) (52 e (594 (5]

1(b+a— )dydx
(1 ; 8) d+ (1 ; 3> y)] 91(x)ga(y)dydx
+

)
L) ()
)(b+a—x),(12s>d+ (1;3)(7;)} <

(

(-
LR (5

91(b+ a — x)g2(y)dydz,

[\
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here we use the following equality

T LB (520 (552) e (529 s
L) (58 0o (552 e (552)0)]

g1(b+a —x)g2(y)dydz.

[\

From (5) and (6) we get

+f<(1 tz)b+<1;t2>x7(lgs>c+ 1;s>y>
() (520 () (7))
()0 (52 0 (552 a5 (552) )] st

f
Fglqz (t2, 5)
This shows that Fy, 4, (¢, s) is coordinated nondecreasing for all ¢ € [0, 1].
If t € [0,1] is fixed, then for all s € [0,1], we also have F,, 4, (¢,s) is coordinated
nondecreasing for all s € [0,1]. Thus the mapping Fy,,4, is coordinated monotonic
nondecreasing on [0, 1]2.
(i74) Tt follows from (i7) that, for all (¢, s) € [0,1]?,

Fyg,(t, ) 2 Fg1g2 (0,5) > Fy,g,(0,0)

// a+x c+y ny at+x d+y
4G1G2 2 72 2 72

+f (Hx,cﬂj) ( : d+y>]gl(m)gz(y)dydw

(z,9)91 (22 — a)g2(2y — c)dydx

e

(z,y)g1(2x — b)g2(2y — ¢)dydzx

a+b

T /a;b /Céd f(@,9)g1(22 — b)g2(2y — d)dydz
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and

F9192 (t’ 3) S F!]lgz (t’ 1) S Fglgz(la 1)

b d
:4@&@'2/ / [f(a,¢) + f(a,d) + f(b,¢) + f(b,d)]g1(x)g2(y)dyda

_ fla,0) + fla,d) + f(b,c) + f(b,d)
4
This completes the proof. (I

Remark 2.3. If we put gy =1 and go = 1 in Theorem 2.2, then we get Theorem
1 of [13].

Now we are interested to give some results related to Lipshitzian mapping. The
following definition is given in [15, p. 305].

Definition 2.4. Consider a function f : A — R defined on a subset A of R™,m €
N. Let L = (Ly,Lo,...,Ly,) where L; > 0,i = 1,2,...,m. We say that f is
L-Lipchitian function if

(7) [f(z) = fW)l <D Lilzi — uil
i=1

for all z,y € A.

For desired results we need the following lemma, which is due to Levin and
Steckin [17, p. 200].

Lemma 2.5. Let f is convex on [a,b] and g is symmetric about (a + b)/2 and
non-decreasing on [a, (a + b)/2]. Then

Q [t < o [ s [ ot

For the functions Fy, 4, defined in Theorem 2.2, and H defined as follows

~ I b d
At =g | [ (0= 0 e+ 0950 ) nntans
we have the following result.

Theorem 2.6. Let f: A = [a,b] x [¢,d] — R satisfy Lipschitzian conditions. That
is, for (t1,s1) and (ta,s2) belong to A, we have

|f(t1,s1) = f(ta,s2)] < Lalt1 — ta| 4+ La|s1 — s2|
where L1 and Lo are positive constants. Then

L1|t1 — t2|(b — a) + L2|81 — 82|(d — C)

(9) |F9192(t1a51) _Fglg2(t2732)| < 4

and

7 Ty Lilty — ta|(b—a) + Lo|lsy — so|(d — ¢
(10) |H(t1,s1) — H(ta,s2)] < 1]t — t2|( )4 als1 — s2( ).
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Proof. For (t1,s1) and (t2, s2) belong to A, we have

1
|F9192(t1751) Fglgg(thSQ)‘ < 4G Gy

(5 (55 ()

()0 () (590 (59))
() ()55
()0 () (520 (52),
() (595 (52,
() () (5 ()
() (59 (5200 (5,
(050 (59 052)0 (52

Since f satisfies lipshitzian condition we have

‘F(]lgz(tl’sl) Q192(t2752 G / /
t1 —t to —t s S
a("57) 221>x1“2(122>

t1 —1 to —1

B[ (55 ()
1 —t to —1 - -

el (5 ) el (2 =),
1 — ¢ to — 1 -

Pl e)er (552) | (252) (252t

Li ["|(ti—ts ta—t t—t ty —

et b

2G1 ; ( B) a—+ 9 T| + D) + 2 91( )d

+L2/d S1=82) (529 L2 g (2o ()d

2G, 9 2 Y 2 9 Y| 92\y)ay,

using Lemma 2.5 we get

L1|t1 —tg‘( — a) +L2‘S1 — 52|(d— C)

|Fl1192(t1’51) _FQ102(t2732)| 1
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Now
|H(t1,81 tQ,SQ)I
a+b c+d
< t (1—t¢ 1-—
_G1G2 <1I+ 1) 2 ,81Y + ( 51) D) )

- f<t2$+(1—t2) +b,82y+(1—52)c+d>

2 2
1 b d
< L
_Gle/ax {1

g1(z ) ( )dydfv

91(7)g2(y)dydx

(t1 —t2)(z — a;rb)’ + Ly

(51— s2)(y C“’)H ><

81

‘ [(2)de + 221 = 52)]

Again using Lemma 2.5 we get

Lty — ta|(b— Lolsi — sol(d —
|Hyygo (t1,81) — Hy, g, (2, 52)| < 1]t — ta( a)z als1 — s2( c)'

This completes the proof. O

Remark 2.7. If we put gy =1 and go = 1 in Theorem 2.6, then we get Theorem
2 of [13].

Remark 2.8. If we take t; = 0,t5 = 1,51 = 0, and s = 1 in Theorem 2.6, then
inequalities (9) and (10) reduce to

fla,¢) + f(a,d) + f(b,c) + f(b,d) L b oqd
(11) 4 _G1G2/a /C f(x,y)g1(x)g2(y)dydx

< Li(b—a)+ La(d —¢)

- 4
and
(12)

bopd ., .

(29 e | e nn@ataa < = 02,

2.9. Concluding remarks. It is a beauty of mathematics that a topic in Mathe-
matics always have further connections which cannot be end. We have generalized
the Hadamard inequality for convex functions on coordinates and here we find its
applications as extension of known results.
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