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HYPO-¢-NORMS ON CARTESIAN PRODUCTS OF ALGEBRAS
OF BOUNDED LINEAR OPERATORS ON HILBERT SPACES

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we introduce the hypo-g-norms on a Cartesian prod-
uct of algebras of bounded linear operators on Hilbert spaces. A representation
of these norms in terms of inner products, the equivalence with the g-norms
on a Cartesian product and some reverse inequalities obtained via the scalar
reverses of Cauchy-Buniakowski-Schwarz inequality are also given. Several
bounds for the norms 6, ¥p and the real norms 7, ,, and 6rp are provided as
well.

1. INTRODUCTION

In [11], the author has introduced the following norm on the Cartesian product
B™ (H) := B(H) x --- x B(H), where B (H) denotes the Banach algebra of all
bounded linear operators defined on the complex Hilbert space H :

(1.1) [(T1, ..., Th)

||n’e

= sup ||A1T1 + -+ )\nTn” ’
(A A

where (T1,...,T,) € B™ (H) and B, := {(Al,...,An) eCr | N < 1} is
the Euclidean closed ball in C™. It is clear that ||-||, _ is a norm on B (H) and
for any (Ty,...,T,) € B" (H) we have

(1.2) (T, Tl e = ICTTS - T

n,e

||n,e n,e?

where T} is the adjoint operator of T;, ¢ € {1,...,n}.

(2

It has been shown in [11] that the following inequality holds true:

1
2 2

1 - * - *
Jj=1 j=1

for any n-tuple (T%,...,T,) € B™ (H) and the constants ﬁ and 1 are best pos-
sible.

In the same paper [11] the author has introduced the Fuclidean operator radius
of an n-tuple of operators (T1,...,Ty) by

2

(1.4) Wpe (Th,...,T,) == sup Z|<zj,x>|2
j=1

llzll=1
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and proved that wy, . (-) is a norm on B™ (H) and satisfies the double inequality:

n,e —

1
(1.5) §||(T1,...,Tn)|| < wpe (Th,- - To) < (T, To) e

for each n-tuple (T1,...,T,) € B™ (H).
As pointed out in [11], the Euclidean numerical radius also satisfies the double
inequality:

1
2 2

1 . * - *
(1.6) SN ZTJTJ Swpe (T1,...,T,) < ZTjTj
j=1 j=1

for any (Ty,...,T,) € B" (H) and the constants ﬁ and 1 are best possible.

Now, let (E, ||||) be a normed linear space over the complex number field C. On
C"™ endowed with the canonical linear structure we consider a norm |-||,,. As an
example of such norms we should mention the usual p-norms

max {|A1],...,|An|} if p=oc;
Al =

=

(=t el

The Fuclidean norm is obtained for p = 2, i.e.,

1
n 2
2
All.2 == <§ IAk|> :
k=1

It is well known that on E™ := E x --- X E endowed with the canonical linear
structure we can define the following p-norms:

if pe[l,00).

max {{[z1f ;.. lza [} if p = oo;

], =

n 1 .
(k= ) if p € [1,00);
where z = (z1,...,2,) € E™.

Following the paper [4], for a given norm ||-||,, on C", we define the functional
-l = E™ = [0,00) by

n
(17) Hw”h,n ‘= sup Z)\Jx] ’
IML<t || =

where z = (z1,...,2,) € E™ and A = (A\y,...,\y) € C™.
It is easy to see that [4]:
) [z}, =0 for any x € E™;
(i) [+ yllpn, < l2lln +1Ylly,, for any z, y € B
(iii) [lezlly,,, = laf[|z]l,, for each a € C and z € E™;
and therefore [|-||;, ,, is a semi-norm on E™. This will be called the hypo-semi-
norm generated by the norm |||, on E".
We observe that ||z[|;, , = 0 if and only if >37_; A\jz; = 0 for any (A1,...,\,) €
B (|||l,,) - If there exists A0, A2 £ 0 such that ()\(1],0,...,0) , (0,)\8,...,0),...,
(0,0,..., ,\2) € B (-], then the semi-norm generated by ||-||,, is a norm on E™.
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If p € [1,00] and we consider the p-norms |-, , on C", then we can define the
following hypo-g-norms on E™ :

n
g = Sup E ;x|
j=1

(1.8)

AL, <1

with ¢ € [1,00]. If p =1, ¢ = o0 ifp:oo,qzlandifp>1,then%+%:1.
For p = 2, we have the hypo-Fuclidean norm on E", i.e.,

n
(1.9) ||m||hne = sup Z)\jxj
A, 251|521
If we consider now E = B (H) endowed with the operator norm |||, then we

can obtain the following hypo-g-norms on B("™) (H)

(1.10) [(T1s e To)lly g = sup Z)\jTj with p, g € [1,00],

1AL, <1 |5

with the convention that if p = 1, ¢ = oo; if p = 00, ¢ = 1 and if p > 1, then
T+i=1

For p = 2 we obtain the hypo-Euclidian norm ||(-,...,-)||,, . defined in (1.2).

If we consider now E = B (H) endowed with the operator numerical radius w (-),

which is a norm on B (H) , then we can obtain the following hypo-g-numerical radius
of (T1,...,T,) € B™ (H) defined by

(1.11) Whong (T1,...,Ty) = sup w Z)\ iT; | with p, ¢ € [1,00],
I

npS1
with the convention that if p = 1, ¢ = oco; if p = 00, ¢ = 1 and if p > 1, then
Tt+i=1

For p = 2 we obtain the hypo-FEuclidian norm

(1.12) Whne (Th, ..., Th) = sup w Z AT
AL,

and will show further that it coincides with the Euclidean operator radius of an
n-tuple of operators (T4, ...,T),) defined in (1.4).

Using the fundamental inequality between the operator norm and numerical
radius w (T) < ||T|| < 2w (T) for T € B (H) we have

i)\jTj S Z)\jTj SQ’LU Z)\jTj
=1 '

for any (Ty,...,T,) € B"™ (H) and any A = (A1,...,\,) € C". By taking the
supremum over A with [[A[[,, ;<1 we get
(1.13) Whn,g (T1s - Tn) < (Tas e, Ty < 2Whingg (Ths -, 1)
with the convention that if p = 1, ¢ = oo; if p = 00, ¢ = 1 and if p > 1, then
T+i=1

For p = ¢ = 2 we recapture the inequality (1.5).
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In 2012, [6] (see also [7] and [8]) the author have introduced the concept of

s-g-numerical radius of an n-tuple of operators (T1,...,T,,) for ¢ > 1 as
(1.14) Weg (T1,..., Tn) o= sup [ D [(Tjz,z)|*
l=l=1 \ ;=1

and established various inequalities of interest. For more recent results see also [10]
and [12].

In the same paper [6] we also introduced the concept of s-g-norm of an n-tuple
of operators (T1,...,T,) for ¢ > 1 as

n

log=sup > [T,y

lzl=llyll=1 \ ;=

(1.15) I(T,...,Ty)

In [6], [7] and [8], by utilising Kato’s inequality [9]

(1.16) (Tl < (TP aa) (17770 y.y)

for any =,y € H, a € [0,1], where "absolute value" operator of A is defined by
|A| := VA* A, the authors have obtained several inequalities for the s-g-numerical
radius and s-g-norm.

In this paper we investigate the connections between these norms and establish
some fundamental inequalities of interest in multivariate operator theory.

2. REPRESENTATION RESULTS

We start with the following lemma:

Lemma 1. Let = (84,...,06,) € C".
(i) If p, ¢ >1 and%—l—%:l, then

(21) sup Zajﬁj = ||6||7L,q'

el ,<1 57
In particular,

(2.2) sup Z%ﬂj =1Bll,,2-

lall, <1527
(ii) We have
23) s 1> gl =Bl and swp 13 a6 = 1Bl
Hn,o St | j=1 Alln 1S4 =1

Proof. (i). Using Holder’s discrete inequality for p, ¢ > 1 and % + % =1 we have
1/p 1/q

n n n

P q
>_ o) < | X lal P11
j=1 j=1 j=1
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which implies that

(2.4) sup Zajﬂ. <
lell, ,<1 5=
where « = (a1,...,a,) and 8 = (84,...,5,,) are n-tuples of complex numbers.
For (B4,...,5,) # 0, consider & = (a1, ..., a,) with
R q_2
o Tl

n 1
OOENDR
for those j for which §; # 0 and a; = 0, for the rest.

We observe that

n n F‘B"q_2 Z@ZI \lﬁjiq
a;B;| = J1- B.| = J
N e T

1/q

= 11Bll,q

I
™
=
T

and

T I U j\q‘z\p_i (Is;1)"
P T LSBT & (i 1Bl

B S o
B~ 2 S B
Therefore, by (2.4) we have the representation (2.1).
(ii). Using the properties of the modulus, we have

Zajﬁ < 'errllax |0@\Z|B|

.....

which implies that

(2.5) sup Z%ﬂ <118l 5

llell

n:x:—

where a = (aq,...,a,) and = (61,...,ﬂn).
For (B4,...,8,) # 0, consider o = (a1, ..., a,) with «; :

~ \ﬁ |
which 8; # 0 and «; = 0, for the rest.
We have
n n 57 n
YoaiBy| = 2 =B = Do 1851 = 1181,
— j=1 ﬁ j=1
and

o = max |oj| = max
|| Hn,oo je{l,.,,,n}| J‘ jef{1,.. ,n}

and by (2.5) we get the first representation in (2.3).
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Moreover, we have
<
> e < Sl g 13
which implies that

(2.6) sup (> ;B < IBll o -
=1

el <

where a = (a1,...,a,) and 8= (84,...,5,,) -
For (ﬂla..gﬂn) 7é 0, let jo € {17‘“7“} sucl!hat ”ﬁ”oo = MaXjec{1,...,n} ’ﬁj’ =

|ﬁj0| . Consider a = (a1,...,ap) with o, = {Zi‘ and «; = 0 for j # jo. For this
Jo

choice we get

- B Bio
ol = et = [3 = | Py = ] = e
j=1 |6]U| |6j0|
therefore by (2.6) we obtain the second representation in (2). O

Theorem 1. Let (T1,...,T,) € B"™ (H) and =, y € H, then for p, ¢ > 1 and
%—i— % =1 we have

(2.7) H ” < Z%Tg .y > = | D lTyz, )l
«@ < j=1

and in particular

(2.8) sup < ZajTj x,y> =
j=1

1/q

1/2

(Ty, )|

NE

llell,, o<1

1

.
Il

We also have
(2.9) H ” < < Z > Z [Tz, )|

and

(2.10) H ” . < Za Ty |« y> :jefrllf\_{n}{lﬁf%y)I}-

Proof. If we take 8 = ((Thz,y),...,{Thx,y)) € C™ in (2.1), then we get

1/q

S KTz =18, = sup_ Zagﬁ
j=1

llell, <

= sup ZOLJ Tjz,y)| = sup <ZajT9:y>,
J=1 Jj=1

el , <1 llexll,, <1

which proves (2.7).
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The equalities (2.9) and (2.10) follow by (2.3). O

Corollary 1. Let (Ty,...,T,) € B"™ (H) and x € H, then for p, ¢ > 1 and
% + % =1 we have

(2.11) sup < ZO‘JTJ z,x > Z| Tz, z)
llexll,, <1 j=1
and, in particular
1/2

(2.12) < ZaJTJ x, > > (T, )
”0‘Hn2 1 j=1

We also have

(2.13) < Za] x, > =Z|<zj,x>|

Jall <t =

n,o0o —

and

(2.14) sup < ZajTj x,x> = max }{|<ij,x)|}.
j=1

lell,, ;<1 je{t,...,n

n,l1—=

Corollary 2. Let (Ty,...,T,) € B"™ (H) and = € H, then for p, ¢ > 1 and
% + % =1 we have

1/q
(2.15) sup (Do Tyz|| = sup | > [(Tyw,y)|
lall, <1527 lyll=1 \ =1
and in particular
1/2
(2.16) sup ||D o Tyz|| = sup | > [(Tyz,y)f°
Ha|‘n,2§1 j=1 ly|l=1 j=1

We also have

(2.17) sup Zoijjx = sup Z| (Tjz,y)|
lall,, <1 ||5=1 lyll=13=1

and

2.18 sup a;Tiz|| = max T;z|} .

(219 el <1 32::1 Y jE{l"“’"}{” ol

Proof. By the properties of inner product, we have for any v € H, u # 0 that

lull = sup [(u,y)].
lyll=1
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Let x € H, then by taking the supremum over ||y|| = 1 in (2.7) we get for p,
q>1with  + ¢ =1 that

1/q

n n
sup Z| (Tjz,y)| = sup sup < ZajTj m,y>
j=1

lvll=1 \ =1 lyll=1 \ llall, ,<1

n
= sup sup ZajTj z,y
el , <1\ llyll=1 J=1

n,p—

n
= sup g o Ty | x|,
Jj=1

lall, ,<1

which proves the equality (2.15).
The other equalities can be proved in a similar way by using Theorem 1, however
the details are omitted. (]

We can state and prove our main result.

Theorem 2. Let (T1,...,T,) € B™ (H).
(i) For q > 1 we have the representation for the hypo-qg-norm

1/q

(219) [Ty, T)llpyng = Lo Zl (Tjz,y)| =(T1,- ., To)ll, 4

and in particular

1/2
(220) ||(T17'-'7Tn)||n7e Z| T:C y
Hil\ HyH 1\i=

We also have

(2:21) (T, Tl oo = max {|T5]}

jellin}

(ii) For g > 1 we have the representation for the hypo-q-numerical radius

" 1/q
(2.22) Whonq (11, ... = ”Sl”lp Z Tz, x) =wsq(T1,...,Ty)
z||=1 .
j=1
and in particular
1
n 2
(2.23) Wne (T1,...,Ty) = Hswtulp Z Tz, z))?
x||=1 .
j=1
We also have
(2.24) Whon,oo (T1,...,Ty) = max {w(Tj)}.
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Proof. (i) By using the equality (2.15) we have for (T, ...,T},) € B™ (H) that
1/q 1/q
[Tz, y)] = sup [(Tjz,y)]
Hl’l\ HyH 1 Z: flzl|=1 HyH 1 2::

lzl=1 \ lall, <1

n
= sup sup Zajzj

ladl, <1\ llzli=1 || 5=

B"
= sup sup ZajTj:E )
=1

= Sup ZOéJ = || Tla"'7Tn)||h,n,q7

el <

which proves (2.19). The rest is obvious.
(ii) By using the equality (2.11) we have for (T1,...,T},) € B™ (H) that
1/q

n n
sup Z|<zj’$>|q = sup sup < ZajTj x,x>
j=1

lzll=1\ ;=1 llzll=1 \ lleell,, , <1

n,p—

n
= sup sup < ZajTj x,x>
j=1

llell,, , <1\ llzll=1

n,p—

= sup w Zaa :wh,n,q(Tl7"'?Tn)7

lall,, <

which proves (2.22). The rest is obvious. O

Remark 1. The case ¢ = 2 was obtained in a different manner in [4] by utilising
the rotation-invariant normalised positive Borel measure on the unit sphere.

We can consider on B(™ (H) the following usual operator and numerical radius
g-norms, for ¢ > 1

1/q N 1/q

1T Tl o= [ SOITY | and wng (Ths o T s= (D w ()
j=1 j=

where (T4, ...,T,) € B™ (H). For ¢ = co we put

Ty, ..., T = T; d wy oo (Th, ..., T) = T},
(1o Tl = i (T} w0 w0y (T T i= e (w0 (T3))

Corollary 3. With the assumptions of Theorem 2 we have for ¢ > 1 that
1

(225) 1/q H(Tl’ et ’T’”)Hn,q S ||(T1’ st 7Tn)||h,n,q S H(Tl’ Tt ’T”l)Hn,q
and

1
(2.26) mwn’q (Th, .. 1) S Whnyg (Thy -, Th) S wnpg (Th,. .., Ty)

for any (Th,...,T,) € B™ (H).
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In particular, we have [4]

1
(2.27) NG 1T Tl < NI T)llne < (T T0) ] o
and

1
(228) 7’[07112 (Tl, e ,Tn) S whﬁn,e (Tl, e ,Tn) § ’wng (Tl, e ,Tn)

LD
for any (T,...,T,) € B™) (H).

Proof. Let (Ty,...,T,) € B"™ (H) and =, y € H with ||z] = |ly| = 1. Then by
Schwarz’s inequality we have

1/q 1/q 1/q

n n n
Do KTe | < oIyl | = Do 1Tl
j=1 j=1 j=1

By the operator norm inequality we also have

" 1/q N 1/q
Do) < (DI ) = 1T T g -
j=1 j=1
Therefore
n 1/q
Tz, )" | < (T, Tl
j=1
and by taking the supremum over ||z| = |jy|| = 1 we get the second inequality in
(2.25).
By the properties of complex numbers, we have
" 1/q
max [Tz, g)[} < | [Tyl
je{l,...,n} =
x,y € H with ||z|| = |ly|| = 1.
By taking the supremum over ||z| = ||y|| = 1 we get
(2.29) sup ( max {|<Tja:,y>|}> < |(Ty,... 7T")||h,n,q
lell=llyll=1 \IE{L,--,n}
and since

swp (o (1T} = _max {| sup |<zj,y>|}

lell=llyll=1 \JE{L,n} JE(L o} lel=llyl=1
= jemax {750} = 1T - Tl oo
then by (2.29) we get
(2.30) (T, T)lloe S N1 Tl g

for any (T3,...,T,) € B™ (H).
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Since
1/q
- 1/q
231 T Tl = | I < (Rl Tl L)
j=1
=t |(Ty, ... L) oo »
then by (2.30) and (2.31) we get
1
m H(Tlv s 7Tn)Hn7q < ||(T17 s an)Hh,n,q

for any (T3,...,T,) € B™ (H).

The inequality (2.26) follows in a similar way and we omit the details. O

Corollary 4. With the assumptions of Theorem 2 we have for r > q > 1 that
(232) T Tl < I Tl S 777 (T Tl
and [12]

(233)  Whona (T3 1) < Whomg (Th, - To) <070 whpp (T, T
for any (Th,...,T,) € B™ (H).

Proof. We use the following elementary inequalities for the nonnegative numbers
aj,j=1,..,nand r > ¢ > 0 (see for instance [12])

1/r 1/q 1/r

n n n
(2.34) Za; < Za? <n7 Zag
j=1 j=1 j=1

Let (Ty,...,T,) € B (H) and z, y € H with ||z|| = ||y|| = 1. Then by (2.34) we
get

1/r n 1/q 1/r

D KDy < XKDl <nvw | YKyl
j=1 Jj=1

j=1

By taking the supremum over ||z|| = |ly|| = 1 we get (2.32).
The inequality (2.33) follows in a similar way and we omit the details. O

Remark 2. For g > 2 we have by (2.82) and (2.33)

q—2
(2.35) (T, Tn) < (T Ta)llg e < 02 (((Ths - T)

||h,n,q ||h,n,q

and

(2.36)  Whing (Ths .- T) < Whne (Thy . Th) <070 whpg (T4, - T)
and for 1 < q < 2 we have

237 (T T e <N Ty <27 1T Tl
and

(2.38)  Whine (Thy . Tp) < Whne (Thy . Ty) <0 %0 whpe (Th, - .. T)
for any (Th,...,T,) € B™ (H).
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Also, if we take g =1 and r > 1 in (2.32) and (2.33), then we get
r—1
(239) H(Tlﬂ s an)Hh,n,r < ”(Tl’ s ﬂTn)”h,nJ =nr ”(Tla s 7Tn)

||h,n,7’
and
(240) Wh,n,r (Tla s 7Tn) < Wh,n,1 (T17 s aTn) < nr;rlwh,n,r (T17 s aTn)

for any (Th,...,T,) € B™ (H).
In particular, for r = 2 we get

(2.41) Ty, To)llpe < T Tl < VRN, Tl e
and
(2.42) Wne (Thy .., T0) < wpna (Th, .., Ty) < Vnwpe (Thy ..., Ty)
for any (Th,...,T,) € B™ (H).

We have:

Proposition 1. For any (Ty,...,T,) € B" (H) and p, ¢ > 1 with % + % =1,
then we have

1 n
(2.43) Ty, T g > 7 > T,
j=1
and
1 n
(2.44) Whopg (Th, ..., Ty) > ey > Ty
j=1

Proof. Let \j = — for j € {1,...,n}, then 37, [A;]” = 1. Therefore by (1.8) we
get

n

n 1 1 n

The inequality (2.44) follows in a similar way. d
We can also introduce the following norms for (Ty,...,T,) € B™ (H),

1/p
n

snp = sup_ [ Y[y

lz]|=1 j=1

I(T1, ..., Tl

where p > 1 and
T1, .o 1)l g oo i= SUP < max T':L‘>— max Till}-
T Tl = st ([Tl = e {1751)
The triangle inequality |-, ,, , follows by Minkowski inequality, while the other
properties of the norm are obvious.
Proposition 2. Let (T,...,T,) € B™ (H).
(i) We have for p > 1, that
(2.45) 1T, Tl S N (T Tl < (T T

n,p’
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(ii) For p > 2 we also have

(2.46) 1T Tl = [whimpra (T Tl v

where the absolute value |T| is defined by |T| := (T*T)1/2.
Proof. (i) We have for p > 2 and z, y € H with ||z|| = ||y|]| = 1, that
(T )" < Tl [yll” = 1Tl < 1T51° l=l” = 1173117

for j € {1,...,n}.
This implies

n

Y Tyl < ITal” < I,
j=1 j=1

Jj=1
namely

1/p 1/p 1/p

(2.47) (TP | < (D ITp=l” | <[ DoITIP)
j=1 j=1

J

n
=1

for any z, y € H with ||z|| = |ly|| = 1.

Taking the supremum over ||z|| = ||y|| = 1 in (2.47), we get the desired result
(2.45).

(if) We have

H(Tl? P ,Tn)Hs,n,p

1/p 1/p
“ " 2\ P/2
= s (YUl | = sw [0 (IT5a0?)
lz]l=1 j=1 [lz]|=1 j=1
n 1/p N 1/p
= sup Z (T, zj>p/2 = sup Z <T;zj, x>p/2
lzl=1 \ ;=1 lzl=1 \ ;=1
1/p 1/(p/2)] /2
" p/2 - /2
= sup Z<|TJ|2IE,IE> = | sup <|T]|2x,x>
l=zl=1 \ ;=1 lzl=1 \ ;=2
1/2
= |whnps2 (1T ITl)]
which proves the equality (2.46). O

3. SOME REVERSE INEQUALITIES

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [1] (see
also [2, Theorem 5. 14)):

Lemma 2. Leta, A€ R andz = (21,...,2n), Y = (Y1,-.-,Yn) be two sequences
of real numbers with the property that:

(3.1) ay; < z; < Ay; foreach je{l,...,n}.
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Then for any w = (wy,...,w,) a sequence of positive real numbers, one has the
inequality
2 2
n n n 1 5 n )
2 2
(32) 0 wiz? Y wiyl — | Y wjzy; | < 1 A-a > wjy;
j=1 j=1 j=1 j=1

The constant % is sharp in (3.2).

O. Shisha and B. Mond obtained in 1967 (see [13]) the following counterparts of
(CBS)- inequality (see also [2, Theorem 5.20 & 5.21]):

Lemma 3. Assume that a = (a1,...,a,) and b = (by,...,by,) are such that there
exists a, A, b, B with the property that:

(3.3) 0<a<a; <A and 0<b<b;<B foranyje{l,...,n},

then we have the inequality

(3.4) iaﬁibg— éajbj ([ \f) Zajb 252

and

Lemma 4. Assume that a, b are nonnegative sequences and there exists v, I' with
the property that

(3.5) 0§7§%§F<oo forany j€{1,...,n}.
J
Then we have the inequality

n n
(3.6) 0< Zaizb? Z%J—4 +F Z
j=1  j=1 =1

We have:
Theorem 3. Let (Ty,...,T,) € B™ (H).

(NI

(i) We have
1
B 0T T e = T T < gl T
and
1, 1 9
(3.8) 0<wy,(Th,...,T,) — —Win1 (Th,...,Ty) < " (T2, Tl oo -

(ii) We have

2 1 2
(3.9) 0< (T, Tadllhme = o T2, Ta)
< H(Tl, s 7Tn)Hn,oo H(Tl?' : 'ﬂTn)”h,n,l
and
1
(3.10) 0<w? (Ty,....,Tp) — —wi 1 (T1,...,Ty)

<N Tl o whin (Ths -, Th)
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(iii) We have

(3.11) 0 < |[(T1,...,Ty) (Tt Tl < f||(T1,..-7 )l oo

1
||h,n,e - % ||

and

1 1
(3.12) 0<wy,(Th,...,Tn) — ﬁwh,n,l (Th,...,T,) < 1\/5||(T1, e 7Tn)||n,<x>'

Proof. (i). Let (T4,...,Ty) € B (H) and put R = maxje{l,wn}{HTjH} =
(T, Tl oo - T2,y € H, with o] = iyl = 1 then [(Tjz,y)| < ||Tjz|| <
|75 < R for any j € {1,...,n}.

If we write the inequality (3.2) for z; = [(Tjz,y)|, w; = y; = 1, A = R and
a =0, we get

n n 2 1
0< (T; (T ~n*R?
s ”;| z,y)| 2:: z,y)| 4
for any z, y € H, with ||z|| = ||y = 1.
This implies that
2
5 1 [ 1
3.13 Tz, < = (T -nR?
(3.13) Sl < | St | + o
for any x, y € H, with ||z|| = ||y]| = 1 and, in particular
2
- 1 1
3.14 (Tjz,z)|> < = (T} —nR?
(3.14) 721| z,x)|” < - Z| z,x)| | + 1"

for any « € H, with ||z|| = 1.

Taking the supremum over ||z|| = ||y|| = 1 in (3.13) and ||z|| = 1 in (3.14), then
we get (3.7) and (3.8).

(ii). Let (Ty,...,T,) € B™ (H). If we write the inequality (3.4) for a; =
(Tjz,y)|,bj=1,b=B=1,a=0and A= R, then we get

2
0<n Z (T, y)[° ZITny <nRY_ [(Tjz,y)l,
j=1 j=1
for any z, y € H, with ||z|| = ||y| = 1.
This implies that
2
n 1 n n
@15 STl < | S el | R (@l
j=1 j=1

for any x, y € H, with ||z|| = ||y]| = 1 and, in particular
2

Z|Txx| Xn:T.I.T

SRS

(3.16) > (Tja,z) <
j=1

for any x € H with ||z| = 1.
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Taking the supremum over ||z|| = ||y|| = 1 in (3.15) and ||z|| = 1 in (3.16), then
we get (3.9) and (3.10).

(iii). If we write the inequality (3.6) for a; = [(Tjz,y)|,b; =1,b=B=1,y=0
and I' = R we have

n

0< [0 (Tl | — S 1Tw )l < ok,
a s

for any x, y € H, with ||z|| = ||y = 1.
This implies that
- : 1< 1
(3.17) OICERII NS S S EIER Vo
j=1 j=1

for any x, y € H, with ||z|| = ||y]| = 1 and, in particular

Nl

n 9 1 n 1
(3.18) g (Tjz,2)* | < %2; (Tjz, )| + VR,

for any « € H with ||z]| = 1.
Taking the supremum over ||z|| = ||y|| =1 in (3.17) and ||z|| = 1 in (3.18), then
we get (3.11) and (3.12). O

Before we proceed with establishing some reverse inequalities for the hypo-
Euclidean numerical radius, we recall some reverse results of the Cauchy-Bunyakovsky-
Schwarz inequality for complex numbers as follows:

Ify, T € Cand a; € C, j € {1,...,n} with the property that
(3819)  0<Re[(l—ay) (@ - 7)]

= (ReT' = Req;) (Rea; —Re7y) + (ImI' —Im ;) (Ima; —Im~)

or, equivalently,

v+ T

2 s (]
(320 0 - T3t =3I =1

for each j € {1,...,n}, then (see for instance [3, p. 9])

2

(3.21) nZ\aﬂ - ZO‘J S gn |F*7|2-
In addition, if Re (I'y) > 0, then (see for example [3, p. 26]):

{Re [(F +79) > i1 aj} }2
Re (I'y)

2

H

~ 1
3.22 12<Z
( ) ”;|O‘J| =7

1+ |
< - - ;
e 0
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Also, if I" # —~, then (see for instance [3, p. 32]):

1

2 n

¢ 1 |0 —q
3.23 n a;l? — ai|l < -n .

Finally, from [5] we can also state that

2
324)  nd - ay §n[|r+’y|72 Re(Ff‘y)} E
j=1 j=1 j=1
provided Re (I'y) > 0.
We notice that a simple sufficient condition for (3.19) to hold is that
(3.25) Rel'> Reaj; > Rey and ImI' >Ima; >Imvy
for each j € {1,...,n}.

Theorem 4. Let (Ty,...,T,) € B™ (H) and v, T' € C with T # ~. Assume that

r 1
(3.26) w(Tj—FH2_1>§2|F—7| for any j € {1,...,n}.
(i) We have
1 - 1 9
(327) w}QL,n,e (T17 s 7T7L) < ﬁw2 ;Tj + Zn |F - 7| :

(ii) If Re (I'y) > 0, then
1 M+ -
(328) Wh,n,e (Tla cee 7Tn) S 7‘77‘_10 ZTJ

and

1 n
(3.29) W e (T 1) < | ZY})+{|F+7|—2 Re(l“ﬂ‘/)}

(iii) IfT" # —~, then

1 10—~
3.30 ne(Th,....,Tp) < — E T; -
( ) Wh,n, ( 1 ) w J +4|F+,}/|




18 S.S. DRAGOMIR

Proof. Let € H with ||z|| = 1 and (T3,...,T,) € B™ (H) with the property
(3.26). By taking a; = (Tjz, z) we have

Tr T r
o - 12 = itz a) - 2= )| = | ( (13 - L=
2 2 2
T T

< sup <<Tj—w—1> as,x> :w(Tj—H>
=1 2 2
1

<0 —

< 5=l

for any j € {1,...,n}.
(i) By using the inequality (3.21), we have

2

1< 1
fZTxx +n|l =4
(1 4

IN

(3.31) > (TP

2
1
< EL%> +gnlD —f?
j=1
for any x € H with ||z| = 1.

By taking the supremum over ||z| =1 in (3.31) we get

3

1
n

2

- 1
sup Z|<Tjo:,x>|2 stup <2Tmz> +1nIF*vl2

lzl=1 \ ;=1 T z)=1

- 1
ZTj +Zn|r_7|27
j=1

which proves (3.27).
(ii) If Re (I'y) > 0, then by (3.22) we have for a; = (Tjz,x), j € {1,...,n} that

2
n n

< L T+
(3.32) > I(T2) < o Re(0) ;<Tjw’x>

2
1 |1“—|—7|2 -
4n Re (T7) ; i

Jj=1

for any « € H with ||z]| = 1.
On taking the supremum over ||z|| =1 in (3.32) we get (3.32).
Also, by (3.24) we get

2

n n
1
g |(zj,x Sﬁ E (Tjz, x) +[|F+’y|—2 Re( Fv} i (Tjz, z)|,

Jj=1

for any x € H with ||z| = 1.
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By taking the supremum over ||z|| = 1 in this inequality, we have

1 n n

sup | Z T, x) +[|I‘+7|—2 Re(I"?)] Z(zj,x)

=1 j=1
2

gf sup <§TL:T»;E,$> +[|F+7|—2 Re ( I"y} sup <ZT&7 ac>

el=1]\;= [lz][=1

j=1
which proves (3.29).
(iii) By the inequality (3.23) we have

1
2

- - 1|’
T = T -
St < (Emes| 1522
Jj=1 Jj=1
n 2
LT -]
= — Tiz,x )|+~
\/ﬁ <j_1 ’ > 4 [T+
for any « € H with ||z]| = 1.
By taking the supremum over ||z|| = 1 in this inequality, we get (3.30). O

Remark 3. By the use of the elementary inequality w (T) < |T| that holds for
any T € B(H), a sufficient condition for (3.26) to hold is that

v+T

1
Ty — —— §§|F—'y| for any j € {1,...,n}.

(3.33) 5

4. INEQUALITIES FOR 0, AND ¥, NORMS

For T € B(H) and p > 1 we can consider the functionals

* 1 *
A) @)= s (e + () = T,
A
and
* 1 *
2 (1) 1= sup (ol +12°1?)" " = (2.1,

It is easy to see that both J, and ¥, are norms on B (H). The case p = 2 for
the norm ¢ := d5 was considered and studied in [4].
Observe that, for any T' € B (H) and p > 1, we have

(4.3)
wnop (T,T%) = sup (|(Tz,2)f" + [(T*z,2)[")7 = sup (|(Tz,a)|" +|(Te,z)[")?

llzll=1 lzll=1

=2Y? sup |(Tz,z)| = 2Y/Pw (T).
lzll=1
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Using the inequality (1.13) we have
(4.4) 2YPy (T) < 5, (T) < 2'Y/Pw (T)

for any T € B(H) and p > 1.
For p = 2, we get

(4.5) V2w (T) < 6 (T) < V8w (T)
while for p =1 we get
(4.6) 2w (T) <01 (T) < 4w(T)

for any T € B(H).
We have for any 7' € B (H) and p > 1 that

* * 1
(T, Ty, = (ITIP + | T|P)? = 2/ ||
and by (2.25) we get
(4.7) IT|| < 8, (T) < 2"/7 |7

forany T € B(H) and p > 1.
For p = 2, we get

(4.8) 1T < 6 (T) < V2T
while for p =1 we get
(4.9) 1T < 601 (T) < 2|77

forany T € B(H).
From (2.32) we get for r > ¢ > 1 that

(4.10) 5, (T) < 6, (T) < 2

for any T € B (H).
For any T' € B(H) and p, ¢ > 1 with % + % =1, then by (2.43) we have

1

T

w8, (T)

(4.11) 3 (T) 2 oo IT+17).
In particular, for p = ¢ = 2 we get

2
(412) 51)= 27,

for any T € B (H).
By using the inequality (2.45) we get

(4.13) 5 (T) <9, (T) < 27|77

for any T € B(H) and p > 1.
For p =1 we get

(4.14) 01 (T) <0 (T) < 2|7
for any T € B (H).
For p > 2, by employing the equality (2.46) we get
1/2 1/2
(415) 9y (1) = [wnappe (1T 1T°P)] 7 = [220 (11P) ] =217 7
forany T € B(H).
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On utilising (3.7), (3.9) and (3.11) we get

(116) 06 (1) ~ 302 (1) < o T
(4.17) 0.< 6 (T) — 35 (T) < |75, (T)
and

1 V2
(4.18) 0<3(T) = =51 (1) < 7 )

forany T € B(H).
Observe, by (4.3) we have that

Wh,2,e ((T, T*)) = \/iw (T) y

forany T € B(H).
Assume that T € B (H) and ~, I' € C with T" # ~ such that

T T 1
(4.19) w(T- 220w (- i) < Sy,
2 2 2
then by (3.27) we get
1
(4.20) w? (T) < [Re(D)|* + 710 =,

where Re (T') := T%T*

If Re (I'y) > 0, then by (3.28) and (3.29)

1 T4+
(4:21) w(T) £ 5~ [Re (D)
and
(422) W (@) < [[Re(D)] + |I0 4] = 2/Re T7)] | IRe ()]
If T' # —~, then by (3.30) we get
(4.23) w (T) < ||Re (T)] + é 'FHVJ .

Due to the fact that w(A4) = w(A*) for any A € B(H), the condition (4.19)
can be simplified as follows.
If m, M are real numbers with M > m and if

w<Tm+MI> S%(M—m),

2

then
1

(4.24) w? (T) < [Re(T)|* + (M —m)®.
If m > 0, then

Im+ M
4.25 w(T) < = Re (T
(4.25) ()_2W|| (Dl
and

(4.26) (1) < |IRe ()] + (VAT - vim) | IR ()]
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If M # —m, then
1(M —m)?
. < - )
(4.27) w(T) < [Re(T)| + 35—

5. INEQUALITIES FOR REAL NORMS

If X is a complex linear space, then the functional ||| is a real norm, if the ho-
mogeneity property in the definition of the norms is satisfied only for real numbers,
namely we have

llax| = || ||z|| for any @ € R and x € X.

For instance if we consider the complex linear space of complex numbers C then
the functionals

2, : =(Re()| +|m(z)")"/", p>1
and
2l = =max{[Re(2)],|Im(2)[}, p = oo;

are real norms on C.
For T € B (H) we consider the Cartesian decomposition

T =Re(T)+iIm(T)
where the selfadoint operators Re (T") and Im (7") are uniquely defined by
T4T T - T

Re(T) = 5 and Im (T') = 5

We can introduce the following functionals
1
IT1l,.,, := (IRe (D) + [T (T)[[7)/", p > 1
and
[Tl 00 := max {[|Re (T)[|, [Tm (T)[[}, p = oo

where ||-]| is the usual operator norm on B (H). The definition can be extended for
any other norms on B (H) or its subspaces.
Using the properties of the norm ||-|| and the Minkowski’s inequality

(la+ bl + e+ d")""" < (laf” + [e)'/" + (bl + ")/
for p > 1 and a, b, ¢, d € C, we observe that ||~||rp, p € [1,00] is a real norm on
B(H).
For p > 1 and T € B we can introduce the following functionals

7]7’71) (T) = I |\Sl\l|p\| 1 (|Re <Tﬂ’,’, y>|P + |IHl <T‘T> y>‘p)1/p
z||=||y||=

= sup  ({ReTa,y)f’ + [{ImTa,y)[")""” = |(Re T, ImT)|,,, .

lzll=llyll=1

0, (T) = sup ([Re(Tz, )" + |Im (Tz,z)[")"/”

llzll=1

= sup (|(ReTz, )" + |(Im Tz, 2)[")"? = w0, (Re T, Im T)
llzll=1
and

] 1
krp (T) := sup (|ReTa|” + [[Tm Tz|")"/? = |(Re T,Im T))|

$,2,p "
[lz||=1
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The case p = 2 is of interest since for T' € B (H) we have

9 21/2
Mo (T) = suwp  ([Re(Ta,y)* +[m(Tw,y)f) "~ = sup  |(Ta,y) = |7,

llzll=llyll=1 llzll=lyll=1

) o\ 1/2
0,2 (T) := sup (|Re (T, z)|” + Im (Tx, x)| ) = sup |[(Tz,z)| =w(T)
l=||=1 lz||=1

and

9 9 1/2
binz (T) = sup (||ReTm|| + | Im Tz|| )
lel=1

= oo, (Rer2.z) + (nT2.2)) ™

T el (<[ (ReT)* + (ImT) } >>1/2

ve |+ o]
:H(ReT)2+(ImT)2H o
For p = oo we have
Moo (T) = = sup (max{[Re(Tz,y)|,|[Im(Tz,y)[})

llzll=lyll=1

= max sup  |(ReTx,y)|, sup [(ImTz,y)
lzll=lyll=1 lzll=lyll=1
= max{|[ReT]|, [ImT]},
and in a similar way
Or.00 (T') = For,o0 (T) = max {||[Re T, [Im T[|} = |[T7], . -

The functionals 0, ,, 0., and k., with p € [1,00] are real norms on B (H) .
We have

Tep(@) = s (Re (Ta, )" + |Tm (T, y)|") """
x||=||y||=
1/p
< sup  |[Re(Tz,y)|"+ sup |[Im (T, y)"
[lz|l=llyll=1 lzll=llyll=1
1 P
= (|Re(D)| + [tm (T)|")"'* = |7,
and
I, 00 = S (max{|Re (T, )], [fm (T, )|}
x||=|ly||=
= el ([Re (T, y)|” + [Tm (T, )[") /" =7, , (T)
z||=|ly||=1

forany p>1and T € B(H).
In a similar way we have

||T||r,oo S 97’317 (T) S ||T||'r7p

and
HTH'r‘,oo S Krp (T) S ||T||'r,p
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forany p>1and T € B(H).
If we write the inequality (1.13) for n = 2, T} = ReT and T = Im T then we
get

(5.1) Orp (T) < Nr.p (T) < 20, (T)

forany p>1land T € B(H).
Using the inequlities (2.25) and (2.26) for n = 2, T} = ReT and T = Im T then
we get

1

(52) W ||THr,p < nr,p (T) < ||T||T‘7p
and

1
(53) m ||T||7'7p S 07’»? (T) S HTHr,p

foranyp>1and T € B(H).
If we use the inequalities (2.32) and (2.33) forn =2, 7Ty =ReT and 7o = ImT
then we get for t > p > 1 that

(54) T]’r’,t (T) S nr,p (T) S 2%777’,75 (T)
and
(5.5) 0.4 (T) < 0, (T) <25 0,4 (T)

for any T € B(H).
For p = 1 we have the functionals
N1 (1) = W ((ReTz,y)| + [(Im Tz, y)|) = [(Re T, Im T) |}, 5 ; ,
z||=||yl|=
0,1 (T) = sup (|((ReTz,z)| + |[(ImTx,x)|) = wp21 (ReT,ImT)
z]=1
and
Kra (T) :== sup (|ReTz|| + |ImTz|) = ||(ReT, ImT)||s,271 .

By utilising the inequalities (3.7), (3.9) and (3.11) for n = 2, T} = ReT and
T5 =ImT, then

1 1
(5.6) 0<|7)* - 5773,1 (T) < 5 (max {|[Re T, MmT})?,
1
(5.7) 0<|I7* - 5773,1 (T') < max{[|[Re T, [ImT|[} ., (T)
and
V2 V2
(53) 0.< Il = %0, (T) < Y max {|Re T, [Tm T}

forany T € B(H).
Also, by utilising the inequalities (3.8), (3.10) and (3.12) for n = 2, T} = ReT
and T5 = Im T, then

1 1
(5.9) 0 <w?(T) = 567, (T) < 5 (max{[ReT]], T T})%,

1
(5.10) 0<w’(T) ~ 597%,1 (T) < max{|[ReT[, |[Tm T} ., (T)
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and

(5.11) 0<w(T) — X20,,(T) <

)

max {[[Re T[ , [[Tm T'|[}

oS
“%

for any T € B (H).
If m, M are real numbers with M > m and if

M M 1
(5.12) ReT — %I , HImT— m—;IH < S (M —m),
then by (3.27) we get
1 1
(5.13) w? (T) < 3 ||ReT+ImTH2+§(M—m)2.

If m > 0, then (3.28) and (3.29) we have
1 m+M

5.14 w(T) < —=———||ReT +ImT
619 (1)< 5T ||
and
1 2
(5.15) w?(T) < B IReT +ImT| + (\/M — \/ﬁ> ] |IReT +ImT]| .
If M # —m, then by (3.30) we get
1 1(M —m)?
1 T < — T+ ImT -
(5.16) w ( )_ﬁ |ReT + Im H+4 M m

Finally, we observe that a simple sufficient condition for (5.12) to hold, is that
ml < ReT, ImT < MI
in the operator order of B (H).
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