HYPO-q-NORMS ON CARTESIAN PRODUCTS OF ALGEBRAS OF BOUNDED LINEAR OPERATORS ON HILBERT SPACES

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we introduce the hypo-q-norms on a Cartesian product of algebras of bounded linear operators on Hilbert spaces. A representation of these norms in terms of inner products, the equivalence with the q-norms on a Cartesian product and some reverse inequalities obtained via the scalar reverses of Cauchy-Buniakowski-Schwarz inequality are also given. Several bounds for the norms δ_p , ϑ_p and the real norms $\eta_{r,p}$ and $\theta_{r,p}$ are provided as well.

1. Introduction

In [11], the author has introduced the following norm on the Cartesian product $B^{(n)}(H) := B(H) \times \cdots \times B(H)$, where B(H) denotes the Banach algebra of all bounded linear operators defined on the complex Hilbert space H:

(1.1)
$$||(T_1, \dots, T_n)||_{n,e} := \sup_{(\lambda_1, \dots, \lambda_n) \in \mathbb{B}_n} ||\lambda_1 T_1 + \dots + \lambda_n T_n||,$$

where $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $\mathbb{B}_n := \left\{ (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n \left| \sum_{i=1}^n |\lambda_i|^2 \le 1 \right\} \right\}$ is the Euclidean closed ball in \mathbb{C}^n . It is clear that $\|\cdot\|_{n,e}$ is a norm on $B^{(n)}(H)$ and for any $(T_1, \ldots, T_n) \in B^{(n)}(H)$ we have

(1.2)
$$||(T_1, \dots, T_n)||_{n,e} = ||(T_1^*, \dots, T_n^*)||_{n,e} ,$$

where T_i^* is the adjoint operator of T_i , $i \in \{1, ..., n\}$.

It has been shown in [11] that the following inequality holds true:

(1.3)
$$\frac{1}{\sqrt{n}} \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}} \le \| (T_1, \dots, T_n) \|_{n,e} \le \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}}$$

for any *n*-tuple $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and the constants $\frac{1}{\sqrt{n}}$ and 1 are best possible.

In the same paper [11] the author has introduced the *Euclidean operator radius* of an n-tuple of operators (T_1, \ldots, T_n) by

(1.4)
$$w_{n,e}(T_1,\ldots,T_n) := \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^2 \right)^{\frac{1}{2}}$$

 $^{1991\} Mathematics\ Subject\ Classification.\ 46\text{C}05;\ 26\text{D}15.$

Key words and phrases. Hilbert spaces, Bounded linear Operators, Operator norm and numerical radius, n-tuple of operators, Operator inequalities.

and proved that $w_{n,e}(\cdot)$ is a norm on $B^{(n)}(H)$ and satisfies the double inequality:

(1.5)
$$\frac{1}{2} \| (T_1, \dots, T_n) \|_{n,e} \le w_{n,e} (T_1, \dots, T_n) \le \| (T_1, \dots, T_n) \|_{n,e}$$

for each *n*-tuple $(T_1, \ldots, T_n) \in B^{(n)}(H)$.

As pointed out in [11], the Euclidean numerical radius also satisfies the double inequality:

(1.6)
$$\frac{1}{2\sqrt{n}} \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}} \le w_{n,e} (T_1, \dots, T_n) \le \left\| \sum_{j=1}^{n} T_j T_j^* \right\|^{\frac{1}{2}}$$

for any $(T_1,\ldots,T_n)\in B^{(n)}(H)$ and the constants $\frac{1}{2\sqrt{n}}$ and 1 are best possible.

Now, let $(E, \|\cdot\|)$ be a normed linear space over the complex number field \mathbb{C} . On \mathbb{C}^n endowed with the canonical linear structure we consider a norm $\|\cdot\|_n$. As an example of such norms we should mention the usual p-norms

$$\|\lambda\|_{n,p} := \begin{cases} \max\left\{\left|\lambda_{1}\right|, \dots, \left|\lambda_{n}\right|\right\} & \text{if } p = \infty; \\ \left(\sum_{k=1}^{n} \left|\lambda_{k}\right|^{p}\right)^{\frac{1}{p}} & \text{if } p \in [1, \infty). \end{cases}$$

The Euclidean norm is obtained for p = 2, i.e.,

$$\|\lambda\|_{n,2} := \left(\sum_{k=1}^{n} |\lambda_k|^2\right)^{\frac{1}{2}}.$$

It is well known that on $E^n := E \times \cdots \times E$ endowed with the canonical linear structure we can define the following *p-norms*:

$$||x||_{n,p} := \begin{cases} \max \{||x_1||, \dots, ||x_n||\} & \text{if } p = \infty; \\ (\sum_{k=1}^n ||x_k||^p)^{\frac{1}{p}} & \text{if } p \in [1, \infty); \end{cases}$$

where $x = (x_1, \dots, x_n) \in E^n$.

Following the paper [4], for a given norm $\|\cdot\|_n$ on \mathbb{C}^n , we define the functional $\|\cdot\|_{h,n}: E^n \to [0,\infty)$ by

(1.7)
$$||x||_{h,n} := \sup_{\|\lambda\|_n \le 1} \left\| \sum_{j=1}^n \lambda_j x_j \right\|,$$

where $x = (x_1, \dots, x_n) \in E^n$ and $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$.

It is easy to see that [4]:

- (i) $||x||_{h,n} \ge 0$ for any $x \in E^n$;
- (ii) $||x + y||_{h,n} \le ||x||_{h,n} + ||y||_{h,n}$ for any $x, y \in E^n$;
- (iii) $\|\alpha x\|_{h,n} = |\alpha| \|x\|_{h,n}$ for each $\alpha \in \mathbb{C}$ and $x \in E^n$;

and therefore $\|\cdot\|_{h,n}$ is a *semi-norm* on E^n . This will be called the *hypo-semi-norm* generated by the norm $\|\cdot\|_n$ on E^n .

We observe that $||x||_{h,n} = 0$ if and only if $\sum_{j=1}^{n} \lambda_j x_j = 0$ for any $(\lambda_1, \dots, \lambda_n) \in B(\|\cdot\|_n)$. If there exists $\lambda_1^0, \dots, \lambda_n^0 \neq 0$ such that $(\lambda_1^0, 0, \dots, 0), (0, \lambda_2^0, \dots, 0), \dots, (0, 0, \dots, \lambda_n^0) \in B(\|\cdot\|_n)$ then the semi-norm generated by $\|\cdot\|_n$ is a *norm* on E^n .

If $p \in [1, \infty]$ and we consider the p-norms $\|\cdot\|_{n,p}$ on \mathbb{C}^n , then we can define the following hypo-q-norms on E^n :

(1.8)
$$||x||_{h,n,q} := \sup_{\|\lambda\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \lambda_j x_j \right\|,$$

with $q \in [1, \infty]$. If p = 1, $q = \infty$; if $p = \infty$, q = 1 and if p > 1, then $\frac{1}{p} + \frac{1}{q} = 1$. For p = 2, we have the hypo-Euclidean norm on E^n , i.e.,

(1.9)
$$||x||_{h,n,e} := \sup_{\|\lambda\|_{n,2} \le 1} \left\| \sum_{j=1}^{n} \lambda_j x_j \right\|.$$

If we consider now E = B(H) endowed with the operator norm $\|\cdot\|$, then we can obtain the following hypo-q-norms on $B^{(n)}(H)$

(1.10)
$$||(T_1, \dots, T_n)||_{h,n,q} := \sup_{\|\lambda\|_{n,p} \le 1} \left\| \sum_{j=1}^n \lambda_j T_j \right\| \text{ with } p, \ q \in [1, \infty],$$

with the convention that if p = 1, $q = \infty$; if $p = \infty$, q = 1 and if p > 1, then $\frac{1}{p} + \frac{1}{q} = 1.$

For p=2 we obtain the hypo-Euclidian norm $\|(\cdot,\ldots,\cdot)\|_{n,e}$ defined in (1.2).

If we consider now E = B(H) endowed with the operator numerical radius $w(\cdot)$, which is a norm on B(H), then we can obtain the following hypo-q-numerical radius of $(T_1, \ldots, T_n) \in B^{(n)}(H)$ defined by

$$(1.11) w_{h,n,q}(T_1,\ldots,T_n) := \sup_{\|\lambda\|_{n,p} \le 1} w\left(\sum_{j=1}^n \lambda_j T_j\right) \text{ with } p, \ q \in [1,\infty],$$

with the convention that if $p=1, q=\infty$; if $p=\infty, q=1$ and if p>1, then $\frac{1}{p} + \frac{1}{q} = 1.$ For p = 2 we obtain the *hypo-Euclidian norm*

(1.12)
$$w_{h,n,e}(T_1,\ldots,T_n) := \sup_{\|\lambda\|_{n,2} \le 1} w\left(\sum_{j=1}^n \lambda_j T_j\right)$$

and will show further that it coincides with the Euclidean operator radius of an *n*-tuple of operators (T_1, \ldots, T_n) defined in (1.4).

Using the fundamental inequality between the operator norm and numerical radius $w(T) \leq ||T|| \leq 2w(T)$ for $T \in B(H)$ we have

$$w\left(\sum_{j=1}^{n} \lambda_j T_j\right) \le \left\|\sum_{j=1}^{n} \lambda_j T_j\right\| \le 2w\left(\sum_{j=1}^{n} \lambda_j T_j\right)$$

for any $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and any $\lambda = (\lambda_1, \ldots, \lambda_n) \in \mathbb{C}^n$. By taking the supremum over λ with $\|\lambda\|_{n,p} \leq 1$ we get

$$(1.13) w_{h,n,q}(T_1,\ldots,T_n) \le \|(T_1,\ldots,T_n)\|_{h,n,q} \le 2w_{h,n,q}(T_1,\ldots,T_n)$$

with the convention that if p = 1, $q = \infty$; if $p = \infty$, q = 1 and if p > 1, then

For p = q = 2 we recapture the inequality (1.5).

In 2012, [6] (see also [7] and [8]) the author have introduced the concept of s-q-numerical radius of an n-tuple of operators (T_1, \ldots, T_n) for $q \ge 1$ as

(1.14)
$$w_{s,q}(T_1, \dots, T_n) := \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^q \right)^{\frac{1}{q}}$$

and established various inequalities of interest. For more recent results see also [10] and [12].

In the same paper [6] we also introduced the concept of s-q-norm of an n-tuple of operators (T_1, \ldots, T_n) for $q \ge 1$ as

(1.15)
$$||(T_1, \dots, T_n)||_{s,q} := \sup_{\|x\| = \|y\| = 1} \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^q \right)^{\frac{1}{q}}.$$

In [6], [7] and [8], by utilising Kato's inequality [9]

$$(1.16) |\langle Tx, y \rangle|^2 \le \langle |T|^{2\alpha} x, x \rangle \langle |T^*|^{2(1-\alpha)} y, y \rangle$$

for any $x, y \in H$, $\alpha \in [0, 1]$, where "absolute value" operator of A is defined by $|A| := \sqrt{A^*A}$, the authors have obtained several inequalities for the s-q-numerical radius and s-q-norm.

In this paper we investigate the connections between these norms and establish some fundamental inequalities of interest in multivariate operator theory.

2. Representation Results

We start with the following lemma:

Lemma 1. Let
$$\beta = (\beta_1, \dots, \beta_n) \in \mathbb{C}^n$$
.

(i) If
$$p, q > 1$$
 and $\frac{1}{p} + \frac{1}{q} = 1$, then

(2.1)
$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,q}.$$

In particular,

(2.2)
$$\sup_{\|\alpha\|_{n,2} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,2}.$$

(ii) We have

(2.3)
$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,1} \text{ and } \sup_{\|\alpha\|_{n,1} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| = \|\beta\|_{n,\infty}.$$

Proof. (i). Using Hölder's discrete inequality for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ we have

$$\left|\sum_{j=1}^n \alpha_j \beta_j\right| \leq \left(\sum_{j=1}^n |\alpha_j|^p\right)^{1/p} \left(\sum_{j=1}^n \left|\beta_j\right|^q\right)^{1/q},$$

which implies that

(2.4)
$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \|\beta\|_{n,q}$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$ are *n*-tuples of complex numbers. For $(\beta_1, \dots, \beta_n) \neq 0$, consider $\alpha = (\alpha_1, \dots, \alpha_n)$ with

$$\alpha_j := \frac{\overline{\beta_j} \left| \beta_j \right|^{q-2}}{\left(\sum_{k=1}^n \left| \beta_k \right|^q \right)^{1/p}}$$

for those j for which $\beta_j \neq 0$ and $\alpha_j = 0$, for the rest.

We observe that

$$\left| \sum_{j=1}^{n} \alpha_{j} \beta_{j} \right| = \left| \sum_{j=1}^{n} \frac{\overline{\beta_{j}} \left| \beta_{j} \right|^{q-2}}{\left(\sum_{k=1}^{n} \left| \beta_{k} \right|^{q} \right)^{1/p}} \beta_{j} \right| = \frac{\sum_{j=1}^{n} \left| \beta_{j} \right|^{q}}{\left(\sum_{k=1}^{n} \left| \beta_{k} \right|^{q} \right)^{1/p}}$$

$$= \left(\sum_{j=1}^{n} \left| \beta_{j} \right|^{q} \right)^{1/q} = \|\beta\|_{n,q}$$

and

$$\begin{split} \|\alpha\|_{n,p}^{p} &= \sum_{j=1}^{n} |\alpha_{j}|^{p} = \sum_{j=1}^{n} \frac{\left|\overline{\beta_{j}} \left|\beta_{j}\right|^{q-2}\right|^{p}}{\left(\sum_{k=1}^{n} \left|\beta_{k}\right|^{q}\right)} = \sum_{j=1}^{n} \frac{\left(\left|\beta_{j}\right|^{q-1}\right)^{p}}{\left(\sum_{k=1}^{n} \left|\beta_{k}\right|^{q}\right)} \\ &= \sum_{j=1}^{n} \frac{\left|\beta_{j}\right|^{qp-p}}{\left(\sum_{k=1}^{n} \left|\beta_{k}\right|^{q}\right)} = \sum_{j=1}^{n} \frac{\left|\beta_{j}\right|^{q}}{\left(\sum_{k=1}^{n} \left|\beta_{k}\right|^{q}\right)} = 1. \end{split}$$

Therefore, by (2.4) we have the representation (2.1).

(ii). Using the properties of the modulus, we have

$$\left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \max_{j \in \{1, \dots, n\}} |\alpha_j| \sum_{j=1}^{n} |\beta_j|,$$

which implies that

(2.5)
$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \|\beta\|_{n,1},$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$.

For $(\beta_1, \ldots, \beta_n) \neq 0$, consider $\alpha = (\alpha_1, \ldots, \alpha_n)$ with $\alpha_j := \frac{\overline{\beta_j}}{|\beta_j|}$ for those j for which $\beta_j \neq 0$ and $\alpha_j = 0$, for the rest.

We have

$$\left| \sum_{j=1}^{n} \alpha_{j} \beta_{j} \right| = \left| \sum_{j=1}^{n} \frac{\overline{\beta_{j}}}{\left| \beta_{j} \right|} \beta_{j} \right| = \sum_{j=1}^{n} \left| \beta_{j} \right| = \left\| \beta \right\|_{n,1}$$

and

$$\|\alpha\|_{n,\infty} = \max_{j \in \{1,\dots,n\}} |\alpha_j| = \max_{j \in \{1,\dots,n\}} \left| \frac{\overline{\beta_j}}{|\beta_j|} \right| = 1$$

and by (2.5) we get the first representation in (2.3).

Moreover, we have

$$\left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \leq \sum_{j=1}^{n} |\alpha_j| \max_{j \in \{1, \dots, n\}} |\beta_j|,$$

which implies that

(2.6)
$$\sup_{\|\alpha\|_{n,1} \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right| \le \|\beta\|_{n,\infty},$$

where $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n)$. For $(\beta_1, \dots, \beta_n) \neq 0$, let $j_0 \in \{1, \dots, n\}$ such that $\|\beta\|_{\infty} = \max_{j \in \{1, \dots, n\}} |\beta_j| =$ $|\beta_{j_0}|$. Consider $\alpha = (\alpha_1, \dots, \alpha_n)$ with $\alpha_{j_0} = \frac{\beta_{j_0}}{|\beta_{j_0}|}$ and $\alpha_j = 0$ for $j \neq j_0$. For this choice we get

$$\sum_{j=1}^{n} |\alpha_j| = \frac{\left|\overline{\beta_{j_0}}\right|}{\left|\beta_{j_0}\right|} = 1 \text{ and } \left|\sum_{j=1}^{n} \alpha_j \beta_j\right| = \left|\frac{\overline{\beta_{j_0}}}{\left|\beta_{j_0}\right|} \beta_{j_0}\right| = \left|\beta_{j_0}\right| = \|\beta\|_{n,\infty},$$

therefore by (2.6) we obtain the second representation in (2).

Theorem 1. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x, y \in H$, then for p, q > 1 and

(2.7)
$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, y \right\rangle \right|^q \right)^{1/q}$$

and in particular

(2.8)
$$\sup_{\|\alpha\|_{n,2} \le 1} \left| \left\langle \left(\sum_{j=1}^n \alpha_j T_j \right) x, y \right\rangle \right| = \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^2 \right)^{1/2}.$$

We also have

(2.9)
$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \sum_{j=1}^{n} |\langle T_j x, y \rangle|$$

and

(2.10)
$$\sup_{\|\alpha\|_{n,1} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| = \max_{j \in \{1, \dots, n\}} \left\{ \left| \left\langle T_j x, y \right\rangle \right| \right\}.$$

Proof. If we take $\beta = (\langle T_1 x, y \rangle, \dots, \langle T_n x, y \rangle) \in \mathbb{C}^n$ in (2.1), then we get

$$\left(\sum_{j=1}^{n} \left| \langle T_j x, y \rangle \right|^q \right)^{1/q} = \|\beta\|_{n,q} = \sup_{\|\alpha\|_p \le 1} \left| \sum_{j=1}^{n} \alpha_j \beta_j \right|$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left| \sum_{j=1}^{n} \alpha_j \langle T_j x, y \rangle \right| = \sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \sum_{j=1}^{n} \alpha_j T_j x, y \right\rangle \right|,$$

which proves (2.7).

The equalities (2.9) and (2.10) follow by (2.3).

Corollary 1. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x \in H$, then for p, q > 1 and $\frac{1}{n} + \frac{1}{q} = 1$ we have

(2.11)
$$\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, x \right\rangle \right|^q \right)^{1/q}$$

and, in particular

(2.12)
$$\sup_{\|\alpha\|_{n,2} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \left(\sum_{j=1}^{n} \left| \left\langle T_j x, x \right\rangle \right|^2 \right)^{1/2}.$$

We also have

(2.13)
$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \sum_{j=1}^{n} \left| \left\langle T_j x, x \right\rangle \right|$$

and

(2.14)
$$\sup_{\|\alpha\|_{n,1} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, x \right\rangle \right| = \max_{j \in \{1, \dots, n\}} \left\{ \left| \left\langle T_j x, x \right\rangle \right| \right\}.$$

Corollary 2. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x \in H$, then for p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$ we have

(2.15)
$$\sup_{\|\alpha\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q \right)^{1/q}$$

and in particular

(2.16)
$$\sup_{\|\alpha\|_{n,2} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 \right)^{1/2}.$$

We also have

(2.17)
$$\sup_{\|\alpha\|_{n,\infty} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \sup_{\|y\|=1} \sum_{j=1}^{n} |\langle T_j x, y \rangle|$$

and

(2.18)
$$\sup_{\|\alpha\|_{n,1} \le 1} \left\| \sum_{j=1}^{n} \alpha_j T_j x \right\| = \max_{j \in \{1, \dots, n\}} \{ \|T_j x\| \}.$$

Proof. By the properties of inner product, we have for any $u \in H$, $u \neq 0$ that

$$||u|| = \sup_{||u||=1} |\langle u, y \rangle|.$$

Let $x \in H$, then by taking the supremum over ||y|| = 1 in (2.7) we get for p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$ that

$$\sup_{\|y\|=1} \left(\sum_{j=1}^{n} \left| \langle T_j x, y \rangle \right|^q \right)^{1/q} = \sup_{\|y\|=1} \left(\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left(\sup_{\|y\|=1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_j T_j \right) x, y \right\rangle \right| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left\| \left(\sum_{j=1}^{n} \alpha_j T_j \right) x \right\|,$$

which proves the equality (2.15).

The other equalities can be proved in a similar way by using Theorem 1, however the details are omitted. \Box

We can state and prove our main result.

Theorem 2. Let $(T_1, ..., T_n) \in B^{(n)}(H)$.

(i) For $q \ge 1$ we have the representation for the hypo-q-norm

(2.19)
$$\|(T_1, \dots, T_n)\|_{h,n,q} = \sup_{\|x\| = \|y\| = 1} \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^q \right)^{1/q} = \|(T_1, \dots, T_n)\|_{s,q}$$
and in particular

(2.20)
$$||(T_1, \dots, T_n)||_{n,e} = \sup_{\|x\| = \|y\| = 1} \left(\sum_{j=1}^n |\langle T_j x, y \rangle|^2 \right)^{1/2}.$$

We also have

(2.21)
$$||(T_1, \dots, T_n)||_{h, n, \infty} = \max_{j \in \{1, \dots, n\}} \{||T_j||\}.$$

(ii) For $q \ge 1$ we have the representation for the hypo-q-numerical radius

(2.22)
$$w_{h,n,q}(T_1,\ldots,T_n) = \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^q \right)^{1/q} = w_{s,q}(T_1,\ldots,T_n)$$

and in particular

(2.23)
$$w_{n,e}(T_1, \dots, T_n) := \sup_{\|x\|=1} \left(\sum_{j=1}^n |\langle T_j x, x \rangle|^2 \right)^{\frac{1}{2}}.$$

We also have

(2.24)
$$w_{h,n,\infty}(T_1,\ldots,T_n) = \max_{j \in \{1,\ldots,n\}} \{w(T_j)\}.$$

Proof. (i) By using the equality (2.15) we have for $(T_1, \ldots, T_n) \in B^{(n)}(H)$ that

$$\sup_{\|x\|=\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_{j}x, y \rangle|^{q} \right)^{1/q} = \sup_{\|x\|=1} \left(\sup_{\|y\|=1} \left(\sum_{j=1}^{n} |\langle T_{j}x, y \rangle|^{q} \right)^{1/q} \right)$$

$$= \sup_{\|x\|=1} \left(\sup_{\|\alpha\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \alpha_{j} T_{j} x \right\| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left(\sup_{\|x\|=1} \left\| \sum_{j=1}^{n} \alpha_{j} T_{j} x \right\| \right)$$

$$= \sup_{\|\alpha\|_{n,p} \le 1} \left\| \sum_{j=1}^{n} \alpha_{j} T_{j} \right\| = \|(T_{1}, \dots, T_{n})\|_{h,n,q},$$

which proves (2.19). The rest is obvious.

(ii) By using the equality (2.11) we have for $(T_1, \ldots, T_n) \in B^{(n)}(H)$ that

$$\sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left| \langle T_{j} x, x \rangle \right|^{q} \right)^{1/q} = \sup_{\|x\|=1} \left(\sup_{\|\alpha\|_{n,p} \le 1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_{j} T_{j} \right) x, x \right\rangle \right| \right) \\
= \sup_{\|\alpha\|_{n,p} \le 1} \left(\sup_{\|x\|=1} \left| \left\langle \left(\sum_{j=1}^{n} \alpha_{j} T_{j} \right) x, x \right\rangle \right| \right) \\
= \sup_{\|\alpha\|_{n,p} \le 1} w \left(\sum_{j=1}^{n} \alpha_{j} T_{j} \right) = w_{h,n,q} \left(T_{1}, \dots, T_{n} \right),$$

which proves (2.22). The rest is obvious.

Remark 1. The case q = 2 was obtained in a different manner in [4] by utilising the rotation-invariant normalised positive Borel measure on the unit sphere.

We can consider on $B^{(n)}\left(H\right)$ the following usual operator and numerical radius q-norms, for $q\geq 1$

$$\|(T_1, \dots, T_n)\|_{n,q} := \left(\sum_{j=1}^n \|T_j\|^q\right)^{1/q} \text{ and } w_{n,q}(T_1, \dots, T_n) := \left(\sum_{j=1}^n w^q(T_j)\right)^{1/q}$$

where $(T_1, \ldots, T_n) \in B^{(n)}(H)$. For $q = \infty$ we put

$$\|(T_1,\ldots,T_n)\|_{n,\infty} := \max_{j\in\{1,\ldots,n\}} \{\|T_j\|\} \text{ and } w_{n,\infty}\left(T_1,\ldots,T_n\right) := \max_{j\in\{1,\ldots,n\}} \{w\left(T_j\right)\}.$$

Corollary 3. With the assumptions of Theorem 2 we have for $q \ge 1$ that

(2.25)
$$\frac{1}{n^{1/q}} \| (T_1, \dots, T_n) \|_{n,q} \le \| (T_1, \dots, T_n) \|_{h,n,q} \le \| (T_1, \dots, T_n) \|_{n,q}$$
 and

(2.26)
$$\frac{1}{n^{1/q}} w_{n,q} (T_1, \dots, T_n) \le w_{h,n,q} (T_1, \dots, T_n) \le w_{n,q} (T_1, \dots, T_n)$$
for any $(T_1, \dots, T_n) \in B^{(n)} (H)$.

In particular, we have [4]

(2.27)
$$\frac{1}{\sqrt{n}} \| (T_1, \dots, T_n) \|_{n,2} \le \| (T_1, \dots, T_n) \|_{h,n,e} \le \| (T_1, \dots, T_n) \|_{n,2}$$

and

(2.28)
$$\frac{1}{\sqrt{n}} w_{n,2}(T_1, \dots, T_n) \le w_{h,n,e}(T_1, \dots, T_n) \le w_{n,2}(T_1, \dots, T_n)$$

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

Proof. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $x, y \in H$ with ||x|| = ||y|| = 1. Then by Schwarz's inequality we have

$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^q\right)^{1/q} \le \left(\sum_{j=1}^{n} ||T_j x||^q ||y||^q\right)^{1/q} = \left(\sum_{j=1}^{n} ||T_j x||^q\right)^{1/q}.$$

By the operator norm inequality we also have

$$\left(\sum_{j=1}^{n} \|T_j x\|^q\right)^{1/q} \le \left(\sum_{j=1}^{n} \|T_j\|^q \|x\|^q\right)^{1/q} = \|(T_1, \dots, T_n)\|_{n,q}.$$

Therefore

$$\left(\sum_{j=1}^{n} \left| \left\langle T_{j} x, y \right\rangle \right|^{q} \right)^{1/q} \leq \left\| \left(T_{1}, \dots, T_{n} \right) \right\|_{n,q}$$

and by taking the supremum over ||x|| = ||y|| = 1 we get the second inequality in (2.25).

By the properties of complex numbers, we have

$$\max_{j \in \{1, \dots, n\}} \left\{ \left| \left\langle T_j x, y \right\rangle \right| \right\} \le \left(\sum_{j=1}^n \left| \left\langle T_j x, y \right\rangle \right|^q \right)^{1/q}$$

 $x, y \in H \text{ with } ||x|| = ||y|| = 1.$

By taking the supremum over ||x|| = ||y|| = 1 we get

(2.29)
$$\sup_{\|x\|=\|y\|=1} \left(\max_{j \in \{1,\dots,n\}} \left\{ |\langle T_j x, y \rangle| \right\} \right) \le \|(T_1,\dots,T_n)\|_{h,n,q}$$

and since

$$\sup_{\|x\|=\|y\|=1} \left(\max_{j \in \{1,\dots,n\}} \left\{ |\langle T_j x, y \rangle| \right\} \right) = \max_{j \in \{1,\dots,n\}} \left\{ \sup_{\|x\|=\|y\|=1} |\langle T_j x, y \rangle| \right\}$$
$$= \max_{j \in \{1,\dots,n\}} \left\{ \|T_j\| \right\} = \|(T_1,\dots,T_n)\|_{n,\infty},$$

then by (2.29) we get

(2.30)
$$||(T_1, \dots, T_n)||_{n,\infty} \le ||(T_1, \dots, T_n)||_{h,n,q}$$

for any $(T_1, ..., T_n) \in B^{(n)}(H)$.

Since

(2.31)
$$\|(T_1, \dots, T_n)\|_{n,q} := \left(\sum_{j=1}^n \|T_j\|^q\right)^{1/q} \le \left(n \|(T_1, \dots, T_n)\|_{n,\infty}^q\right)^{1/q}$$

$$= n^{1/q} \|(T_1, \dots, T_n)\|_{n,\infty},$$

then by (2.30) and (2.31) we get

$$\frac{1}{n^{1/q}} \| (T_1, \dots, T_n) \|_{n,q} \le \| (T_1, \dots, T_n) \|_{h,n,q}$$

for any $(T_1, \ldots, T_n) \in B^{(n)}(H)$.

The inequality (2.26) follows in a similar way and we omit the details.

Corollary 4. With the assumptions of Theorem 2 we have for $r \geq q \geq 1$ that

$$(2.32) ||(T_1, \dots, T_n)||_{h,n,r} \le ||(T_1, \dots, T_n)||_{h,n,q} \le n^{\frac{r-q}{rq}} ||(T_1, \dots, T_n)||_{h,n,r}$$
and [12]

$$(2.33) w_{h,n,r}(T_1,\ldots,T_n) \le w_{h,n,q}(T_1,\ldots,T_n) \le n^{\frac{r-q}{rq}} w_{h,n,r}(T_1,\ldots,T_n)$$
for any $(T_1,\ldots,T_n) \in B^{(n)}(H)$.

Proof. We use the following elementary inequalities for the nonnegative numbers a_j , j=1,...,n and $r \geq q > 0$ (see for instance [12])

(2.34)
$$\left(\sum_{j=1}^{n} a_j^r\right)^{1/r} \le \left(\sum_{j=1}^{n} a_j^q\right)^{1/q} \le n^{\frac{r-q}{rq}} \left(\sum_{j=1}^{n} a_j^r\right)^{1/r}.$$

Let $(T_1, ..., T_n) \in B^{(n)}(H)$ and $x, y \in H$ with ||x|| = ||y|| = 1. Then by (2.34) we get

$$\left(\sum_{j=1}^{n}\left|\left\langle T_{j}x,y\right\rangle\right|^{r}\right)^{1/r}\leq\left(\sum_{j=1}^{n}\left|\left\langle T_{j}x,y\right\rangle\right|^{q}\right)^{1/q}\leq n^{\frac{r-q}{rq}}\left(\sum_{j=1}^{n}\left|\left\langle T_{j}x,y\right\rangle\right|^{r}\right)^{1/r}.$$

By taking the supremum over ||x|| = ||y|| = 1 we get (2.32).

The inequality (2.33) follows in a similar way and we omit the details.

Remark 2. For $q \ge 2$ we have by (2.32) and (2.33)

$$(2.36) w_{h,n,q}(T_1,\ldots,T_n) \le w_{h,n,e}(T_1,\ldots,T_n) \le n^{\frac{q-2}{2q}} w_{h,n,q}(T_1,\ldots,T_n)$$
and for $1 \le q \le 2$ we have

$$(2.37) ||(T_1, \dots, T_n)||_{h,n,e} \le ||(T_1, \dots, T_n)||_{h,n,q} \le n^{\frac{2-q}{2q}} ||(T_1, \dots, T_n)||_{h,n,e}$$
and

$$(2.38) w_{h,n,e}(T_1,\ldots,T_n) \le w_{h,n,e}(T_1,\ldots,T_n) \le n^{\frac{2-q}{2q}} w_{h,n,e}(T_1,\ldots,T_n)$$

for any $(T_1,\ldots,T_n) \in B^{(n)}(H)$.

Also, if we take q = 1 and $r \ge 1$ in (2.32) and (2.33), then we get

$$(2.39) ||(T_1, \dots, T_n)||_{h,n,r} \le ||(T_1, \dots, T_n)||_{h,n,1} \le n^{\frac{r-1}{r}} ||(T_1, \dots, T_n)||_{h,n,r}$$
and

(2.40)
$$w_{h,n,r}(T_1,\ldots,T_n) \le w_{h,n,1}(T_1,\ldots,T_n) \le n^{\frac{r-1}{r}} w_{h,n,r}(T_1,\ldots,T_n)$$

for any $(T_1,\ldots,T_n) \in B^{(n)}(H)$.

In particular, for r = 2 we get

$$(2.41) ||(T_1, \dots, T_n)||_{h,n,e} \le ||(T_1, \dots, T_n)||_{h,n,1} \le \sqrt{n} ||(T_1, \dots, T_n)||_{h,n,e}$$
and

(2.42)
$$w_{n,e}(T_1,\ldots,T_n) \leq w_{h,n,1}(T_1,\ldots,T_n) \leq \sqrt{n}w_{n,e}(T_1,\ldots,T_n)$$
 for any $(T_1,\ldots,T_n) \in B^{(n)}(H)$.

We have:

Proposition 1. For any $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then we have

(2.43)
$$||(T_1, \dots, T_n)||_{h,n,q} \ge \frac{1}{n^{1/p}} \left\| \sum_{j=1}^n T_j \right\|$$

and

(2.44)
$$w_{h,n,q}(T_1,\ldots,T_n) \ge \frac{1}{n^{1/p}} w\left(\sum_{j=1}^n T_j\right).$$

Proof. Let $\lambda_j = \frac{1}{n^{1/p}}$ for $j \in \{1, ..., n\}$, then $\sum_{j=1}^n |\lambda_j|^p = 1$. Therefore by (1.8) we get

$$\|(T_1, \dots, T_n)\|_{h,n,q} = \sup_{\|\lambda\|_{n,p} \le 1} \left\| \sum_{j=1}^n \lambda_j T_j \right\| \ge \left\| \sum_{j=1}^n \frac{1}{n^{1/p}} T_j \right\| = \frac{1}{n^{1/p}} \left\| \sum_{j=1}^n T_j \right\|.$$

The inequality (2.44) follows in a similar way.

We can also introduce the following norms for $(T_1, \ldots, T_n) \in B^{(n)}(H)$,

$$\|(T_1,\ldots,T_n)\|_{s,n,p} := \sup_{\|x\|=1} \left(\sum_{j=1}^n \|T_j x\|^p\right)^{1/p}$$

where $p \geq 1$ and

$$\|(T_1,\ldots,T_n)\|_{s,n,\infty} := \sup_{\|x\|=1} \left(\max_{j\in\{1,\ldots,n\}} \|T_j x\| \right) = \max_{j\in\{1,\ldots,n\}} \{\|T_j\|\}.$$

The triangle inequality $\|\cdot\|_{s,n,q}$ follows by Minkowski inequality, while the other properties of the norm are obvious.

Proposition 2. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$.

(i) We have for $p \ge 1$, that

$$(2.45) ||(T_1, \dots, T_n)||_{h,n,p} \le ||(T_1, \dots, T_n)||_{s,n,p} \le ||(T_1, \dots, T_n)||_{n,p};$$

(ii) For $p \ge 2$ we also have

(2.46)
$$||(T_1, \dots, T_n)||_{s,n,p} = \left[w_{h,n,p/2} \left(|T_1|^2, \dots, |T_n|^2 \right) \right]^{1/2},$$

where the absolute value |T| is defined by $|T| := (T^*T)^{1/2}$.

Proof. (i) We have for $p \geq 2$ and $x, y \in H$ with ||x|| = ||y|| = 1, that

$$|\langle T_i x, y \rangle|^p \le ||T_i x||^p ||y||^p = ||T_i x||^p \le ||T_i||^p ||x||^p = ||T_i||^p$$

for $j \in \{1, ..., n\}$.

This implies

$$\sum_{j=1}^{n} |\langle T_j x, y \rangle|^p \le \sum_{j=1}^{n} ||T_j x||^p \le \sum_{j=1}^{n} ||T_j||^p,$$

namely

(2.47)
$$\left(\sum_{j=1}^{n} \left| \langle T_j x, y \rangle \right|^p \right)^{1/p} \le \left(\sum_{j=1}^{n} \left\| T_j x \right\|^p \right)^{1/p} \le \left(\sum_{j=1}^{n} \left\| T_j \right\|^p \right)^{1/p},$$

for any $x, y \in H$ with ||x|| = ||y|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (2.47), we get the desired result (2.45).

(ii) We have

 $||(T_1,\ldots,T_n)||_{s,n,n}$

$$= \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \|T_{j}x\|^{p} \right)^{1/p} = \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left(\|T_{j}x\|^{2} \right)^{p/2} \right)^{1/p}$$

$$= \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \langle T_{j}x, T_{j}x \rangle^{p/2} \right)^{1/p} = \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \langle T_{j}^{*}T_{j}x, x \rangle^{p/2} \right)^{1/p}$$

$$= \sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left\langle |T_{j}|^{2}x, x \right\rangle^{p/2} \right)^{1/p} = \left[\sup_{\|x\|=1} \left(\sum_{j=1}^{n} \left\langle |T_{j}|^{2}x, x \right\rangle^{p/2} \right)^{1/(p/2)} \right]^{1/2}$$

$$= \left[w_{h,n,p/2} \left(|T_{1}|^{2}, \dots, |T_{n}|^{2} \right) \right]^{1/2},$$

which proves the equality (2.46).

3. Some Reverse Inequalities

Recall the following reverse of Cauchy-Buniakowski-Schwarz inequality [1] (see also [2, Theorem 5. 14]):

Lemma 2. Let $a, A \in \mathbb{R}$ and $\mathbf{z} = (z_1, \dots, z_n)$, $\mathbf{y} = (y_1, \dots, y_n)$ be two sequences of real numbers with the property that:

$$(3.1) ay_j \le z_j \le Ay_j for each j \in \{1, \dots, n\}.$$

Then for any $\mathbf{w} = (w_1, \dots, w_n)$ a sequence of positive real numbers, one has the inequality

$$(3.2) 0 \le \sum_{j=1}^{n} w_j z_j^2 \sum_{j=1}^{n} w_j y_j^2 - \left(\sum_{j=1}^{n} w_j z_j y_j\right)^2 \le \frac{1}{4} (A - a)^2 \left(\sum_{j=1}^{n} w_j y_j^2\right)^2.$$

The constant $\frac{1}{4}$ is sharp in (3.2).

O. Shisha and B. Mond obtained in 1967 (see [13]) the following counterparts of (CBS)- inequality (see also [2, Theorem 5.20 & 5.21]):

Lemma 3. Assume that $\mathbf{a} = (a_1, \dots, a_n)$ and $\mathbf{b} = (b_1, \dots, b_n)$ are such that there exists a, A, b, B with the property that:

(3.3)
$$0 \le a \le a_j \le A$$
 and $0 < b \le b_j \le B$ for any $j \in \{1, ..., n\}$, then we have the inequality

$$(3.4) \qquad \sum_{j=1}^{n} a_j^2 \sum_{j=1}^{n} b_j^2 - \left(\sum_{j=1}^{n} a_j b_j\right)^2 \le \left(\sqrt{\frac{A}{b}} - \sqrt{\frac{a}{B}}\right)^2 \sum_{j=1}^{n} a_j b_j \sum_{j=1}^{n} b_j^2.$$

and

Lemma 4. Assume that \mathbf{a} , \mathbf{b} are nonnegative sequences and there exists γ , Γ with the property that

(3.5)
$$0 \le \gamma \le \frac{a_j}{b_j} \le \Gamma < \infty \text{ for any } j \in \{1, \dots, n\}.$$

Then we have the inequality

$$(3.6) 0 \le \left(\sum_{j=1}^{n} a_j^2 \sum_{j=1}^{n} b_j^2\right)^{\frac{1}{2}} - \sum_{j=1}^{n} a_j b_j \le \frac{\left(\Gamma - \gamma\right)^2}{4\left(\gamma + \Gamma\right)} \sum_{j=1}^{n} b_j^2.$$

We have:

Theorem 3. Let $(T_1, ..., T_n) \in B^{(n)}(H)$.

(i) We have

$$(3.7) 0 \le \|(T_1, \dots, T_n)\|_{h, n, e}^2 - \frac{1}{n} \|(T_1, \dots, T_n)\|_{h, n, 1}^2 \le \frac{1}{4} n \|(T_1, \dots, T_n)\|_{n, \infty}^2$$
and

$$(3.8) 0 \le w_{n,e}^2(T_1,\ldots,T_n) - \frac{1}{n}w_{h,n,1}^2(T_1,\ldots,T_n) \le \frac{1}{4}n \left\| (T_1,\ldots,T_n) \right\|_{n,\infty}^2.$$

(ii) We have

(3.9)
$$0 \leq \|(T_1, \dots, T_n)\|_{h,n,e}^2 - \frac{1}{n} \|(T_1, \dots, T_n)\|_{h,n,1}^2 \\ \leq \|(T_1, \dots, T_n)\|_{n,\infty} \|(T_1, \dots, T_n)\|_{h,n,1}$$

(3.10)
$$0 \leq w_{n,e}^{2}(T_{1},\ldots,T_{n}) - \frac{1}{n}w_{h,n,1}^{2}(T_{1},\ldots,T_{n})$$
$$\leq \|(T_{1},\ldots,T_{n})\|_{n,\infty}w_{h,n,1}(T_{1},\ldots,T_{n}).$$

(iii) We have

$$(3.11) \ \ 0 \le \|(T_1, \dots, T_n)\|_{h,n,e} - \frac{1}{\sqrt{n}} \|(T_1, \dots, T_n)\|_{h,n,1} \le \frac{1}{4} \sqrt{n} \|(T_1, \dots, T_n)\|_{n,\infty}$$

$$(3.12) \quad 0 \le w_{n,e} (T_1, \dots, T_n) - \frac{1}{\sqrt{n}} w_{h,n,1} (T_1, \dots, T_n) \le \frac{1}{4} \sqrt{n} \| (T_1, \dots, T_n) \|_{n,\infty}.$$

Proof. (i). Let $(T_1, ..., T_n) \in B^{(n)}(H)$ and put $R = \max_{j \in \{1, ..., n\}} \{ ||T_j|| \} = ||(T_1, ..., T_n)||_{n,\infty}$. If $x, y \in H$, with ||x|| = ||y|| = 1 then $|\langle T_j x, y \rangle| \le ||T_j x|| \le ||T_j|| \le R$ for any $j \in \{1, ..., n\}$.

If we write the inequality (3.2) for $z_j = |\langle T_j x, y \rangle|$, $w_j = y_j = 1$, A = R and a = 0, we get

$$0 \le n \sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 - \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 \le \frac{1}{4} n^2 R^2$$

for any $x, y \in H$, with ||x|| = ||y|| = 1.

This implies that

(3.13)
$$\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 + \frac{1}{4} n R^2$$

for any $x, y \in H$, with ||x|| = ||y|| = 1 and, in particular

(3.14)
$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right| \right)^2 + \frac{1}{4} n R^2$$

for any $x \in H$, with ||x|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (3.13) and ||x|| = 1 in (3.14), then we get (3.7) and (3.8).

(ii). Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$. If we write the inequality (3.4) for $a_j = |\langle T_j x, y \rangle|$, $b_j = 1$, b = B = 1, a = 0 and A = R, then we get

$$0 \le n \sum_{j=1}^{n} |\langle T_j x, y \rangle|^2 - \left(\sum_{j=1}^{n} |\langle T_j x, y \rangle| \right)^2 \le n R \sum_{j=1}^{n} |\langle T_j x, y \rangle|,$$

for any $x, y \in H$, with ||x|| = ||y|| = 1.

This implies that

(3.15)
$$\sum_{j=1}^{n} \left| \langle T_j x, y \rangle \right|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} \left| \langle T_j x, y \rangle \right| \right)^2 + R \sum_{j=1}^{n} \left| \langle T_j x, y \rangle \right|,$$

for any $x, y \in H$, with ||x|| = ||y|| = 1 and, in particular

(3.16)
$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{n} \left(\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right| \right)^2 + R \sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|,$$

for any $x \in H$ with ||x|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (3.15) and ||x|| = 1 in (3.16), then we get (3.9) and (3.10).

(iii). If we write the inequality (3.6) for $a_j = |\langle T_j x, y \rangle|$, $b_j = 1$, b = B = 1, $\gamma = 0$ and $\Gamma = R$ we have

$$0 \le \left(n\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2\right)^{\frac{1}{2}} - \sum_{j=1}^{n} |\langle T_j x, y \rangle| \le \frac{1}{4}nR,$$

for any $x, y \in H$, with ||x|| = ||y|| = 1.

This implies that

(3.17)
$$\left(\sum_{j=1}^{n} |\langle T_j x, y \rangle|^2\right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n}} \sum_{j=1}^{n} |\langle T_j x, y \rangle| + \frac{1}{4} \sqrt{n} R,$$

for any $x, y \in H$, with ||x|| = ||y|| = 1 and, in particular

(3.18)
$$\left(\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n}} \sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right| + \frac{1}{4} \sqrt{n} R,$$

for any $x \in H$ with ||x|| = 1.

Taking the supremum over ||x|| = ||y|| = 1 in (3.17) and ||x|| = 1 in (3.18), then we get (3.11) and (3.12).

Before we proceed with establishing some reverse inequalities for the hypo-Euclidean numerical radius, we recall some reverse results of the Cauchy-Bunyakovsky-Schwarz inequality for complex numbers as follows:

If $\gamma, \Gamma \in \mathbb{C}$ and $\alpha_j \in \mathbb{C}, j \in \{1, ..., n\}$ with the property that

(3.19)
$$0 \leq \operatorname{Re} \left[(\Gamma - \alpha_j) \left(\overline{\alpha_j} - \overline{\gamma} \right) \right]$$
$$= \left(\operatorname{Re} \Gamma - \operatorname{Re} \alpha_j \right) \left(\operatorname{Re} \alpha_j - \operatorname{Re} \gamma \right) + \left(\operatorname{Im} \Gamma - \operatorname{Im} \alpha_j \right) \left(\operatorname{Im} \alpha_j - \operatorname{Im} \gamma \right)$$

or, equivalently,

(3.20)
$$\left| \alpha_j - \frac{\gamma + \Gamma}{2} \right| \le \frac{1}{2} \left| \Gamma - \gamma \right|$$

for each $j \in \{1, ..., n\}$, then (see for instance [3, p. 9])

(3.21)
$$n \sum_{j=1}^{n} |\alpha_{j}|^{2} - \left| \sum_{j=1}^{n} \alpha_{j} \right|^{2} \leq \frac{1}{4} n^{2} |\Gamma - \gamma|^{2}.$$

In addition, if $\operatorname{Re}(\Gamma \bar{\gamma}) > 0$, then (see for example [3, p. 26]):

(3.22)
$$n \sum_{j=1}^{n} |\alpha_{j}|^{2} \leq \frac{1}{4} \frac{\left\{ \operatorname{Re} \left[\left(\bar{\Gamma} + \bar{\gamma} \right) \sum_{j=1}^{n} \alpha_{j} \right] \right\}^{2}}{\operatorname{Re} \left(\Gamma \bar{\gamma} \right)}$$
$$\leq \frac{1}{4} \frac{\left| \Gamma + \gamma \right|^{2}}{\operatorname{Re} \left(\Gamma \bar{\gamma} \right)} \left| \sum_{j=1}^{n} \alpha_{j} \right|^{2}.$$

Also, if $\Gamma \neq -\gamma$, then (see for instance [3, p. 32]):

(3.23)
$$\left(n \sum_{j=1}^{n} |\alpha_j|^2 \right)^{\frac{1}{2}} - \left| \sum_{j=1}^{n} \alpha_j \right| \le \frac{1}{4} n \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|}.$$

Finally, from [5] we can also state that

$$(3.24) n\sum_{j=1}^{n} |\alpha_j|^2 - \left|\sum_{j=1}^{n} \alpha_j\right|^2 \le n\left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}\left(\Gamma\bar{\gamma}\right)}\right] \left|\sum_{j=1}^{n} \alpha_j\right|,$$

provided Re $(\Gamma \bar{\gamma}) > 0$.

We notice that a simple sufficient condition for (3.19) to hold is that

(3.25)
$$\operatorname{Re}\Gamma \geq \operatorname{Re}\alpha_j \geq \operatorname{Re}\gamma \quad \text{and} \quad \operatorname{Im}\Gamma \geq \operatorname{Im}\alpha_j \geq \operatorname{Im}\gamma$$

for each $j \in \{1, \ldots, n\}$.

Theorem 4. Let $(T_1, \ldots, T_n) \in B^{(n)}(H)$ and $\gamma, \Gamma \in \mathbb{C}$ with $\Gamma \neq \gamma$. Assume that

(3.26)
$$w\left(T_j - \frac{\gamma + \Gamma}{2}I\right) \leq \frac{1}{2} |\Gamma - \gamma| \text{ for any } j \in \{1, \dots, n\}.$$

(i) We have

(3.27)
$$w_{h,n,e}^{2}(T_{1},...,T_{n}) \leq \frac{1}{n} w^{2} \left(\sum_{j=1}^{n} T_{j} \right) + \frac{1}{4} n \left| \Gamma - \gamma \right|^{2}.$$

(ii) If Re $(\Gamma \bar{\gamma}) > 0$, then

(3.28)
$$w_{h,n,e}\left(T_1,\ldots,T_n\right) \leq \frac{1}{2\sqrt{n}} \frac{|\Gamma+\gamma|}{\sqrt{\operatorname{Re}\left(\Gamma\bar{\gamma}\right)}} w\left(\sum_{j=1}^n T_j\right)$$

and

(3.29)
$$w_{h,n,e}^{2}(T_{1},...,T_{n}) \leq \left[\frac{1}{n}w\left(\sum_{j=1}^{n}T_{j}\right) + \left[\left|\Gamma + \gamma\right| - 2\sqrt{\operatorname{Re}(\Gamma\bar{\gamma})}\right]\right] \times w\left(\sum_{j=1}^{n}T_{j}\right).$$

(iii) If $\Gamma \neq -\gamma$, then

$$(3.30) w_{h,n,e}\left(T_1,\ldots,T_n\right) \leq \frac{1}{\sqrt{n}} \left(w\left(\sum_{j=1}^n T_j\right) + \frac{1}{4} \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|}\right).$$

Proof. Let $x \in H$ with ||x|| = 1 and $(T_1, \ldots, T_n) \in B^{(n)}(H)$ with the property (3.26). By taking $\alpha_i = \langle T_i x, x \rangle$ we have

$$\left| \alpha_{j} - \frac{\gamma + \Gamma}{2} \right| = \left| \langle T_{j}x, x \rangle - \frac{\gamma + \Gamma}{2} \langle x, x \rangle \right| = \left| \left\langle \left(T_{j} - \frac{\gamma + \Gamma}{2} I \right) x, x \right\rangle \right|$$

$$\leq \sup_{\|x\| = 1} \left| \left\langle \left(T_{j} - \frac{\gamma + \Gamma}{2} I \right) x, x \right\rangle \right| = w \left(T_{j} - \frac{\gamma + \Gamma}{2} \right)$$

$$\leq \frac{1}{2} \left| \Gamma - \gamma \right|$$

for any $j \in \{1, \ldots, n\}$.

(i) By using the inequality (3.21), we have

(3.31)
$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{n} \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|^2 + \frac{1}{4} n \left| \Gamma - \gamma \right|^2$$
$$= \frac{1}{n} \left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right|^2 + \frac{1}{4} n \left| \Gamma - \gamma \right|^2$$

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 in (3.31) we get

$$\sup_{\|x\|=1} \left(\sum_{j=1}^{n} |\langle T_{j} x, x \rangle|^{2} \right) \leq \frac{1}{n} \sup_{\|x\|=1} \left| \left\langle \sum_{j=1}^{n} T_{j} x, x \right\rangle \right|^{2} + \frac{1}{4} n |\Gamma - \gamma|^{2}$$

$$= \frac{1}{n} w^{2} \left(\sum_{j=1}^{n} T_{j} \right) + \frac{1}{4} n |\Gamma - \gamma|^{2},$$

which proves (3.27).

(ii) If Re $(\Gamma \bar{\gamma}) > 0$, then by (3.22) we have for $\alpha_j = \langle T_j x, x \rangle$, $j \in \{1, \ldots, n\}$ that

(3.32)
$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{4n} \frac{\left| \Gamma + \gamma \right|^2}{\operatorname{Re} \left(\Gamma \bar{\gamma} \right)} \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|^2$$
$$= \frac{1}{4n} \frac{\left| \Gamma + \gamma \right|^2}{\operatorname{Re} \left(\Gamma \bar{\gamma} \right)} \left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right|^2$$

for any $x \in H$ with ||x|| = 1.

On taking the supremum over ||x|| = 1 in (3.32) we get (3.32). Also, by (3.24) we get

$$\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \le \frac{1}{n} \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|^2 + \left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}\left(\Gamma \bar{\gamma}\right)} \right] \left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right|,$$

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 in this inequality, we have

$$\sup_{\|x\|=1} \sum_{j=1}^{n} \left| \langle T_{j}x, x \rangle \right|^{2}$$

$$\leq \sup_{\|x\|=1} \left[\frac{1}{n} \left| \sum_{j=1}^{n} \langle T_{j}x, x \rangle \right|^{2} + \left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}\left(\Gamma\bar{\gamma}\right)} \right] \left| \sum_{j=1}^{n} \langle T_{j}x, x \rangle \right| \right]$$

$$\leq \frac{1}{n} \sup_{\|x\|=1} \left| \left\langle \sum_{j=1}^{n} T_{j}x, x \right\rangle \right|^{2} + \left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}\left(\Gamma\bar{\gamma}\right)} \right] \sup_{\|x\|=1} \left| \left\langle \sum_{j=1}^{n} T_{j}x, x \right\rangle \right|$$

$$= \frac{1}{n} w^{2} \left(\sum_{j=1}^{n} T_{j} \right) + \left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}\left(\Gamma\bar{\gamma}\right)} \right] w \left(\sum_{j=1}^{n} T_{j} \right),$$

which proves (3.29)

(iii) By the inequality (3.23) we have

$$\left(\sum_{j=1}^{n} \left| \langle T_j x, x \rangle \right|^2 \right)^{\frac{1}{2}} \le \frac{1}{\sqrt{n}} \left(\left| \sum_{j=1}^{n} \langle T_j x, x \rangle \right| + \frac{1}{4} \frac{\left| \Gamma - \gamma \right|^2}{\left| \Gamma + \gamma \right|} \right)$$

$$= \frac{1}{\sqrt{n}} \left(\left| \left\langle \sum_{j=1}^{n} T_j x, x \right\rangle \right| + \frac{1}{4} \frac{\left| \Gamma - \gamma \right|^2}{\left| \Gamma + \gamma \right|} \right)$$

for any $x \in H$ with ||x|| = 1.

By taking the supremum over ||x|| = 1 in this inequality, we get (3.30).

Remark 3. By the use of the elementary inequality $w(T) \leq ||T||$ that holds for any $T \in B(H)$, a sufficient condition for (3.26) to hold is that

(3.33)
$$\left\| T_j - \frac{\gamma + \Gamma}{2} \right\| \leq \frac{1}{2} \left| \Gamma - \gamma \right| \text{ for any } j \in \{1, \dots, n\}.$$

4. Inequalities for δ_p and ϑ_p Norms

For $T \in B(H)$ and $p \ge 1$ we can consider the functionals

(4.1)
$$\delta_p(T) := \sup_{\|x\| = \|y\| = 1} (|\langle Tx, y \rangle|^p + |\langle T^*x, y \rangle|^p)^{1/p} = \|(T, T^*)\|_{h, 2, p}$$

and

(4.2)
$$\vartheta_{p}\left(T\right) := \sup_{\|x\|=1} \left(\|Tx\|^{p} + \|T^{*}x\|^{p}\right)^{1/p} = \|(T, T^{*})\|_{s, 2, p}.$$

It is easy to see that both δ_p and ϑ_p are norms on B(H). The case p=2 for the norm $\delta := \delta_2$ was considered and studied in [4].

Observe that, for any $T \in B(H)$ and $p \ge 1$, we have

(4.3)

$$\begin{split} w_{h,2,p}\left((T,T^*)\right) &= \sup_{\|x\|=1} \left(\left| \left\langle Tx,x \right\rangle \right|^p + \left| \left\langle T^*x,x \right\rangle \right|^p \right)^{\frac{1}{p}} = \sup_{\|x\|=1} \left(\left| \left\langle Tx,x \right\rangle \right|^p + \left| \left\langle Tx,x \right\rangle \right|^p \right)^{\frac{1}{p}} \\ &= 2^{1/p} \sup_{\|x\|=1} \left| \left\langle Tx,x \right\rangle \right| = 2^{1/p} w\left(T\right). \end{split}$$

Using the inequality (1.13) we have

$$(4.4) 2^{1/p}w\left(T\right) \le \delta_{p}\left(T\right) \le 2^{1+1/p}w\left(T\right)$$

for any $T \in B(H)$ and $p \ge 1$.

For p = 2, we get

(4.5)
$$\sqrt{2}w(T) \le \delta(T) \le \sqrt{8}w(T)$$

while for p = 1 we get

$$(4.6) 2w(T) \le \delta_1(T) \le 4w(T)$$

for any $T \in B(H)$.

We have for any $T \in B(H)$ and $p \ge 1$ that

$$\|(T, T^*)\|_{2,p} = (\|T\|^p + \|T^*\|^p)^{1/p} = 2^{1/p} \|T\|$$

and by (2.25) we get

(4.7)
$$||T|| \le \delta_p(T) \le 2^{1/p} ||T||$$

for any $T \in B(H)$ and $p \ge 1$.

For p = 2, we get

$$||T|| \le \delta(T) \le \sqrt{2} ||T||$$

while for p = 1 we get

$$||T|| \le \delta_1(T) \le 2||T||$$

for any $T \in B(H)$.

From (2.32) we get for $r \geq q \geq 1$ that

$$\delta_r(T) \le \delta_q(T) \le 2^{\frac{r-q}{rq}} \delta_r(T)$$

for any $T \in B(H)$.

For any $T \in B(H)$ and p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then by (2.43) we have

(4.11)
$$\delta_{q}(T) \ge \frac{1}{2^{1/p}} \|T + T^{*}\|.$$

In particular, for p = q = 2 we get

(4.12)
$$\delta(T) \ge \frac{\sqrt{2}}{2} \|T + T^*\|,$$

for any $T \in B(H)$.

By using the inequality (2.45) we get

$$\delta_p(T) \le \vartheta_p(T) \le 2^{1/p} \|T\|$$

for any $T \in B(H)$ and $p \ge 1$.

For p = 1 we get

$$\delta_1(T) \le \vartheta_1(T) \le 2 \|T\|$$

for any $T \in B(H)$.

For $p \geq 2$, by employing the equality (2.46) we get

(4.15)
$$\vartheta_p(T) = \left[w_{h,2,p/2} \left(|T|^2, |T^*|^2 \right) \right]^{1/2} = \left[2^{2/p} w \left(|T|^2 \right) \right]^{1/2} = 2^{1/p} ||T||$$
 for any $T \in B(H)$.

On utilising (3.7), (3.9) and (3.11) we get

$$(4.16) 0 \le \delta^{2}(T) - \frac{1}{2}\delta_{1}^{2}(T) \le \frac{1}{2} \|T\|^{2},$$

(4.17)
$$0 \le \delta^{2}(T) - \frac{1}{2}\delta_{1}^{2}(T) \le ||T|| \delta_{1}(T)$$

and

(4.18)
$$0 \le \delta(T) - \frac{1}{\sqrt{2}} \delta_1(T) \le \frac{\sqrt{2}}{4} \|T\|$$

for any $T \in B(H)$.

Observe, by (4.3) we have that

$$w_{h,2,e}((T,T^*)) = \sqrt{2}w(T),$$

for any $T \in B(H)$.

Assume that $T \in B(H)$ and $\gamma, \Gamma \in \mathbb{C}$ with $\Gamma \neq \gamma$ such that

$$(4.19) w\left(T - \frac{\gamma + \Gamma}{2}I\right), \ w\left(T^* - \frac{\gamma + \Gamma}{2}I\right) \leq \frac{1}{2}\left|\Gamma - \gamma\right|,$$

then by (3.27) we get

(4.20)
$$w^{2}(T) \leq \|\operatorname{Re}(T)\|^{2} + \frac{1}{4} |\Gamma - \gamma|^{2},$$

where $\operatorname{Re}(T) := \frac{T + T^*}{2}$. If $\operatorname{Re}(\Gamma \overline{\gamma}) > 0$, then by (3.28) and (3.29)

(4.21)
$$w(T) \leq \frac{1}{2} \frac{|\Gamma + \gamma|}{\sqrt{\operatorname{Re}(\Gamma \bar{\gamma})}} \|\operatorname{Re}(T)\|$$

and

$$(4.22) w^{2}(T) \leq \left[\|\operatorname{Re}(T)\| + \left[|\Gamma + \gamma| - 2\sqrt{\operatorname{Re}(\Gamma \bar{\gamma})} \right] \right] \|\operatorname{Re}(T)\|.$$

If $\Gamma \neq -\gamma$, then by (3.30) we get

(4.23)
$$w(T) \le \|\operatorname{Re}(T)\| + \frac{1}{8} \frac{|\Gamma - \gamma|^2}{|\Gamma + \gamma|}.$$

Due to the fact that $w(A) = w(A^*)$ for any $A \in B(H)$, the condition (4.19) can be simplified as follows.

If m, M are real numbers with M > m and if

$$w\left(T-\frac{m+M}{2}I\right)\leq\frac{1}{2}\left(M-m\right),$$

then

(4.24)
$$w^{2}(T) \leq \|\operatorname{Re}(T)\|^{2} + \frac{1}{4}(M - m)^{2}.$$

If m > 0, then

$$(4.25) w(T) \le \frac{1}{2} \frac{m+M}{\sqrt{mM}} \| \operatorname{Re}(T) \|$$

(4.26)
$$w^{2}(T) \leq \left[\|\operatorname{Re}(T)\| + \left(\sqrt{M} - \sqrt{m} \right)^{2} \right] \|\operatorname{Re}(T)\|.$$

If $M \neq -m$, then

(4.27)
$$w(T) \le \|\operatorname{Re}(T)\| + \frac{1}{8} \frac{(M-m)^2}{m+M}.$$

5. Inequalities for Real Norms

If X is a complex linear space, then the functional $\|\cdot\|$ is a real norm, if the homogeneity property in the definition of the norms is satisfied only for real numbers, namely we have

$$\|\alpha x\| = |\alpha| \|x\|$$
 for any $\alpha \in \mathbb{R}$ and $x \in X$.

For instance if we consider the complex linear space of complex numbers $\mathbb C$ then the functionals

$$\begin{aligned} |z|_p &: &= \left(\left| \operatorname{Re}\left(z\right) \right|^p + \left| \operatorname{Im}\left(z\right) \right|^p \right)^{1/p}, \ p \ge 1 \\ &\quad \text{and} \\ |z|_{\infty} &: &= \max \left\{ \left| \operatorname{Re}\left(z\right) \right|, \left| \operatorname{Im}\left(z\right) \right| \right\}, \ p = \infty; \end{aligned}$$

are real norms on \mathbb{C} .

For $T \in B(H)$ we consider the Cartesian decomposition

$$T = \operatorname{Re}(T) + i\operatorname{Im}(T)$$

where the selfadoint operators Re(T) and Im(T) are uniquely defined by

$$\operatorname{Re}\left(T\right) = \frac{T + T^{*}}{2} \text{ and } \operatorname{Im}\left(T\right) = \frac{T - T^{*}}{2i}.$$

We can introduce the following functionals

$$||T||_{r,p} := (||\operatorname{Re}(T)||^p + ||\operatorname{Im}(T)||^p)^{1/p}, p \ge 1$$

and

$$||T||_{r,\infty} := \max \{||\operatorname{Re}(T)||, ||\operatorname{Im}(T)||\}, \ p = \infty$$

where $\|\cdot\|$ is the usual operator norm on B(H). The definition can be extended for any other norms on B(H) or its subspaces.

Using the properties of the norm $\|\cdot\|$ and the Minkowski's inequality

$$(|a+b|^p + |c+d|^p)^{1/p} \le (|a|^p + |c|^p)^{1/p} + (|b|^p + |d|^p)^{1/p}$$

for $p \geq 1$ and $a, b, c, d \in \mathbb{C}$, we observe that $\|\cdot\|_{r,p}, p \in [1, \infty]$ is a real norm on B(H).

For $p \geq 1$ and $T \in B$ we can introduce the following functionals

$$\begin{split} \eta_{r,p}\left(T\right) &:= \sup_{\|x\| = \|y\| = 1} \left(\left|\operatorname{Re}\left\langle Tx,y\right\rangle\right|^p + \left|\operatorname{Im}\left\langle Tx,y\right\rangle\right|^p\right)^{1/p} \\ &= \sup_{\|x\| = \|y\| = 1} \left(\left|\left\langle\operatorname{Re}Tx,y\right\rangle\right|^p + \left|\left\langle\operatorname{Im}Tx,y\right\rangle\right|^p\right)^{1/p} = \left\|\left(\operatorname{Re}T,\operatorname{Im}T\right)\right\|_{h,2,p}, \\ \theta_{r,p}\left(T\right) &:= \sup_{\|x\| = 1} \left(\left|\operatorname{Re}\left\langle Tx,x\right\rangle\right|^p + \left|\operatorname{Im}\left\langle Tx,x\right\rangle\right|^p\right)^{1/p} \\ &= \sup_{\|x\| = 1} \left(\left|\left\langle\operatorname{Re}Tx,x\right\rangle\right|^p + \left|\left\langle\operatorname{Im}Tx,x\right\rangle\right|^p\right)^{1/p} = w_{h,2,p} \left(\operatorname{Re}T,\operatorname{Im}T\right) \end{split}$$

$$\kappa_{r,p}(T) := \sup_{\|x\|=1} (\|\operatorname{Re} Tx\|^p + \|\operatorname{Im} Tx\|^p)^{1/p} = \|(\operatorname{Re} T, \operatorname{Im} T)\|_{s,2,p}.$$

The case p=2 is of interest since for $T \in B(H)$ we have

$$\eta_{r,2}(T) := \sup_{\|x\| = \|y\| = 1} \left(\left| \operatorname{Re} \left\langle Tx, y \right\rangle \right|^2 + \left| \operatorname{Im} \left\langle Tx, y \right\rangle \right|^2 \right)^{1/2} = \sup_{\|x\| = \|y\| = 1} \left| \left\langle Tx, y \right\rangle \right| = \|T\|,$$

$$\theta_{r,2}(T) := \sup_{\|x\| = 1} \left(\left| \operatorname{Re} \left\langle Tx, x \right\rangle \right|^2 + \left| \operatorname{Im} \left\langle Tx, x \right\rangle \right|^2 \right)^{1/2} = \sup_{\|x\| = 1} \left| \left\langle Tx, x \right\rangle \right| = w(T)$$

and

$$\kappa_{r,2}(T) := \sup_{\|x\|=1} \left(\|\operatorname{Re} Tx\|^2 + \|\operatorname{Im} Tx\|^2 \right)^{1/2}$$

$$= \sup_{\|x\|=1} \left(\left\langle \left(\operatorname{Re} T\right)^2 x, x \right\rangle + \left\langle \left(\operatorname{Im} T\right)^2 x, x \right\rangle \right)^{1/2}$$

$$= \sup_{\|x\|=1} \left(\left\langle \left[\left(\operatorname{Re} T\right)^2 + \left(\operatorname{Im} T\right)^2 \right] x, x \right\rangle \right)^{1/2}$$

$$= \left\| \left(\operatorname{Re} T\right)^2 + \left(\operatorname{Im} T\right)^2 \right\|^{1/2} = \left\| \frac{|T|^2 + |T^*|^2}{2} \right\|^{1/2}.$$

For $p = \infty$ we have

$$\begin{split} \eta_{r,\infty}\left(T\right) & : & = \sup_{\|x\| = \|y\| = 1} \left(\max\left\{\left|\operatorname{Re}\left\langle Tx,y\right\rangle\right|, \left|\operatorname{Im}\left\langle Tx,y\right\rangle\right|\right\} \right) \\ & = & \max\left\{\sup_{\|x\| = \|y\| = 1} \left|\left\langle\operatorname{Re}Tx,y\right\rangle\right|, \sup_{\|x\| = \|y\| = 1} \left|\left\langle\operatorname{Im}Tx,y\right\rangle\right|\right\} \\ & = & \max\left\{\left\|\operatorname{Re}T\right\|, \left\|\operatorname{Im}T\right\|\right\}, \end{split}$$

and in a similar way

$$\theta_{r,\infty}(T) = \kappa_{r,\infty}(T) = \max\{\|\operatorname{Re} T\|, \|\operatorname{Im} T\|\} = \|T\|_{r,\infty}.$$

The functionals $\eta_{r,p}$, $\theta_{r,p}$ and $\kappa_{r,p}$ with $p \in [1,\infty]$ are real norms on B(H). We have

$$\begin{split} \eta_{r,p}\left(T\right) &= \sup_{\|x\| = \|y\| = 1} \left(\left| \operatorname{Re} \left\langle Tx, y \right\rangle \right|^p + \left| \operatorname{Im} \left\langle Tx, y \right\rangle \right|^p \right)^{1/p} \\ &\leq \left(\sup_{\|x\| = \|y\| = 1} \left| \operatorname{Re} \left\langle Tx, y \right\rangle \right|^p + \sup_{\|x\| = \|y\| = 1} \left| \operatorname{Im} \left\langle Tx, y \right\rangle \right|^p \right)^{1/p} \\ &= \left(\left\| \operatorname{Re} \left(T\right) \right\|^p + \left\| \operatorname{Im} \left(T\right) \right\|^p \right)^{1/p} = \|T\|_{r,p} \end{split}$$

and

$$\begin{split} \|T\|_{r,\infty} &= \sup_{\|x\|=\|y\|=1} \left(\max \left\{ \left| \operatorname{Re} \left\langle Tx, y \right\rangle \right|, \left| \operatorname{Im} \left\langle Tx, y \right\rangle \right| \right\} \right) \\ &\leq \sup_{\|x\|=\|y\|=1} \left(\left| \operatorname{Re} \left\langle Tx, y \right\rangle \right|^p + \left| \operatorname{Im} \left\langle Tx, y \right\rangle \right|^p \right)^{1/p} = \eta_{r,p} \left(T \right) \end{split}$$

for any $p \ge 1$ and $T \in B(H)$.

In a similar way we have

$$||T||_{r,\infty} \le \theta_{r,p}(T) \le ||T||_{r,p}$$

$$||T||_{r,\infty} \le \kappa_{r,p}(T) \le ||T||_{r,p}$$

for any $p \ge 1$ and $T \in B(H)$.

If we write the inequality (1.13) for $n=2,\,T_1={\rm Re}\,T$ and $T_2={\rm Im}\,T$ then we get

(5.1)
$$\theta_{r,p}\left(T\right) \leq \eta_{r,p}\left(T\right) \leq 2\theta_{r,p}\left(T\right)$$

for any $p \ge 1$ and $T \in B(H)$.

Using the inequlities (2.25) and (2.26) for $n=2,\,T_1={\rm Re}\,T$ and $T_2={\rm Im}\,T$ then we get

(5.2)
$$\frac{1}{2^{1/p}} \|T\|_{r,p} \le \eta_{r,p} (T) \le \|T\|_{r,p}$$

and

(5.3)
$$\frac{1}{2^{1/p}} \|T\|_{r,p} \le \theta_{r,p} (T) \le \|T\|_{r,p}$$

for any $p \ge 1$ and $T \in B(H)$.

If we use the inequalities (2.32) and (2.33) for n=2, $T_1=\operatorname{Re} T$ and $T_2=\operatorname{Im} T$ then we get for $t\geq p\geq 1$ that

$$\eta_{r,t}\left(T\right) \leq \eta_{r,p}\left(T\right) \leq 2^{\frac{t-p}{tp}}\eta_{r,t}\left(T\right)$$

and

(5.5)
$$\theta_{r,t}\left(T\right) \le \theta_{r,p}\left(T\right) \le 2^{\frac{t-p}{tp}} \theta_{r,t}\left(T\right)$$

for any $T \in B(H)$.

For p = 1 we have the functionals

$$\eta_{r,1}\left(T\right) = \sup_{\|x\| = \|y\| = 1} \left(\left| \left\langle \operatorname{Re} Tx, y \right\rangle \right| + \left| \left\langle \operatorname{Im} Tx, y \right\rangle \right| \right) = \left\| \left(\operatorname{Re} T, \operatorname{Im} T\right) \right\|_{h,2,1},$$

$$\theta_{r,1}\left(T\right):=\sup_{\left\Vert x\right\Vert =1}\left(\left|\left\langle\operatorname{Re}Tx,x\right\rangle\right|+\left|\left\langle\operatorname{Im}Tx,x\right\rangle\right|\right)=w_{h,2,1}\left(\operatorname{Re}T,\operatorname{Im}T\right)$$

and

$$\kappa_{r,1}(T) := \sup_{\|x\|=1} (\|\operatorname{Re} Tx\| + \|\operatorname{Im} Tx\|) = \|(\operatorname{Re} T, \operatorname{Im} T)\|_{s,2,1}.$$

By utilising the inequalities (3.7), (3.9) and (3.11) for $n=2,\,T_1={\rm Re}\,T$ and $T_2={\rm Im}\,T,$ then

(5.6)
$$0 \le \|T\|^2 - \frac{1}{2}\eta_{r,1}^2(T) \le \frac{1}{2} \left(\max \{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \} \right)^2,$$

(5.7)
$$0 \le \|T\|^2 - \frac{1}{2} \eta_{r,1}^2(T) \le \max\{\|\operatorname{Re} T\|, \|\operatorname{Im} T\|\} \eta_{r,1}(T)$$

and

(5.8)
$$0 \le \|T\| - \frac{\sqrt{2}}{2} \eta_{r,1}(T) \le \frac{\sqrt{2}}{4} \max \{ \|\operatorname{Re} T\|, \|\operatorname{Im} T\| \}$$

for any $T \in B(H)$.

Also, by utilising the inequalities (3.8), (3.10) and (3.12) for n=2, $T_1=\operatorname{Re} T$ and $T_2=\operatorname{Im} T$, then

$$(5.9) 0 \le w^{2}(T) - \frac{1}{2}\theta_{r,1}^{2}(T) \le \frac{1}{2}\left(\max\left\{\|\operatorname{Re}T\|, \|\operatorname{Im}T\|\right\}\right)^{2},$$

(5.10)
$$0 \le w^{2}(T) - \frac{1}{2}\theta_{r,1}^{2}(T) \le \max\{\|\operatorname{Re} T\|, \|\operatorname{Im} T\|\} \theta_{r,1}(T)$$

and

(5.11)
$$0 \le w(T) - \frac{\sqrt{2}}{2}\theta_{r,1}(T) \le \frac{\sqrt{2}}{4} \max\{\|\operatorname{Re} T\|, \|\operatorname{Im} T\|\}\$$

for any $T \in B(H)$.

If m, M are real numbers with M > m and if

(5.12)
$$\left\| \operatorname{Re} T - \frac{m+M}{2} I \right\|, \left\| \operatorname{Im} T - \frac{m+M}{2} I \right\| \le \frac{1}{2} (M-m),$$

then by (3.27) we get

(5.13)
$$w^{2}(T) \leq \frac{1}{2} \|\operatorname{Re} T + \operatorname{Im} T\|^{2} + \frac{1}{2} (M - m)^{2}.$$

If m > 0, then (3.28) and (3.29) we have

$$(5.14) w(T) \le \frac{1}{2\sqrt{2}} \frac{m+M}{\sqrt{mM}} \|\operatorname{Re} T + \operatorname{Im} T\|$$

and

$$(5.15) w^2(T) \le \left\lceil \frac{1}{2} \left\| \operatorname{Re} T + \operatorname{Im} T \right\| + \left(\sqrt{M} - \sqrt{m} \right)^2 \right\rceil \left\| \operatorname{Re} T + \operatorname{Im} T \right\|.$$

If $M \neq -m$, then by (3.30) we get

(5.16)
$$w(T) \le \frac{1}{\sqrt{2}} \left(\|\operatorname{Re} T + \operatorname{Im} T\| + \frac{1}{4} \frac{(M-m)^2}{M+m} \right).$$

Finally, we observe that a simple sufficient condition for (5.12) to hold, is that

$$mI < \operatorname{Re} T$$
, $\operatorname{Im} T < MI$

in the operator order of B(H).

References

- S. S. Dragomir, A counterpart of Schwarz's inequality in inner product spaces, East Asian Math. J., 20 (1) (2004), 1-10. Preprint RGMIA Res. Rep. Coll. 6 (2003), Supplement, Art. 18. [Online http://rgmia.org/papers/v6e/CSIIPS.pdf].
- [2] S. S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4 (2003), no. 3, Article 63, 142 pp. [Online https://www.emis.de/journals/JIPAM/article301.html?sid=301].
- [3] S. S. Dragomir, Advances in Inequalities of the Schwarz, Grüss and Bessel Type in Inner Product Spaces, Nova Science Publishers, Inc., 2005.
- [4] S. S. Dragomir, The hypo-Euclidean norm of an n-tuple of vectors in inner product spaces and applications, J. Ineq. Pure & Appl. Math., 8 (2007), Issue 2, Article 52, 22 pp. [Online https://www.emis.de/journals/JIPAM/article854.html?sid=854].
- [5] S. S. Dragomir, Reverses of the Schwarz inequality generalising the Klamkin-McLeneghan result, Bull. Austral. Math. Soc., 73(1) (2006), 69-78.
- [6] S. S. Dragomir, Some inequalities of Kato type for sequences of operators in Hilbert spaces. Publ. Res. Inst. Math. Sci. 48 (2012), no. 4, 937–955.
- [7] S. S. Dragomir, Y. J. Cho and Y.-H. Kim, Applications of Kato's inequality for *n*-tuples of operators in Hilbert spaces, (I). *J. Inequal. Appl.* **2013**, 2013:21, 16 pp.
- [8] S. S. Dragomir, Y. J. Cho and Y.-H. Kim, Applications of Kato's inequality for n-tuples of operators in Hilbert spaces, (II). J. Inequal. Appl. 2013, 2013:464, 20 pp.
- [9] T. Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208-212.
- [10] M. S. Moslehian, M. Sattari and K. Shebrawi, Extensions of Euclidean operator radius inequalities. Math. Scand. 120 (2017), no. 1, 129–144.
- [11] G. Popescu, Unitary invariants in multivariable operator theory. Mem. Amer. Math. Soc. 200 (2009), no. 941, vi+91 pp. ISBN: 978-0-8218-4396-3.

- [12] A. Sheikhhosseini, M. S. Moslehian and K. Shebrawi, Inequalities for generalized Euclidean operator radius via Young's inequality. J. Math. Anal. Appl. 445 (2017), no. 2, 1516–1529.
- [13] O. Shisha and B. Mond, Bounds on differences of means, *Inequalities*, Academic Press Inc., New York, 1967, 293-308.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

 2 DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa