
SOME FUNCTIONALS ASSOCIATED TO SEMI-INNER
PRODUCTS ON COMPLEX BANACH SPACES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we introduce some functionals that are related to
Schwarz�s inequality for semi-inner products on complex linear spaces and
study their properties such as superadditivity and monotonicity. Applications
for particular semi-inner products generated by an element of norm one in
Banach spaces as well as for some bounded operators that satisfy a Schwarz�s
type condition are given. Some suggestive examples in the case of complex
Hilbert spaces are also provided.

1. Introduction

In what follows, we assume that X is a linear space over the real or complex
number �eld K.
The following concept was introduced in 1961 by G. Lumer [8] but the main

properties of it were discovered by J. R. Giles [9], P. L. Papini [15], P. M. Miliµcíc
[11]�[13], I. Roşca [16], B. Nath [14] and others, see [2].
In this introductory section we give the de�nition of this concept and point out

the main facts which are derived directly from the de�nition.

De�nition 1. The mapping [�; �] : X�X ! K will be called the semi-inner product
in the sense of Lumer-Giles or L-G-s.i.p., for short, if the following properties are
satis�ed:

(i) [x+ y; z] = [x; z] + [y; z] for all x; y; z 2 X;
(ii) [�x; y] = � [x; y] for all x; y 2 X and � a scalar in K;
(iii) [x; x] � 0 for all x 2 X and [x; x] = 0 implies that x = 0;
(iv) j[x; y]j2 � [x; x] [y; y] for all x; y 2 X;
(v) [x; �y] = �� [x; y] for all x; y 2 X and � a scalar in K.

The following results collects some fundamental facts concerning the connection
between the semi-inner products and norms.

Proposition 1. Let X be a linear space and [�; �] a L-G-s.i.p on X. Then the
following statements are true:

(i) The mapping X 3 x k�k��! [x; x]
1
2 2 R+ is a norm on X;

(ii) For every y 2 X the functional X 3 x fy��! [x; y] 2 K is a continuous lin-
ear functional on X endowed with the norm generated by the L-G-s.i.p.
Moreover, one has the equality kfyk = kyk :
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De�nition 2. The mapping J : X ! 2X
�
, where X� is the dual space of X, given

by:
J (x) := fx� 2 X�j hx�; xi = kx�k kxk ; kx�k = kxkg , x 2 X

will be called the normalised duality mapping of normed linear space (X; k�k).

De�nition 3. A mapping ~J : X ! X� will be called a section of normalised duality
mapping if ~J (x) 2 J (x) for all x in X.

The following theorem due to I. Roşca [16] establishes a natural connection
between the normalised duality mapping and the semi-inner products in the sense
of Lumer-Giles.

Theorem 1. Let (X; k�k) be a normed space. Then every L-G-s.i.p. which gener-
ates the norm k�k is of the form

[x; y] =
D
~J (y) ; x

E
for all x; y in X,

where ~J is a section of the normalised duality mapping.

The following proposition is a natural consequence of Roşca�s result.

Proposition 2. Let (X; k�k) be a normed linear space. Then the following state-
ments are equivalent:

(i) X is smooth;
(ii) There exists a unique L-G-s.i.p. which generates the norm k�k.

A mapping [�; �] : X�X ! K will be called a sub-semi-inner product in the sense
of Lumer-Giles or s-L-G-s.i.p., for short, if in the De�nition 1 instead of condition
(iii) we have the relaxed condition:
(iii�) [x; x] � 0 for all x 2 X.
We denote by SS(X) the class of all sub-semi-inner products de�ned on the

linear space X:
We can introduce the following order relation amongst the elements of SS(X):

For [�; �]1 ; [�; �]2 2 SS(X); we say that
(1.1) [�; �]2 � [�; �]1 i¤ [�; �]2 � [�; �]1 2 SS(X):
In the recent paper [4] we obtained amongst other the following inequalities for

[�; �]1 ; [�; �]2 2 SS(X) with [�; �]2 � [�; �]1
kxk22 kyk

2
2 � j[x; y]2j

2
+ kxk21 kyk

2
1 � j[x; y]1j

2(1.2)

�

24det
0@ kxk1 kyk1

kxk2 kyk2

1A352 � 0
and the inequality

(1.3) j[x; y]1j �
1

2
[kxk2 kyk2 + j[x; y]2j] ;

for any x; y 2 X:
Some applications for particular semi-inner products generated by an element of

norm one in the given Banach spaces as well as for some bounded operators that
satisfy a Schwarz�s type condition were given. Some norm and numerical radius
inequalities for operators acting on smooth uniformly convex Banach spaces with



SOME INEQUALITIES FOR SEMI-INNER PRODUCTS 3

more suggestive examples in the case of complex Hilbert spaces were also provided
[4].
In this paper we introduce some functionals that are related to Schwarz�s inequal-

ity for semi-inner products on complex linear spaces and study their properties such
as superadditivity and monotonicity. Applications for particular semi-inner prod-
ucts generated by an element of norm one in Banach spaces as well as for some
bounded operators that satisfy a Schwarz�s type condition are given. Some sugges-
tive examples in the case of complex Hilbert spaces are also provided.

2. Some Properties of Mapping �

Let us consider the following mapping � : SS(X)�X2 ! R+;

� ([�; �] ;x; y) := [x; x]1=2 [y; y]1=2 � j[x; y]j = kxk kyk � j[x; y]j
where x; y 2 X; which is closely related to Schwarz�s inequality (iv) from De�nition
1.
The following simple properties of � are obvious:

(s) � (� [�; �] ;x; y) = �� ([�; �] ;x; y) ;
(ss) � ([�; �] ; y; x) = � ([�; �] ;x; y) ;
(sss) � ([�; �] ;x; y) � 0 (by Schwarz�s inequality);

for any � � 0; [�; �] 2 SS(X) and x; y 2 X:
The following result concerning the functional properties of � as a function de-

pending on the sub-semi-inner product [�; �] 2 SS(X) :

Theorem 2. The mapping � satis�es the following statements:
(i) For every [�; �]i 2 SS(X) (i = 1; 2) one has the inequality

(2.1) � ([�; �]1 + [�; �]2 ;x; y) � � ([�; �]1 ;x; y) + � ([�; �]2 ;x; y) � 0
for all x; y 2 X, i.e., the mapping � (�;x; y) is superadditive on SS(X);

(ii) For every [�; �]1 ; [�; �]2 2 SS(X) with [�; �]2 � [�; �]1 one has
(2.2) � ([�; �]2 ;x; y) � � ([�; �]1 ;x; y) � 0

for all x; y 2 X; i.e., the mapping � (�;x; y) is nondecreasing on SS(X):

Proof. (i) By the Cauchy-Bunyakovsky-Schwarz inequality for real numbers, we
have �

a2 + b2
� 1
2
�
c2 + d2

� 1
2 � ac+ bd; a; b; c; d � 0:

Therefore,

� ([�; �]1 + [�; �]2 ;x; y)

= ([x; x]1 + [x; x]2)
1
2 ([y; y]1 + [y; y]2)

1
2 � j[x; y]1 + [x; y]2j

� [x; x]1=21 [y; y]
1=2
1 + [x; x]

1=2
2 [y; y]

1=2
2 � j[x; y]1j � j[x; y]2j

= � ((�; �)1 ;x; y) + � ((�; �)2 ;x; y) ;

for all [�; �]i 2 SS(X) (i = 1; 2) and x; y 2 X; and the statement is proved.
(ii) Suppose that [�; �]2 � [�; �]1 and de�ne [�; �]2;1 := [�; �]2 � [�; �]1 : Then [�; �]2;1 is

a sub-semi-inner product and thus, by the above property one has,

� ([�; �]2 ;x; y) = �
�
[�; �]2;1 + [�; �]1 ;x; y

�
� �

�
[�; �]2;1 ;x; y

�
+ � ([�; �]1 ;x; y)
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from where we get:

� ([�; �]2 ;x; y)� � ([�; �]1 ;x; y) � �
�
[�; �]2;1 ;x; y

�
� 0

and the proof of the theorem is completed. �
Corollary 1. Let [�; �]1 ; [�; �]2 2 SS(X) and M > m > 0 with M [�; �]1 � [�; �]2 �
m [�; �]1, then
(2.3) M� ([�; �]1 ;x; y) � � ([�; �]2 ;x; y) � m� ([�; �]1 ;x; y) � 0:

Remark 1. If we consider the related mapping

�r ([�; �] ;x; y) := [x; x]1=2 [y; y]1=2 � Re [x; y] ;
then we can show, as above, that � (�;x; y) is superadditive and nondecreasing on
SS(X):

For [�; �] 2 SS(X) and e 2 X; e 6= 0 we consider the functional [�; �]e : X�X ! K
de�ned by

[x; y]e = [x; e] [y; e] for x; y 2 X:
We observe that [�; �]e is linear in the �rst variable, anti-homogeneous in the second
variable and

[x; x]e = j[x; e]j
2 � 0 for any x 2 X:

Also, we have

j[x; y]ej
2
=
���[x; e] [y; e]���2 = j[x; e]j2 j[y; e]j2 = [x; x]e [y; y]e ;

for x; y 2 X; which shows that the Schwarz�s inequality (iv) is veri�ed with equality.
Therefore we conclude that [�; �]e 2 SS(X): We also observe that

� ([�; �]e ;x; y) := [x; x]
1=2
e [y; y]

1=2
e � j[x; y]ej = 0

for x; y 2 X:

Corollary 2. Let [�; �] 2 SS(X) and e 2 X; e 6= 0; then for any x; y 2 X we have�
kxk2 + j[x; e]j2

�1=2 �
kyk2 + j[y; e]j2

�1=2
�
���[x; y] + [x; e] [y; e]���(2.4)

� kxk kyk � j[x; y]j � 0:

Proof. From (2.1) for [�; �]1 = [�; �] and [�; �]2 = [�; �]e we have
� ([�; �] + [�; �]e ;x; y) � � ([�; �] ;x; y) + � ([x; y]e ;x; y)

for any x; y 2 X; which is equivalent to (2.4). �
Corollary 3. Let [�; �] 2 SS(X) and f 2 X; kfk = 1 such that [�; �] � [�; �]f . Then
for any x; y 2 X we have

kxk kyk � j[x; y]j(2.5)

�
�
kxk2 � j[x; f ]j2

�1=2 �
kyk2 � j[y; f ]j2

�1=2
�
���[x; y]� [x; f ] [y; f ]��� � 0:

Proof. From (2.1) for [�; �]2 = [�; �]� [�; �]f and [�; �]1 = [�; �]f we have

� ([�; �] ;x; y) � �
�
[�; �]� [�; �]f ;x; y

�
+ �

�
[�; �]f ;x; y

�
for any x; y 2 X; which is equivalent to (2.5). �
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3. Some Properties of Mapping �

Now consider the following mapping naturally associated to Schwarz�s inequality,
namely � : SS(X)�X2 ! R+;

� ([�; �] ;x; y) := [x; x] [y; y]� j[x; y]j2 = kxk2 kyk2 � j[x; y]j2

for x; y 2 X:
It is obvious that the following properties are valid:

(i) � ([�; �] ;x; y) � 0 (Schwarz�s inequality);
(ii) � ([�; �] ;x; y) = � ([�; �] ; y; x) ;
(iii) � (� [�; �] ;x; y) = �2� ([�; �] ;x; y)

for all x; y 2 X; � � 0 and [�; �] 2 SS(X):

Theorem 3. The mapping � satis�es the following statements:

(i) For every [�; �]i 2 SS(X) (i = 1; 2) one has the inequality

� ([�; �]1 + [�; �]2 ;x; y)� � ([�; �]1 ;x; y)� � ([�; �]2 ;x; y)(3.1)

� (kxk2 kyk1 � kxk1 kyk2)
2
+ 2 (kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j)

� 0

for all x; y 2 X, i.e., the mapping � (�;x; y) is strongly superadditive on
SS(X);

(ii) For every [�; �]1 ; [�; �]2 2 SS(X) with [�; �]2 � [�; �]1 one has

� ([�; �]2 ;x; y)� � ([�; �]1 ;x; y)(3.2)

�
��
kxk22 � kxk

2
1

�1=2
kyk1 � kxk1

�
kyk22 � kyk

2
1

�1=2�2
+ 2

�
kyk1 kxk1

�
kxk22 � kxk

2
1

�1=2 �
kyk22 � kyk

2
1

�1=2
� j[x; y]1j j[x; y]2 � [x; y]1j)
� 0

for all x; y 2 X; i.e., the mapping � (�;x; y) is strongly nondecreasing on
SS(X):

Proof. (i) We have by the de�nition of � that

� ([�; �]1 + [�; �]2 ;x; y)
= ([x; x]1 + [x; x]2) ([y; y]1 + [y; y]2)� j[x; y]1 + [x; y]2j

2

= [x; x]1 [y; y]1 + [x; x]2 [y; y]1 + [x; x]1 [y; y]2 + [x; x]2 [y; y]2

� j[x; y]1j
2 � 2Re

�
[x; y]1 [x; y]2

�
� j[x; y]2j

2

= [x; x]1 [y; y]1 � j[x; y]1j
2
+ [x; x]2 [y; y]2 � j[x; y]2j

2

+ [x; x]2 [y; y]1 + [x; x]1 [y; y]2 � 2Re
�
[x; y]1 [x; y]2

�
for every [�; �]i 2 SS(X) (i = 1; 2) and x; y 2 X:
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From this we have the equality of interest

� ([�; �]1 + [�; �]2 ;x; y)� � ([�; �]1 ;x; y)� � ([�; �]2 ;x; y)(3.3)

= kxk22 kyk
2
1 + kxk

2
1 kyk

2
2 � 2Re

�
[x; y]1 [x; y]2

�
for every [�; �]i 2 SS(X) (i = 1; 2) and x; y 2 X:
Now, observe that

kxk22 kyk
2
1 + kxk

2
1 kyk

2
2 � 2Re

�
[x; y]1 [x; y]2

�
(3.4)

= kxk22 kyk
2
1 + kxk

2
1 kyk

2
2 � 2 kxk2 kyk1 kxk1 kyk2

+ 2 kxk2 kyk1 kxk1 kyk2 � 2Re
�
[x; y]1 [x; y]2

�
= (kxk2 kyk1 � kxk1 kyk2)

2

+ 2
�
kxk2 kyk1 kxk1 kyk2 � Re

�
[x; y]1 [x; y]2

��
for every [�; �]i 2 SS(X) (i = 1; 2) and x; y 2 X:
By the properties of modulus we also have

Re
�
[x; y]1 [x; y]2

�
�
���Re�[x; y]1 [x; y]2���� � ���[x; y]1 [x; y]2��� = j[x; y]1j j[x; y]2j ;

which, by the use of the equality (3.4), produces the inequality

kxk22 kyk
2
1 + kxk

2
1 kyk

2
2 � 2Re

�
[x; y]1 [x; y]2

�
� (kxk2 kyk1 � kxk1 kyk2)

2
+ 2 (kyk1 kxk1 kxk2 kyk2 � j[x; y]1j j[x; y]2j)

and by (3.3) we get the �rst part of (3.1).
By Schwarz�s inequality for the sub-semi-inner products we have

kyk1 kxk1 � j[x; y]1j and kyk2 kxk2 � j[x; y]2j ;

which by multiplication gives

kyk1 kxk1 kxk2 kyk2 � j[x; y]1j j[x; y]2j

for any x; y 2 X; which proves the last inequality in (3.1).
(ii) If [�; �]2 � [�; �]1 then [�; �]2;1 := [�; �]2 � [�; �]1 is a sub-semi-inner product and

if we write the inequality (3.1) for [�; �]1 and [�; �]2;1 then we have

� ([�; �]2 ;x; y)� � ([�; �]1 ;x; y)� �
�
[�; �]2;1 ;x; y

�
�
�
kxk2;1 kyk1 � kxk1 kyk2;1

�2
+ 2

�
kyk1 kxk1 kxk2;1 kyk2;1 � j[x; y]1j

���[x; y]2;1����
� 0;
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which implies that

� ([�; �]2 ;x; y)� � ([�; �]1 ;x; y)

� �
�
[�; �]2;1 ;x; y

�
+
�
kxk2;1 kyk1 � kxk1 kyk2;1

�2
+ 2

�
kyk1 kxk1 kxk2;1 kyk2;1 � j[x; y]1j

���[x; y]2;1����
�
�
kxk2;1 kyk1 � kxk1 kyk2;1

�2
+ 2

�
kyk1 kxk1 kxk2;1 kyk2;1 � j[x; y]1j

���[x; y]2;1����
for any x; y 2 X: �

Remark 2. From the inequality (3.1) we have

� ([�; �]1 + [�; �]2 ;x; y)� � ([�; �]1 ;x; y)� � ([�; �]2 ;x; y)(3.5)

�

0@det
24 kxk2 kxk1

kyk2 kyk1

351A2

� 0

and

� ([�; �]1 + [�; �]2 ;x; y)� � ([�; �]1 ;x; y)� � ([�; �]2 ;x; y)(3.6)

� 2 det

24 kxk2 kyk2 j[x; y]2j

j[x; y]1j kyk1 kxk1

35 � 0
for any [�; �]i 2 SS(X) (i = 1; 2) and for any x; y 2 X:
If [�; �]1 ; [�; �]2 2 SS(X) with [�; �]2 � [�; �]1 ; then by (3.2) we have

� ([�; �]2 ;x; y)� � ([�; �]1 ;x; y)(3.7)

�

0BBB@det
26664
kxk1

�
kxk22 � kxk

2
1

�1=2
kyk1

�
kyk22 � kyk

2
1

�1=2
37775
1CCCA
2

� 0

and

� ([�; �]2 ;x; y)� � ([�; �]1 ;x; y)(3.8)

� 2 det

26664
kxk1

�
kxk22 � kxk

2
1

�1=2
j[x; y]2 � [x; y]1j

j[x; y]1j kyk1
�
kyk22 � kyk

2
1

�1=2
37775 � 0

for any x; y 2 X:
In particular, � (�;x; y) is monotonic nondecreasing, namely

(3.9) � ([�; �]2 ;x; y) � � ([�; �]1 ;x; y)

provided that [�; �]1 ; [�; �]2 2 SS(X) with [�; �]2 � [�; �]1 :
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Corollary 4. Let [�; �] 2 SS(X) and e 2 X; e 6= 0; then for any x; y 2 X we have�
kxk2 + j[x; e]j2

��
kyk2 + j[y; e]j2

�
�
���[x; y] + [x; e] [y; e]���2(3.10)

� kxk2 kyk2 + j[x; y]j2

�

0@det
24 kxk j[x; e]j

kyk j[y; e]j

351A2

� 0

and �
kxk2 + j[x; e]j2

��
kyk2 + j[y; e]j2

�
�
���[x; y] + [x; e] [y; e]���2(3.11)

� 2 (kxk kyk � j[x; y]j)
�
j[x; e]j j[y; e]j+ 1

2
(kxk kyk+ j[x; y]j)

�
� 0:

The proof follows (3.5) and (3.6) for the sub-semi-inner products [�; �]2 = [�; �]
and [�; �]1 = [�; �]e :
Corollary 5. Let [�; �] 2 SS(X) and f 2 X; kfk = 1 such that [�; �] � [�; �]f . Then
for any x; y 2 X we have

(3.12) kxk2 kyk2 � j[x; y]j2 �

0BBB@det
26664
j[x; f ]j

�
kxk2 � j[x; f ]j2

�1=2
j[y; f ]j

�
kyk2 � j[y; f ]j2

�1=2
37775
1CCCA
2

� 0

and

(3.13) kxk2 kyk2 � j[x; y]j2 � 2 j[x; f ]j j[y; f ]j

�
��
kxk2 � j[x; f ]j2

�1=2 �
kyk2 � j[y; f ]j2

�1=2
�
���[x; y]� [x; f ] [y; f ]���� � 0

for any x; y 2 X:
We also have:

Corollary 6. Let [�; �]1 ; [�; �]2 2 SS(X) and M > m > 0 with M [�; �]1 � [�; �]2 �
m [�; �]1, then
(3.14) M2� ([�; �]1 ;x; y) � � ([�; �]2 ;x; y) � m

2� ([�; �]1 ;x; y) � 0:
Proof. From (3.9) we have that

� ([�; �]2 ;x; y) � � (m [�; �]1 ;x; y) = m
2� ([�; �]1 ;x; y)

and the corresponding inequality for M; which proves (3.14). �

4. Some Properties of Mapping �

The following mapping associated to Schwarz�s inequality can also be considered
� : SS(X)�X2 ! R+;

� ([�; �] ;x; y) :=
�
kxk2 kyk2 � j[x; y]j2

�1=2
= �1=2 ([�; �] ;x; y)

for x; y 2 X:
It is obvious that the following properties are valid:
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(i) � ([�; �] ;x; y) � 0;
(ii) � ([�; �] ;x; y) = � ([�; �] ; y; x) ;
(iii) � (� [�; �] ;x; y) = �� ([�; �] ;x; y)

for all x; y 2 X; � � 0 and [�; �] 2 SS(X):

Theorem 4. For every [�; �]i 2 SS(X) (i = 1; 2) one has the inequality

�2 ([�; �]1 + [�; �]2 ;x; y)(4.1)

� [� ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)]
2

+ (kxk2 kyk1 � kxk1 kyk2)
2

+ 2 (kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j)

� 2
�
kxk21 kyk

2
1 � j[x; y]1j

2
�1=2 �

kxk22 kyk
2
2 � j[x; y]1j

2
�1=2

for any x; y 2 X:
In particular, we have

�2 ([�; �]1 + [�; �]2 ;x; y) � [� ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)]
2(4.2)

+ (kxk2 kyk1 � kxk1 kyk2)
2

and

�2 ([�; �]1 + [�; �]2 ;x; y)(4.3)

� [� ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)]
2

+ 2 (kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j)

� 2
�
kxk21 kyk

2
1 � j[x; y]1j

2
�1=2 �

kxk22 kyk
2
2 � j[x; y]1j

2
�1=2

for any x; y 2 X:

Proof. We have

�2 ([�; �]1 + [�; �]2 ;x; y)� [� ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)]
2(4.4)

= �2 ([�; �]1 + [�; �]2 ;x; y)� �
2 ([�; �]1 ;x; y)� �

2 ([�; �]2 ;x; y)
2

� 2� ([�; �]1 ;x; y)� ([�; �]2 ;x; y)
= � ([�; �]1 + [�; �]2 ;x; y)� � ([�; �]1 ;x; y)� � ([�; �]2 ;x; y)

� 2
�
kxk21 kyk

2
1 � j[x; y]1j

2
�1=2 �

kxk22 kyk
2
2 � j[x; y]1j

2
�1=2

for any x; y 2 X:
Using the inequality (3.1) we then have

� ([�; �]1 + [�; �]2 ;x; y)� � ([�; �]1 ;x; y)� � ([�; �]2 ;x; y)(4.5)

� 2
�
kxk21 kyk

2
1 � j[x; y]1j

2
�1=2 �

kxk22 kyk
2
2 � j[x; y]1j

2
�1=2

� (kxk2 kyk1 � kxk1 kyk2)
2
+ 2 (kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j)

� 2
�
kxk21 kyk

2
1 � j[x; y]1j

2
�1=2 �

kxk22 kyk
2
2 � j[x; y]1j

2
�1=2

for any x; y 2 X:
By using (4.4) and (4.5) we get (4.1).
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By utilising the elementary inequality for real numbers a; b; c; d�
a2 � b2

� �
c2 � d2

�
� (ac� bd)2

we get �
kxk21 kyk

2
1 � j[x; y]1j

2
��
kxk22 kyk

2
2 � j[x; y]1j

2
�

(4.6)

� (kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j)
2

for any x; y 2 X:
Since by Schwarz�s inequality we have

kxk21 kyk
2
1 � j[x; y]1j

2
; kxk22 kyk

2
2 � j[x; y]1j

2

and
kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j ;

then by (4.6) we get�
kxk21 kyk

2
1 � j[x; y]1j

2
�1=2 �

kxk22 kyk
2
2 � j[x; y]1j

2
�1=2

(4.7)

� kxk2 kyk1 kxk1 kyk2 � j[x; y]1j j[x; y]2j
for any x; y 2 X:
Now, by using (4.1) and (4.7) we get (4.2). The rest follows from these inequal-

ities. �

Corollary 7. For any x; y 2 X the mapping � (�;x; y) is superadditive, namely
(4.8) � ([�; �]1 + [�; �]2 ;x; y) � � ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)
for any [�; �]i 2 SS(X) (i = 1; 2) :
For all x; y 2 X the mapping � (�;x; y) is nondecreasing on SS(X):

Proof. From (4.2) we have for any [�; �]i 2 SS(X) (i = 1; 2) that

�2 ([�; �]1 + [�; �]2 ;x; y) � [� ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)]
2

+ (kxk2 kyk1 � kxk1 kyk2)
2

� [� ([�; �]1 ;x; y) + � ([�; �]2 ;x; y)]
2

for any x; y 2 X; and by taking the square root we get (4.2).
The fact that the mapping � (�;x; y) is nondecreasing on SS(X) follows as above.

�

5. Inequalities for Schwarz Type Operators

Following [6], on operator A on a complex Banach space (X; k�k) is said to be
Hermitian if [Ax; x] is real for any x 2 X; where [�; �] is a s-L-G-s.i.p. that generates
the norm k�k :

De�nition 4. Let (X; k�k) be a complex Banach space and [�; �] a s-L-G-s.i.p. that
generates the norm k�k : We say that the Hermitian operator A : X ! X is of
Schwarz type related to [�; �] if [Ax; x] � 0 for any x 2 X and

(5.1) j[Ax; y]j2 � [Ax; x] [Ay; y]
for any x; y 2 X: We write that A 2 S[�;�] (X) :
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We observe that the Hermitian operator A : X ! X is of Schwarz type related
to [�; �] if and only if the functional [�; �]A : X � X ! C, [x; y]A := [Ax; y] is a
s-L-G-s.i.p. on X: Also notice that the identity operator I is of Schwarz type for
any s-L-G-s.i.p. [�; �] that generates the norm.
We observe that if A; B 2 S[�;�] (X) ; then A+B 2 S[�;�] (X) and �A 2 S[�;�] (X)

for any � � 0: This shows that S[�;�] (X) is a cone in the Banach algebra B (X) of
all bounded linear operators acting on X:
We can de�ne on S[�;�] (X) the following order relation A � B for A; B 2 S[�;�] (X)

if A�B 2 S[�;�] (X) : We observe that for A; B 2 S[�;�] (X), A � B i¤ [�; �]A � [�; �]B
in the sense of the de�nition (1.1).

Proposition 3. If A; B 2 S[�;�] (X) ; then

[(A+B)x; x]
1=2
[(A+B) y; y]

1=2 � j[(A+B)x; y]j(5.2)

� [Ax; x]1=2 [Ay; y]1=2 � j[Ax; y]j+ [Bx; x]1=2 [By; y]1=2 � j[Bx; y]j � 0
for any x; y 2 X:
If A; B 2 S[�;�] (X) with MB � A � mB for some positive numbers M > m;

then

M
h
[Bx; x]

1=2
[By; y]

1=2 � j[Bx; y]j
i

(5.3)

� [Ax; x]1=2 [Ay; y]1=2 � j[Ax; y]j

� m
h
[Bx; x]

1=2
[By; y]

1=2 � j[Bx; y]j
i
� 0

for any x; y 2 X:

The proof follows by (2.1) and (2.3) written for the sub-semi-inner products [�; �]A
and [�; �]B :

Proposition 4. If A; B 2 S[�;�] (X) ; then

[(A+B)x; x] [(A+B) y; y]� j[(A+B)x; y]j2(5.4)

� [Ax; x] [Ay; y]� j[Ax; y]j2 + [Bx; x] [By; y]� j[Bx; y]j2

+

0@det
24 [Ax; x]

1=2
[Bx; x]

1=2

[Ay; y]
1=2

[By; y]
1=2

351A2

and

[(A+B)x; x] [(A+B) y; y]� j[(A+B)x; y]j2(5.5)

� [Ax; x] [Ay; y]� j[Ax; y]j2 + [Bx; x] [By; y]� j[Bx; y]j2

+ 2det

24 [Bx; x]
1=2
[By; y]

1=2 j[Ax; y]j

j[Bx; y]j [Ax; x]
1=2
[Ay; y]

1=2

35
for any x; y 2 X:
In particular,

[(A+B)x; x] [(A+B) y; y]� j[(A+B)x; y]j2(5.6)

� [Ax; x] [Ay; y]� j[Ax; y]j2 + [Bx; x] [By; y]� j[Bx; y]j2
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for any x; y 2 X:

The proof follows by (3.5) and (3.6) written for the sub-semi-inner products [�; �]A
and [�; �]B :
By making use of (3.14) we also have:

Proposition 5. If A; B 2 S[�;�] (X) withMB � A � mB for some positive numbers
M > m; then

M2
h
[Bx; x] [By; y]� j[Bx; y]j2

i
� [Ax; x] [Ay; y]� j[Ax; y]j2(5.7)

� m2
h
[Bx; x] [By; y]� j[Bx; y]j2

i
� 0

for any x; y 2 X:

Finally, on making use of Corollary 7 we have:

Proposition 6. If A; B 2 S[�;�] (X) ; then�
[(A+B)x; x] [(A+B) y; y]� j[(A+B)x; y]j2

�1=2
(5.8)

�
�
[Ax; x] [Ay; y]� j[Ax; y]j2

�1=2
+
�
[Bx; x] [By; y]� j[Bx; y]j2

�1=2
for any x; y 2 X:

6. The Case of Hilbert Spaces

Let (H; h�; �i) be a complex Hilbert space and e 2 H with kek = 1: If we take
[�; �] = h�; �i and [�; �]e = h�; ei he; �i then we observe that

(x; y)e := [x; y]� [x; y]e = hx; yi � hx; ei he; yi ; x, y 2 H

is linear in the �rst variable and anti-linear in the second and, by Schwarz�s in-
equality in the Hilbert space (H; h�; �i) ;

(x; x)e = [x; x]� [x; x]e = kxk
2 � jhx; eij2 � 0 for any x 2 H:

Therefore (�; �)e is a nonnegative Hermitian from on the complex linear space H
and thus satisfy the Schwarz inequality

j(x; y)ej
2 � (x; x)e (y; y)e for any x; y 2 H:

Using the terminology introduced above, we then have [�; �] � [�; �]e and by Corollary
2 and 2 we get�

kxk2 + jhx; eij2
�1=2 �

kyk2 + jhy; eij2
�1=2

� jhx; yi+ hx; ei he; yij(6.1)

� kxk kyk � jhx; yij

�
�
kxk2 � jhx; eij2

�1=2 �
kyk2 � jhy; eij2

�1=2
� jhx; yi � hx; ei he; yij

� 0

for any x; y 2 H:
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Using Corollary 4 we also have�
kxk2 + jhx; eij2

��
kyk2 + jhy; eij2

�
� jhx; yi+ hx; ei he; yij2(6.2)

� kxk2 kyk2 + jhx; yij2

�

0@det
24 kxk jhx; eij

kyk jhy; eij

351A2

� 0

and �
kxk2 + jhx; eij2

��
kyk2 + jhy; eij2

�
� jhx; yi+ hx; ei he; yij2(6.3)

� 2 (kxk kyk � jhx; yij)
�
jhx; eij jhy; eij+ 1

2
(kxk kyk+ jhx; yij)

�
� 0;

for any x; y 2 H:
From Corollary 5 we have (see also [3])

(6.4) kxk2 kyk2 � jhx; yij2 �

0BBB@det
26664
jhx; eij

�
kxk2 � jhx; eij2

�1=2
jhy; eij

�
kyk2 � jhy; eij2

�1=2
37775
1CCCA
2

� 0

and

(6.5) kxk2 kyk2 � jhx; yij2 � 2 jhx; eij jhy; eij

�
��
kxk2 � jhx; eij2

�1=2 �
kyk2 � jhy; eij2

�1=2
� jhx; yi � hx; ei he; yij

�
� 0

for any x; y 2 H:
We recall the selfadjoint operator P : H ! H is called nonnegative if hPx; xi � 0

for any x 2 H: If A; B are nonnegative operators with A � B; namely A�B � 0;
then all inequalities in previous section hold with the inner product h�; �i instead of
the [�; �] the s-L-G-s.i.p. that generates the norm k�k and A; B � 0: The details are
omitted.

References

[1] S. S. Dragomir, Some re�nements of Schwarz inequality, Simpozionul de Matematici şi Apli-
caţii, Timişoara, România, 1-2 Noiembrie 1985, 13-16. ZBL 0594.46018.

[2] S. S. Dragomir, Semi-inner Products and Applications. Nova Science Publishers, Inc., Haup-
pauge, NY, 2004. x+222 pp. ISBN: 1-59033-947-9.

[3] S. S. Dragomir, Operator re�nements of Schwarz inequality in inner prod-
uct spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 139. [Online
http://rgmia.org/papers/v20/v20a139.pdf].

[4] S. S. Dragomir, Some inequalities for semi-inner products on complex Ba-
nach spaces, Preprint RGMIA Res. Rep. Coll. 20 (2017), Art. 157. [Online
http://rgmia.org/papers/v20/v20a157.pdf].

[5] S. S. Dragomir and J. Sándor, Some inequalities in pre-Hilbertian spaces. Studia Univ. Babeş-
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