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Abstract

By the use of two h-convex mappings Hg and Fg, some results
and refinements related to the h-convex version of Fejér inequality
are established. Also some applications for obtained inequalities in
connection with Beta function of Euler are given. 1

1 Introduction

The following integral inequalities

f
(a+ b

2

)∫ b

a
g(x)dx ≤

∫ b

a
f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a
g(x)dx, (1)

where f : [a, b] → R is convex and g : [a, b] → [0,+∞) is integrable and

symmetric to x = a+b
2

(
g(x) = g(a + b − x),∀x ∈ [a, b]

)
, known in the

literature as Fejér inequality, has been proved in 1906 by L. Fejér [8].
In 2006, the concept of h-convex functions related to the nonnegative

real functions has been introduced in [16] by S. Varošanec, although it was
not a complete generalization of the concept of convexity. The class of h-
convex functions is including a large class of nonnegative functions such
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as nonnegative convex functions, Godunova-Levin functions [9], s-convex
functions in the second sense [2] and P-functions [7].

Definition 1.1. [16] Let h : [0, 1] → R+ be a function such that h ̸≡ 0. We
say that f : I → R+ is a h-convex function, if for all x, y ∈ I , λ ∈ [0, 1] we
have

f
(
λx+ (1− λ)y

)
≤ h(λ)f(x) + h(1− λ)f(y). (2)

Also the function h is said to be supermultiplicative if

h(xy) ≥ h(x)h(y),

for all x, y ∈ [0, 1] .

The Fejér inequality related to h-convex functions has been introduced
in [1] by M. Bombardelli et al. as the following without the assumption that
h is nonnegative.

Theorem 1.1. Let f : [a, b] → R be h-convex, w : [a, b] → R, w ≥ 0,
symmetric with respect to a+b

2 with nonzero integral . Then

1

2h(12)
f
(a+ b

2

)∫ b

a
w(t)dt ≤

∫ b

a
f(t)w(t)dt (3)

≤ (b− a)[f(a) + f(b)]

∫ 1

0
h(t)w

(
ta+ (1− t)b

)
dt.

For other inequalities in connection to Fejér inequality see [1, 6, 10, 11,
13–15] and references therein.

In this paper, by the use of two h-convex mappings Hg (4) and Fg (13),
we establish some inequalities and refinements related to the left part of (3).
Also some applications for obtained results in connection with Beta function
of Euler are given.

2 Main Results

2.1 The mapping Hg

The mapping Hg : [0, 1] → R defined by

Hg(t) :=

∫ b

a
f

(
tu+ (1− t)

a+ b

2

)
g(u)du, (4)

2



has been introduced in [6] and some basic properties and applications re-
lated to the Fejér inequality in convex version have been obtained where
symmetric function g enjoyed the density property on [a, b], i.e.∫ b

a
g(u)du = 1.

This mapping reduces to H(t) in the classical case if we consider g(u) = 1
b−a

(see [5]).
The following theorem is h-convex version of Theorem 84 in [6] without
density condition for g.

Theorem 2.1. If f : [a, b] → R is a h-convex function with h(12) > 0 and
g : [a, b] → [0,∞) is a symmetric function, then:

(i) Hg is h-convex on [0, 1].
(ii) For t = 0 and t = 1,

Hg(0) = f
(a+ b

2

)∫ b

a
g(u)du and Hg(1) =

∫ b

a
f(u)g(u)du.

(iii) For any t ∈ (0, 1],

1

2h(12)
f
(a+ b

2

)∫ b

a
g(u)du ≤ Hg(t), (5)

and for any t ∈ (0, 1),

Hg(t) ≤
[
h(t) + 2h(

1

2
)h(1− t)

] ∫ b

a
f(u)g(u)du. (6)

(iv) There exist bounds,

inf
t∈[0,1]

Hg(t) ≥ min
{ 1

2h(12)
, 1
}
Hg(0),

and

sup
t∈[0,1]

Hg(t) ≤ max
{

sup
t∈[0,1)

[
h(t) + 2h(

1

2
)h(1− t)

]
, 1
}
Hg(1).

(v) If h is nonnegative and supermultiplicative, then for any 0 < t1 < t2 < 1
with h(t2) ̸= 0 we have

Hg(t1) ≤ αHg(t2),

where α =
2h( 1

2
)h(t2−t1)+h(t1)

h(t2)
.

3



Proof. (i) It follows from h-convexity of f that

Hg(αt1 + βt2) =

∫ b

a
f

([
αt1 + βt2

]
u+

[
1− αt1 − βt2

]a+ b

2

)
g(u)du

=

∫ b

a
f

(
α
[
t1u+ (1− t1)

a+ b

2

]
+ β

[
t2u+ (1− t2)

a+ b

2

])
g(u)du

≤ h(α)

∫ b

a
f

(
t1u+ (1− t1)

a+ b

2

)
g(u)du

+ h(β)

∫ b

a
f

(
t2u+ (1− t2)

a+ b

2

)
g(u)du = h(α)Hg(t1) + h(β)Hg(t2),

provided that α+ β = 1.
(ii) It is obvious.
(iii) For inequality (5), consider the change of variable x = tu + (1 − t)a+b

2
(t > 0) in (4). Then

Hg(t) =
1

t

∫ tb+(1−t)a+b
2

ta+(1−t)a+b
2

f(x)g

(
x+ (t− 1)a+b

2

t

)
dx, (7)

where

t =

(
tb+ (1− t)a+b

2

)
−

(
ta+ (1− t)a+b

2

)
b− a

.

On the other hand since g is symmetric to a+b
2 and

a+ b

2
=

(
ta+ (1− t)a+b

2

)
+

(
tb+ (1− t)a+b

2

)
2

,

then g remains symmetric on interval
[
ta+ (1− t)a+b

2 , tb+ (1− t)a+b
2

]
and

so from Theorem 5 in [1] we have

1

2h(12)
f

(
a+ b

2

)∫ tb+(1−t)a+b
2

ta+(1−t)a+b
2

g

(
x+ (t− 1)a+b

2

t

)
dx

=
1

2h(12)
f

(
ta+ (1− t)a+b

2 + tb+ (1− t)a+b
2

2

)
(8)

×
∫ tb+(1−t)a+b

2

ta+(1−t)a+b
2

g

(
x+ (t− 1)a+b

2

t

)
dx

≤
∫ tb+(1−t)a+b

2

ta+(1−t)a+b
2

f(x)g

(
x+ (t− 1)a+b

2

t

)
dx.
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The relations (7) and (8) imply that

Hg(t) ≥
1

2h(12)
f

(
a+ b

2

)
1

t

∫ tb+(1−t)a+b
2

ta+(1−t)a+b
2

g

(
x+ (t− 1)a+b

2

t

)
dx. (9)

Now using the change of variable u =
x+(t−1)a+b

2
t in (9) we get desired

inequality:

Hg(t) ≥
1

2h(12)
f

(
a+ b

2

)∫ b

a
g(u)du.

The case that t = 1, follows from inequality

1

2h(12)
f

(
a+ b

2

)∫ b

a
g(u)du ≤

∫ b

a
f(u)g(u)du,

obtained from Theorem 5 in [1].
For inequality (6), using the h-convexity of f we have

Hg(t) ≤ h(t)

∫ b

a
f(u)g(u)du+ h(1− t)f

(
a+ b

2

)∫ b

a
g(u)du. (10)

Now from Theorem 5 in [1] and inequality (10) we get

Hg(t) ≤ h(t)

∫ b

a
f(u)g(u)du+ h(1− t)2h(

1

2
)

∫ b

a
f(u)g(u)du

=
[
h(t) + h(1− t)2h(

1

2
)
] ∫ b

a
f(u)g(u)du.

(iv) It is a consequence of (iii).
(v) According to Proposition 16 in [16], assertions (i) and (iii), if we Con-
sider 0 < t1 < t2 < 1 and h(t2) ̸= 0 then

h(t2)Hg(t1) ≤ h(t2 − t1)Hg(0) + h(t1)Hg(t2)

≤ h(
1

2
)h(t2 − t1)Hg(t2) + h(t1)Hg(t2)

= [2h(
1

2
)h(t2 − t1) + h(t1)]Hg(t2).

Then

Hg(t1) ≤
2h(12)h(t2 − t1) + h(t1)

h(t2)
Hg(t2).

5



If in Theorem 2.1, we consider h(t) = t and g(u) = 1
b−a for a < b we

recapture the following result.

Corollary 2.1. (Theorem 71 in [6])(see also [3, 5])
For a given convex mapping f : [a, b] → R, let H : [0, 1] → R be defined by

H(t) :=
1

b− a

∫ b

a
f

(
tu+ (1− t)

a+ b

2

)
du.

Then
(i) H is convex on [0, 1].
(ii) One has the bounds:

inf
t∈[0,1]

H(t) = H(0) = f
(a+ b

2

)
,

and

sup
t∈[0,1]

H(t) = H(1) =
1

b− a

∫ b

a
f(u)du.

(iii) H increases monotonically on [0, 1].

Corollary 2.2. In Theorem 2.1, for 0 ≤ a ≤ b consider
f(u) = ur, r ∈ (−∞,−1) ∪ (−1, 0] ∪ [1,∞);
h(t) = ts, s ≤ 1;
g ≡ 1.

From Example 7 in [16], f is h-convex and then from inequalities (5) and
(6) we have

2s−1

(
a+ b

2

)r

(b− a) (11)

≤ 1

t(r + 1)

[(
(1− t)a+ (1 + t)b

2

)r+1

−
(
(1 + t)a+ (1− t)b

2

)r+1
]

≤
[
ts + 21−s(1− t)s

](br+1 − ar+1

r + 1

)
,

for all t ∈ (0, 1]. In more special case if we consider
f(u) = ur, r ∈ [1,∞);
h(t) = t,
g ≡ 1,
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then we get the following inequalities obtained in [5].(
a+ b

2

)r

(b− a) (12)

≤ 1

t(r + 1)

[(
a+ b

2
− t

(b− a

2

))r+1

−
(
a+ b

2
− t

(b− a

2

))r+1
]

≤ br+1 − ar+1

r + 1
,

for all t ∈ (0, 1].

Remark 1. Assertion (iii) in Theorem 2.1 can be stated as

1

h(12)
Hg(0) ≤ Hg(t) ≤ [h(t) + 2h(

1

2
)h(1− t)]Hg(1)

for all t ∈ (0, 1) which gives a refinement for the left part of (3). Also
assertions (i) and (iii) of Theorem 2.1 together give generalized form of
Theorem 12 in [16] for t ∈ (0, 1) in general case.

2.2 The mapping Fg

Now we consider the second mapping Fg : [0, 1] → R given by

Fg(t) :=

∫ b

a

∫ b

a
f
(
tx+ (1− t)y

)
g(x)g(y)dxdy, (13)

which has been introduced in [6], where the function g assumed to be sym-
metric to a+b

2 with density property on [a, b]. Clearly, it reduces to F in the
classical case when g(u) = 1

b−a (see [5]). The following theorem involved
some results related to the mapping Fg when f is h-convex without density
property for g.

Theorem 2.2. If f : [a, b] → R is h-convex with h(12) > 0 and g : [a, b] →
[0,∞) a symmetric function, then

(i) Fg is h-convex on [0, 1].
(ii) For any t ∈ [0, 1] we have

Fg(t) = Fg(1− t).

Specially

Fg(0) = Fg(1) =

∫ b

a

∫ b

a
f(y)g(y)g(x)dxdy

=

∫ b

a

∫ b

a
f(x)g(x)g(y)dxdy.

7



(iii) For any t ∈ (0, 1),

1

2h(12)
Fg

(1
2

)
≤ Fg(t) ≤

[
h(t) + h(1− t)

]
Fg(0) (14)

=
[
h(t) + h(1− t)

]
Fg(1).

Also for t = 0 and t = 1,

1

2h(12)
Fg

(1
2

)
≤ Fg(0) = Fg(1).

(iv) For any t ∈ [0, 1],

1

2h(12)
f
(a+ b

2

)∫ b

a

∫ b

a
g(x)g(y)dxdy ≤ Fg(t). (15)

(v) If g has density property, then for any t ∈ [0, 1]

Fg(t) ≥
1

2h(12)
max

{
Hg(t),Hg(1− t)

}
. (16)

(vi) There exist bounds,

inf
t∈[0,1]

Fg(t) ≥
1

2h(12)
Fg

(1
2

)
,

and

sup
t∈[0,1]

Fg(t) ≤ max
{

sup
t∈(0,1)

[
h(t) + h(1− t)

]
, 1
}
Fg(1)

= max
{

sup
t∈(0,1)

[
h(t) + h(1− t)

]
, 1
}
Fg(0).

Proof. (i) It follows from h-convexity of f .
(ii) It is obvious.
(iii) For any x, y ∈ [a, b] and t ∈ (0, 1) we have

f

(
x+ y

2

)
= f

(
tx+ (1− t)x+ ty + (1− t)y

2

)
(17)

≤ h(
1

2
)
[
f
(
tx+ (1− t)y

)
+ f

(
ty + (1− t)x

)]
.

8



Multiplication by g(x)g(y) and integration over [a, b]× [a, b] we get∫ b

a

∫ b

a
f

(
x+ y

2

)
g(x)g(y)dxdy ≤ h(

1

2
)

∫ b

a

∫ b

a
f
(
tx+ (1− t)y

)
g(x)g(y)dxdy

+ h(
1

2
)

∫ b

a

∫ b

a
f
(
ty + (1− t)x

)
g(x)g(y)dxdy = 2h(

1

2
)Fg(t),

which proves the left side of (14).
For the right side of (14), using the h-convexity of f we have

Fg(t) ≤
∫ b

a

∫ b

a

[
h(t)f(x)g(x)g(y) + h(1− t)f(y)g(y)g(x)

]
dxdy (18)

= [h(t) + h(1− t)]

∫ b

a

∫ b

a
f(x)g(y)g(x)dxdy = [h(t) + h(1− t)]Fg(0)

= [h(t) + h(1− t)]Fg(1).

(iv) For any t ∈ (0, 1] and constant y ∈ [a, b] define the function

F y
g (t) =

∫ b

a
f
(
tx+ (1− t)y

)
g(x)dx.

Using the change of variable u = tx+ (1− t)y we obtain

F y
g (t) =

1

t

∫ tb+(1−t)y

ta+(1−t)y
f(u)g

(
u+ (t− 1)y

t

)
du. (19)

Since g is symmetric to a+b
2 , then it remains symmetric on interval

[
ta +

(1− t)y, tb+ (1− t)y] and so from Theorem 5 in [1] we have

F y
g (t) ≥

1

2h(12)
f

(
tb+ (1− t)y + ta+ (1− t)y

2

)
(20)

× 1

t

∫ tb+(1−t)y

ta+(1−t)y
g

(
u+ (t− 1)y

t

)
du.

Using the change of variable x = u+(t−1)y
t in (20), for any y ∈ [a, b] we have

F y
g (t) ≥

1

2h(12)
f

(
a+ b

2

)∫ b

a
g(x)dx. (21)

Multiplying (21) by g(y) and then integrating over [a, b] with respect to y,
we obtain

Fg(t) =

∫ b

a
F y
g (t)g(y)dy ≥ 1

2h(12)
f
(a+ b

2

)∫ b

a

∫ b

a
g(x)g(y)dxdy,

9



for any t ∈ (0, 1].
For t = 0, using Theorem 5 in [1] we can obtain that

Fg(0) =

∫ b

a

∫ b

a
f(y)g(x)g(y)dxdy =

∫ b

a

[ ∫ b

a
f(y)g(y)dy

]
g(x)dx

≥ 1

2h(12)
f
(a+ b

2

)∫ b

a

∫ b

a
g(x)g(y)dxdy,

(v) From density of g, for any t ∈ (0, 1] we have

1

t

∫ tb+(1−t)y

ta+(1−t)y
g

(
u+ (t− 1)y

t

)
du =

∫ b

a
g(x)dx = 1.

So from inequality (20) we get

Fg(t) =

∫ b

a

∫ b

a
f
(
tx+ (1− t)y

)
g(x)g(y)dxdy =

∫ b

a
F y
g (t)g(y)dy

≥ 1

2h(12)

∫ b

a
f

(
t
a+ b

2
+ (1− t)y

)
g(y)dy =

1

2h(12)
Hg(t).

In the case that t = 0 we have

Fg(0) =

∫ b

a

∫ b

a
f(y)g(x)g(y)dxdy =

∫ b

a
f(y)g(y)dy

≥ 1

2h(12)

∫ b

a
f
(a+ b

2

)∫ b

a
g(y)dy =

1

2h(12)
Hg(0).

Also it is not hard to see that Fg(t) is symmetric to t = 1
2 . So from assertion

(ii) we obtain

Fg(t) ≥
1

2h(12)
max

{
Hg(t),Hg(1− t)

}
.

(vi) It immediately follows from relation (14).

If in Theorem 2.2, we consider h(t) = t and g(u) = 1
b−a for a < b we

recapture the following result.

Corollary 2.3. (Theorem 74 in [6])(see also [3, 4])
Let f : [a, b] → R be a convex function and F : [0, 1] → R,

F (t) :=
1

(b− a)2

∫ b

a

∫ b

a
f
(
tx+ (1− t)y

)
dxdy.

10



Then
(i) F is convex on [0, 1].
(ii) For any t ∈ [0, 1] we have

F (t) = F (1− t).

(iii)The following inequality holds:

f
(a+ b

2

)
≤ F (

1

2
).

(iv) For any t ∈ [0, 1],
F (t) ≥ H(t).

(v) We have the bounds:,

inf
t∈[0,1]

F (t) = F
(1
2

)
=

1

(b− a)2

∫ b

a

∫ b

a
f
(x+ y

2

)
dxdy,

and

sup
t∈[0,1]

F (t) = F (0) = F (1) =
1

b− a

∫ b

a
f(x)dx.

Remark 2. Assertions (i) − (iii) and (v) in Theorem 2.2 together, give
generalized form of Theorem 14 and Remark 15 in [16] for t ∈ [0, 1] in
general case.

Corollary 2.4. In Theorem 2.2, for 0 ≤ a < b consider
f(u) = ur, r ∈ (−∞,−2) ∪ (−2,−1) ∪ (−1, 0] ∪ [1,∞);

h(t) = ts, s ∈ (0, 1);

g ≡ 1.

Then

2s−1
(a+ b

2

)r
(b− a)2 (22)

≤ 1

t(1− t)(r + 1)(r + 2)

×
[
br+2 −

(
tb+ (1− t)a

)r+2 −
(
ta+ (1− t)b

)r+2
+ ar+2

]
≤

[
ts + (1− t)s

]
(b− a)

br+1 − ar+1

r + 1
,

11



for all t ∈ (0, 1). In (22), if we consider h(t) = t, then we get(a+ b

2

)r
(b− a)2

≤ 1

t(1− t)(r + 1)(r + 2)

×
[
br+2 −

(
tb+ (1− t)a

)r+2 −
(
ta+ (1− t)b

)r+2
+ ar+2

]
≤ (b− a)

br+1 − ar+1

r + 1

for all t ∈ (0, 1]. Furthermore in point t = 1
2 we have

(a+ b

2

)r
(b− a)2 ≤ 4

(r + 1)(r + 2)

[
br+2 − 2

(
a+ b

2

)r+2

+ ar+2

]
≤ (b− a)

br+1 − ar+1

r + 1
,

which was obtained in [7].

3 Applications for the Beta Function

In this section as an application we find some relations between the
results obtained in Theorem 2.1 and Theorem 2.2 and the Beta function of
Euler. Consider the Beta function of Euler, that is,

B(p, q) :=

∫ 1

0
tp−1(1− t)q−1dt, p, q > −1,

and

Hr
B(t, p) =

∫ 1

0

(
tu+

1− t

2

)r
up−1(1− u)p−1du,

where t ∈ [0, 1], p > −1, r ≥ 1. Also for all t ∈ [0, 1] define the following
functions 

f(t) =
(
tu+ 1−t

2

)r
, r ≥ 1, u ≥ 0;

h(t) = tk, k ≤ 1;

g(t) = tp−1(1− t)p−1, p > −1.

12



According to Example 7 in [16], the function f is h-convex. Also the function
g is symmetric to t = 1

2 . Then From Theorem 2.1, the function Hr
B(., p) is

h-convex on [0, 1] and

1

2(12)
k

(1
2

)r
∫ 1

0
up−1(1− u)p−1du ≤ Hr

B(t, p)

≤
[
tk + 2(

1

2
)k(1− t)k

] ∫ 1

0
urup−1(1− u)p−1du,

which implies that

2k−r−1B(p, p) ≤ Hr
B(t, p) ≤

[
tk + 21−k(1− t)k

]
B(r + p, p), (23)

for all t ∈ [0, 1], r ≥ 1, k ≤ 1 and p > −1.

Now define the function

F r
B(t, p) =

∫ 1

0

∫ 1

0

(
tx+ (1− t)y

)r
xp−1yp−1(1− x)p−1(1− y)p−1dxdy,

(24)

where t ∈ [0, 1], r ≥ 1 and p > −1 (also see [7]).
With assumptions

f(t) =
(
tx+ (1− t)y

)r
, r ≥ 1, x, y ≥ 0;

h(t) = tk, k ≤ 1;

g(t) = tp−1(1− t)p−1, p > −1,

for all t ∈ [0, 1], From Example 7 in [16], the function f is h-convex. There-
fore from Theorem 2.2, the function F r

B(., p) is h-convex on [0, 1] and sym-
metric to t = 1

2 . Also we have the following inequalities:

1

2(12)
k

∫ 1

0

∫ 1

0

(x+ y

2

)r
xp−1yp−1(1− x)p−1(1− y)p−1dxdy ≤ F r

B(t, p)

≤
[
h(t) + h(1− t)

] ∫ 1

0

∫ 1

0
xrxp−1yp−1(1− x)p−1(1− y)p−1dxdy

=
[
h(t) + h(1− t)

] ∫ 1

0

∫ 1

0
yrxp−1yp−1(1− x)p−1(1− y)p−1dxdy,

13



which implies that

2k−r−1B2(p, p) ≤ F r
B(t, p) ≤

[
tk + (1− t)k

]
B(r + p, p)B(p, p), (25)

for all t ∈ [0, 1], r ≥ 1, k ≤ 1 and p > −1.

Furthermore since we have∫ 1

0

1

B(p, p)
tp(1− t)p−1dt = 1,

then if we consider g(t) = 1
B(p,p) t

p(1− t)1−p, from inequality (16) we get

F r
B(t, p) ≥ 2k−1max

{
Hr

B(t, p),H
r
B(1− t, p)

}
B2(p, p).

Remark 3. Inequality (23) reduces to the convex version obtained in [6], if
we consider k = 1,

2−rB(p, p) ≤ Hr
B(t, p) ≤ B(r + p, p),

for all t ∈ [0, 1] , p > −1, r ≥ 1.

Also the convex version of inequality (25) can be stated as the following.

2−rB2(p, p) ≤ F r
B(t, p) ≤ B(r + p, p)B(p, p),

for all t ∈ [0, 1] , p > −1, r ≥ 1.

Furthermore we have

F r
B(t, p) ≥ max

{
Hr

B(t, p),H
r
B(1− t, p)

}
B2(p, p),

for all t ∈ [0, 1] , p > −1, r ≥ 1.
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