
SOME BOUNDS FOR THE COMPLEX µCEBY�EV FUNCTIONAL
OF FUNCTIONS OF BOUNDED VARIATION

S. S. DRAGOMIR1;2

Abstract. In this paper we provide several bounds for the modulus of the
complex µCeby�ev functional

C (f; g) :=
1

b� a

Z b

a
f (t) g (t) dt� 1

b� a

Z b

a
f (t) dt

Z b

a
g (t) dt

under various assumptions for the integrable functions f; g : [a; b] ! C. We
show amongst others that, if f and g are of bounded variation on [a; b] ; then

max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � C
�
Vf ; Vg

�
;

where the cumulative variation function Vf : [a; b] ! [0;1) is de�ned by
Vf (t) :=

Wt
a (f). Applications for the trapezoid and mid-point inequalities

are provided.

1. Introduction

For Lebesgue integrable functions f; g : [a; b] ! C we consider the complex
µCeby�ev functional

C (f; g) :=
1

b� a

Z b

a

f (t) g (t) dt� 1

b� a

Z b

a

f (t) dt
1

b� a

Z b

a

g (t) dt:

For two integrable real-valued functions f; g : [a; b] ! R, in order to compare
the integral mean of the product with the product of the integral means, in 1934,
G. Grüss [14] showed that

(1.1) jC (f; g)j � 1

4
(M �m) (N � n) ;

provided m; M; n; N are real numbers with the property that

(1.2) �1 < m � f �M <1; �1 < n � g � N <1 a.e. on [a; b] :

The constant 1
4 is best possible in (1.1) in the sense that it cannot be replaced

by a smaller one. For other results, see [4], [3], [16], [6] and [7].
In order to extend this inequality for complex-valued functions we need the

following preparations.
For �; � 2 C and [a; b] an interval of real numbers, de�ne the sets of complex-

valued functions (see [6], [8] and [13])

�U[a;b] (�;�) :=
n
g : [a; b]! Cj Re

h
(�� g (t))

�
g (t)� �

�i
� 0 for a.e. t 2 [a; b]

o
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and

��[a;b] (�;�) :=

�
g : [a; b]! Cj

����g (t)� �+�

2

���� � 1

2
j�� �j for a.e. t 2 [a; b]

�
:

For any �; � 2 C, � 6= �; we have that �U[a;b] (�;�) and ��[a;b] (�;�) are non-
empty, convex and closed sets and

(1.3) �U[a;b] (�;�) = ��[a;b] (�;�) :

We observe that for any z 2 C we have the equivalence����z � �+�

2

���� � 1

2
j�� �j

if and only if
Re
�
(�� z)

�
�z � �

��
� 0:

This follows by the equality

1

4
j�� �j2 �

����z � �+�

2

����2 = Re �(�� z) ��z � ���
that holds for any z 2 C.
The equality (1.3) is thus a simple consequence of this fact.
For any �; � 2 C, � 6= �;we also have that

�U[a;b] (�;�) = fg : [a; b]! C j (Re�� Re g (t)) (Re g (t)� Re�)(1.4)

+(Im�� Im g (t)) (Im g (t)� Im�) � 0 for a.e. t 2 [a; b]g :
Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne

the following set of functions as well:
�S[a;b] (�;�) := fg : [a; b]! C j Re (�) � Re g (t) � Re (�)(1.5)

and Im (�) � Im g (t) � Im (�) for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (�;�) is closed, convex and

(1.6) ; 6= �S[a;b] (�;�) � �U[a;b] (�;�) :

This fact provides also numerous example of complex functions belonging to the
class ��[a;b] (�;�) :
In [6] we obtained the following complex version of Grüss�inequality:

(1.7) jC (f; g)j � 1

4
j�� �j j	�  j

provided f 2 ��[a;b] (�;�) and g 2 ��[a;b] ( ;	) ; where g denotes the complex
conjugate function of g:
We denote the variance of the complex-valued function f : [a; b] ! C by D (f)

and de�ned as

D (f) =
�
C
�
f; �f
��1=2

=

24 1

b� a

Z b

a

jf (t)j2 dt�
����� 1

b� a

Z b

a

f (t) dt

�����
2
351=2 ;

where �f denotes the complex conjugate function of f:
If we apply the inequality (1.7) for g = f; then we get

(1.8) D (f) � 1

2
j�� �j :
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We observe that, if g 2 ��[a;b] ( ;	) ; then
���g (t)�  +	

2

��� � 1
2 j	�  j for a.e. t 2

[a; b] that is equivalent to
���g (t)�  +	

2

��� � 1
2

��	�  �� meaning that g 2 ��[a;b] � ;	�
and by 1.7, for g instead of g we also have

(1.9) jC (f; g)j � 1

4
j�� �j j	�  j

provided f 2 ��[a;b] (�;�) and g 2 ��[a;b] ( ;	) :
We can also consider the following quantity associated with a complex-valued

function f : [a; b]! C,

E (f) := jC (f; f)j1=2 =

������ 1

b� a

Z b

a

f2 (t) dt�
 

1

b� a

Z b

a

f (t) dt

!2������
1=2

:

By using (1.9) we also have

(1.10) E (f) � 1

2
j�� �j :

For an integrable function f : [a; b] ! C, consider the mean deviation of f
de�ned by

R (f) :=
1

b� a

Z b

a

�����f (t)� 1

b� a

Z b

a

f (s) ds

����� dt:
The following result holds (see [11] or the more extensive preprint version [10]).

Theorem 1. Let f : [a; b]! C be of bounded variation on [a; b] and g : [a; b]! C
a Lebesgue integrable function on [a; b] : Then

(1.11) jC (f; g)j � 1

2

b_
a

(f)R (g) � 1

2

b_
a

(f)D (g) ;

where
b_
a

(f) denotes the total variation of f on the interval [a; b] : The constant 12

is best possible in (1.11).

Corollary 1. If f; g : [a; b]! C are of bounded variation on [a; b] ; then

(1.12) jC (f; g)j � 1

2

b_
a

(f)R (g) � 1

2

b_
a

(f)D (g) � 1

4

b_
a

(f)
b_
a

(g) :

The constant 14 is best possible in (1.12).
We also have

(1.13) D (f) � 1

2

b_
a

(f) ;

and the constant 12 is best possible in (1.13).

Utilising the above results we can state, for a function of bounded variation
f : [a; b]! C, that

(1.14) E2 (f) � 1

2

b_
a

(f)R (f) � 1

2

b_
a

(f)D (f) � 1

4

"
b_
a

(f)

#2
:
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In the recent paper [12] we obtained the following result that extends to complex
functions the inequalities obtained in [1]:

Theorem 2. Let f; g : [a; b]! C be measurable on [a; b] : Then

(1.15) jC (f; g)j �

8>>>>>>>>><>>>>>>>>>:

inf

2C

kg � 
k1R (f) if g 2 L1 [a; b] and f 2 L [a; b] ;

1
(b�a)1=q inf
2C

kg � 
kq Rp (f) ; g 2 Lq [a; b] ; f 2 Lp [a; b] ;
and p; q > 1 with 1

p +
1
q = 1;

1
b�a inf
2C

kg � 
k1R1 (f) if g 2 L [a; b] and f 2 L1 [a; b] :

An important corollary of this result is:

Corollary 2. Assume that g : [a; b]! C is measurable on [a; b] and g 2 ��[a;b] ( ;	)
for some distinct complex numbers  ; 	: Then

(1.16) jC (f; g)j � 1

2
j	�  jR (f)

if f 2 L [a; b] :
In particular, we have

(1.17) D2 (g) � 1

2
j	�  jR (g) :

This generalizes the following result obtained by Cheng and Sun [5] by a more
complicated technique

(1.18) jC (f; g)j � 1

2
(M �m)R (f) ;

provided m � g � M for a.e. x 2 [a; b] : The constant 1
2 is best in (1.18) as shown

by Cerone and Dragomir in [2] where a general version for Lebesgue integral and
measurable spaces was also given.
Motivated by the above results, in this paper we establish other bounds for the

absolute value of the µCeby�ev functional when the complex-valued functions are of
bounded variation. Applications for the trapezoid and mid-point inequalities are
also provided.

2. Main Results

We have the following inequality for the complex µCeby�ev functional that extends
naturally the real case:

Theorem 3. If f; g : [a; b]! C are Lebesgue integrable on [a; b] ; then
(2.1) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � D (f)D (g)

and

(2.2) max
�
jC (f; g)j ; jC (jf j ; g)j ;

��C �f; jgj���	 � D (f)D (g) :

Proof. As in the real case, we have Korkine�s identity

C (f; g) :=
1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s)) (g (t)� g (s)) dtds;

that can be proved directly by doing the calculations in the right hand side.
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By the properties of modulus, we have

j(f (t)� f (s)) (g (t)� g (s))j = jf (t)� f (s)j jg (t)� g (s)j

�

8<: j(jf (t)j � jf (s)j) (g (t)� g (s))j ;
j(f (t)� f (s)) (jg (t)j � jg (s)j)j ;
j(jf (t)j � jf (s)j) (jg (t)j � jg (s)j)j

for any t; s 2 [a; b] :
Using the properties of the integral versus the modulus, we also have

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j jg (t)� g (s)j dtds(2.3)

� 1

2 (b� a)2

8>>><>>>:
R b
a

R b
a
j(f (t)� f (s)) (g (t)� g (s))j dtds;R b

a

R b
a
j(jf (t)j � jf (s)j) (g (t)� g (s))j dtds;R b

a

R b
a
j(f (t)� f (s)) (jg (t)j � jg (s)j)j dtds;R b

a

R b
a
j(jf (t)j � jf (s)j) (jg (t)j � jg (s)j)j dtds;

� 1

2 (b� a)2

8>>>>>><>>>>>>:

���R ba R ba (f (t)� f (s)) (g (t)� g (s)) dtds��� ;���R ba R ba (jf (t)j � jf (s)j) (g (t)� g (s)) dtds��� ;���R ba R ba (f (t)� f (s)) (jg (t)j � jg (s)j) dtds��� ;���R ba R ba (jf (t)j � jf (s)j) (jg (t)j � jg (s)j) dtds��� ;
=

8>><>>:
jC (f; g)j ;
jC (jf j ; g)j ;
jC (f; jgj)j ;
jC (jf j ; jgj)j :

Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j jg (t)� g (s)j dtds(2.4)

�
"

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j2 dtds
#1=2

�
"

1

2 (b� a)2
Z b

a

Z b

a

jg (t)� g (s)j2 dtds
#1=2

and since

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j2 dtds

=
1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s)) (f (t)� f (s))dtds

=
1

2 (b� a)2
Z b

a

Z b

a

(f (t)� f (s))
�
f (t)� f (s)

�
dtds

= C
�
f; f
�
= D2 (f) ;
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and a similar equality for g, hence we get from (2.3) and (2.4) the desired result
(2.1).
The inequality (2.2) follows from (2.1). �

For a function of bounded variation f : [a; b] ! C we de�ne the Cumulative
Variation Function (CVF) of f by Vf : [a; b] ! [0;1) where Vf (t) :=

Wt
a (f), the

total variation of f on the interval [a; t] with t 2 [a; b] :
It is know that the CVF is monotonic nondecreasing on [a; b] and is continuous

in a point c 2 [a; b] if and only if the generating function f is continuous in that
point. If f is Lipschitzian with the constant L > 0; i.e.

jf (t)� f (s)j � L jt� sj for any t; s 2 [a; b] ;

then Vf is also Lipschitzian with the same constant.

Theorem 4. Let f; g : [a; b]! C be Lebesgue measurable on [a; b] :
(i) If f is of bounded variation and g is Lebesgue integrable on [a; b] ; then

(2.5) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � D (Vf )D (g) ;

(ii) If f and g are of bounded variation on [a; b] ; then

(2.6) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � C (Vf ; Vg) ;

(iii) If f is Lipschitzian with the constant L > 0 and g is of bounded variation
on [a; b] ; then

(2.7) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � LC (`; Vg) ;

where ` is the identity mapping of the interval [a; b] ; namely ` (t) = t; t 2 [a; b] :

Proof. (i) If f is of bounded variation then for a � s < t � b we have

jf (t)� f (s)j �
t_
s

(f) = Vf (t)� Vf (s) :

If a � t < s � b then also

jf (t)� f (s)j �
s_
t

(f) = Vf (s)� Vf (t) :

Therefore

jf (t)� f (s)j � jVf (t)� Vf (s)j

for any t; s 2 [a; b] :
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j jg (t)� g (s)j dtds(2.8)

�
"

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j2 dtds
#1=2

�
"

1

2 (b� a)2
Z b

a

Z b

a

jg (t)� g (s)j2 dtds
#1=2

�
"

1

2 (b� a)2
Z b

a

Z b

a

jVf (t)� Vf (s)j2 dtds
#1=2

�
"

1

2 (b� a)2
Z b

a

Z b

a

jg (t)� g (s)j2 dtds
#1=2

= D (Vf )D (g) :

By utilising the inequality (2.3) and (2.8) we get the desired result (2.5).
(ii) If f and g are of bounded variation on [a; b] ; then for any t; s 2 [a; b] we have

jf (t)� f (s)j jg (t)� g (s)j � jVf (t)� Vf (s)j jVg (t)� Vg (s)j
= (Vf (t)� Vf (s)) (Vg (t)� Vg (s))

since Vf (�) and Vg (�) are monotonic nondecreasing on [a; b] :
Then

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j jg (t)� g (s)j dtds(2.9)

� 1

2 (b� a)2
Z b

a

Z b

a

(Vf (t)� Vf (s)) (Vg (t)� Vg (s)) dtds

= C (Vf ; Vg) :

By utilising the inequality (2.3) and (2.9) we get the desired result (2.6).
(iii) If f is Lipschitzian with the constant L > 0 and g is of bounded variation

on [a; b] ; then

jf (t)� f (s)j jg (t)� g (s)j � L jt� sj jVg (t)� Vg (s)j
= L (t� s) (Vg (t)� Vg (s))

since Vf (�) is monotonic nondecreasing on [a; b] :
Then

1

2 (b� a)2
Z b

a

Z b

a

jf (t)� f (s)j jg (t)� g (s)j dtds(2.10)

� 1

2 (b� a)2
L

Z b

a

Z b

a

(t� s) (Vg (t)� Vg (s)) dtds

= LC (Vf ; Vg) :

By utilising the inequality (2.3) and (2.10) we get the desired result (2.7). �
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In 1970, A. M. Ostrowski [17] proved amongst others the following result that is
somehow a mixture of the µCeby�ev and Grüss results

(2.11) jC (f; g)j � 1

8
(b� a) (M �m) kg0k1 ;

provided f is Lebesgue integrable on [a; b] and satisfying (1.2) while g : [a; b] ! R
is absolutely continuous and g0 2 L1 [a; b] : Here the constant 18 is also sharp.
The following lemma for real-valued functions holds [9].

Lemma 1. Let h : [a; b]! R be an integrable function on [a; b] such that

(2.12) �1 < 
 � h (x) � � <1 for a.e. x on [a; b] :

Then we have the inequality

1

b� a

Z b

a

�����
Z x

a

h (t) dt� x� a
b� a

Z b

a

h (u) du

����� dx(2.13)

� 1

2

 
1

b� a

Z b

a

h (u) du� 

! 

�� 1

b� a

Z b

a

h (u) du

!
b� a
�� 


� 1

8
(�� 
) (b� a) :

The constants 12 and
1
8 are sharp in the sense that they cannot be replaced by smaller

constants.

When one functions is complex-valued, we can state the following re�nement and
extension of Ostrowski�s inequality (2.11). This extends the corresponding result
from [9] in which both functions are real-valued.

Theorem 5. Let f : [a; b]! R be measurable and such that there exist the constants
m; M 2 R with

(2.14) �1 < m � f (x) �M <1 for a.e. x on [a; b] :

If g : [a; b] ! C is absolutely continuous on [a; b] with g0 2 L1 [a; b] then we have
the inequality

jC (f; g)j � 1

2
kg0k1

�
1
b�a

R b
a
f (x) dx�m

��
M � 1

b�a
R b
a
f (x) dx

�
M �m (b� a)(2.15)

� 1

8
(b� a) (M �m) kg0k1 :

The constants 1
2 and

1
8 are sharp in the above sense.
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Proof. Integrating by parts, we have

1

b� a

Z b

a

 Z x

a

f (t) dt� x� a
b� a

Z b

a

f (u) du

!
g0 (x) dx

=
1

b� a

24 Z x

a

f (t) dt� x� a
b� a

Z b

a

f (u) du

!
g (x)

�����
b

a

�
Z b

a

g (x)

"
f (x)� 1

b� a

Z b

a

f (u) du

#
dx

#

= � 1

b� a

Z b

a

g (x) f (x) dx+
1

b� a

Z b

a

g (x) dx � 1

b� a

Z b

a

f (x) dx

= �C (f; g) :

Taking the modulus, we have

jC (f; g)j � 1

b� a

Z b

a

�����
Z x

a

f (t) dt� x� a
b� a

Z b

a

f (u) du

����� jg0 (x)j dx
� kg0k1

1

b� a

Z b

a

�����
Z x

a

f (t) dt� x� a
b� a

Z b

a

f (u) du

����� dx (by Lemma 1)

� 1

2
kg0k1

�
1
b�a

R b
a
f (x) dx�m

��
M � 1

b�a
R b
a
f (x) dx

�
M �m (b� a) :

The sharpness of the constants follows from the real-valued case outlined in
[9]. �

3. Some Examples

Assume that the function f : [a; b] ! C is of bounded variation on [a; b] : Since
the function Vf is monotonic nondecreasing on [a; b], then 0 � Vf (t) �

Wb
a (f) for

any t 2 [a; b] ; and by (1.8) we have D (Vf ) � 1
2

Wb
a (f) : Utilising (2.5) we have

(3.1) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � 1

2

b_
a

(f)D (g)

for any g Lebesgue integrable function on [a; b] :
If g 2 ��[a;b] ( ;	) for some distinct complex numbers  ; 	; then by (3.1) we

have

(3.2) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � 1

4
j	�  j

b_
a

(f) :

If f and g are of bounded variation on [a; b] ; then Vf and Vg are monotonic
nondecreasing on [a; b] and by (1.12) we have

(3.3) jC (Vf ; Vg)j �
1

2

b_
a

(f)R (Vg) �
1

2

b_
a

(f)D (Vg) �
1

4

b_
a

(f)

b_
a

(g) :
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By utilising the inequality (2.6) we then have

max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg(3.4)

� 1

2

b_
a

(f)R (Vg) �
1

2

b_
a

(f)D (Vg) �
1

4

b_
a

(f)
b_
a

(g) :

If f and g are of bounded variation on [a; b] ; then by (1.15) we have

(3.5) jC (Vf ; Vg)j �

8>>>>>>>>><>>>>>>>>>:

inf

2C

kVg � 
k1R (Vf ) ;

1
(b�a)1=q inf
2C

kVg � 
kq Rp (Vf ) ;
where p; q > 1 with 1

p +
1
q = 1;

1
b�a inf
2C

kVg � 
k1R1 (Vf ) :

By utilising the inequality (2.6) we then have

max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg(3.6)

�

8>>>>>>>>><>>>>>>>>>:

inf

2C

kVg � 
k1R (Vf ) ;

1
(b�a)1=q inf
2C

kVg � 
kq Rp (Vf ) ;
where p; q > 1 with 1

p +
1
q = 1;

1
b�a inf
2C

kVg � 
k1R1 (Vf ) :

From (3.6) we get in particular

max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg(3.7)

�





Vg � 12

b_
a

(g)







1

R (Vf ) �
1

2

b_
a

(g)R (Vf ) :

Now, we observe that for f = `; where ` is the identity mapping of the interval
[a; b] ; namely ` (t) = t; t 2 [a; b] ; we have

R (`) =
1

b� a

Z b

a

����t� a+ b

2

���� dt = 1

4
(b� a) :

Then we have by (1.18) that

(3.8) jC (`; Vg)j �
1

8
(b� a)

b_
a

(g) :

Therefore, if f is Lipschitzian with the constant L > 0 and g is of bounded variation
on [a; b] ; then by (2.7) and (3.8) we have

(3.9) max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg � 1

8
(b� a)L

b_
a

(g) :
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From (2.15) for f = Vh and g = ` we have m = 0 and M =
b_
a

(h) and

jC (`; Vh)j �
1

2

0BBBB@1� 1

(b� a)
b_
a

(h)

Z b

a

Vh (t) dt

1CCCCA
Z b

a

Vh (t) dt(3.10)

� 1

8
(b� a)

b_
a

(h) ;

provided that h : [a; b]! C is of bounded variation on [a; b] :
Therefore, if f is Lipschitzian with the constant L > 0 and g is of bounded

variation on [a; b] ; then by (2.7) and (3.10) we have

max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg(3.11)

� 1

2
L

0BBBB@1� 1

(b� a)
b_
a

(g)

Z b

a

Vg (t) dt

1CCCCA
Z b

a

Vg (t) dt �
1

8
(b� a)L

b_
a

(g) :

This is an improvement of the inequality (3.9) above.
It is known that, if h : [a; b] ! C is absolutely continuous on [a; b] ; then [15,

Theorem 16] Vh is absolutely continuous and Vh (x) =
R x
a
jh0 (t)j dt for any x 2 [a; b] :

Moreover, V 0h (x) = jh0 (x)j for a.e. x 2 [a; b] :
Assume that g : [a; b] ! C is absolutely continuous with g0 2 L1 [a; b] and

f : [a; b]! C is of bounded variation. From (2.15) for Vf ; Vg we have

jC (Vf ; Vg)j �
1

2
kg0k1

0BBBB@1� 1

(b� a)
b_
a

(g)

Z b

a

Vg (t) dt

1CCCCA
Z b

a

Vg (t) dt(3.12)

� 1

8
(b� a)

b_
a

(f) kg0k1 :

By using (2.6) we then have

max fjC (f; g)j ; jC (jf j ; g)j ; jC (f; jgj)j ; jC (jf j ; jgj)jg(3.13)

� 1

2
kg0k1

0BBBB@1� 1

(b� a)
b_
a

(g)

Z b

a

Vg (t) dt

1CCCCA
Z b

a

Vg (t) dt

� 1

8
(b� a)

b_
a

(f) kg0k1 ;
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provided that g : [a; b] ! C is absolutely continuous with g0 2 L1 [a; b] and f :
[a; b]! C is of bounded variation on [a; b] :

4. Applications for Trapezoid Inequality

Let h : [a; b] ! C be an absolutely continuous function on [a; b]. Then we have
the trapezoid equality

(4.1)
h (a) + h (b)

2
� 1

b� a

Z b

a

h (t) dt =
1

b� a

Z b

a

�
t� a+ b

2

�
(h0 (t)� �) dt

for any � 2 C. This is obvious integrating by parts in the right hand side of the
equality.
Using the inequality (1.12) for f = h0 � � and g = `� a+b

2 we get

(4.2)
1

b� a

�����
Z b

a

�
t� a+ b

2

�
(h0 (t)� �) dt

����� � 1

2

b_
a

(h0 � �)R
�
`� a+ b

2

�
:

Since

R

�
`� a+ b

2

�
=

1

b� a

Z b

a

�����t� a+ b

2
� 1

b� a

Z b

a

�
s� a+ b

2

�
ds

�����
=

1

b� a

Z b

a

����t� a+ b

2

���� dt = 1

4
(b� a) ;

then by (4.1) and (4.2) we get

(4.3)

�����h (a) + h (b)2
� 1

b� a

Z b

a

h (t) dt

����� � 1

8
(b� a)

b_
a

(h0 � �)

provided that h0 is of bounded variation and � 2 C.
If

(4.4)
b_
a

�
h0 � 	+  

2

�
� 1

2
(b� a) j	�  j

for some complex numbers  ; 	 2 C, then by (4.3) we get

(4.5)

�����h (a) + h (b)2
� 1

b� a

Z b

a

h (t) dt

����� � 1

16
(b� a)2 j	�  j ;

provided h satis�es the condition (4.4). We observe that, a su¢ cient condition
for the condition (4.4) to hold is that h is twice di¤erentiable on (a; b) and h00 2
��[a;b] ( ;	) :

Using the inequality (1.12) for f = `� a+b
2 and g = h0 � � we get

(4.6)
1

b� a

�����
Z b

a

�
t� a+ b

2

�
(h0 (t)� �) dt

����� � 1

2

b_
a

�
`� a+ b

2

�
R (h0 � �)

Since
b_
a

�
`� a+ b

2

�
= b� a
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and

R (h0 � �) = 1

b� a

Z b

a

����h0 (t)� h (b)� h (a)
b� a

���� dt;
then by (4.6) and (4.1) we get

(4.7)

�����h (a) + h (b)2
� 1

b� a

Z b

a

h (t) dt

����� � 1

2

Z b

a

����h0 (t)� h (b)� h (a)
b� a

���� dt
provided h : [a; b]! C is an absolutely continuous function on [a; b] :
If we use the inequality (1.16) for f = h0 with h0 2 ��[a;b] (�;�) for some distinct

complex numbers �; � and g = `� a+b
2 ; then

1

b� a

�����
Z b

a

�
t� a+ b

2

�
h0 (t) dt

����� � 1

2
j�� �jR

�
`� a+ b

2

�
(4.8)

=
1

8
(b� a) j�� �j :

By using (4.1) we then get�����h (a) + h (b)2
� 1

b� a

Z b

a

h (t) dt

����� � 1

8
(b� a) j�� �j

provided h : [a; b]! C is an absolutely continuous function on [a; b] and there exist
the distinct complex numbers �; � such that h0 2 ��[a;b] (�;�) :
For g = `� a+b

2 we have

Vg (t) =
t_
a

�
`� a+ b

2

�
= t� a; t 2 [a; b] :

If we use the inequality (3.11) for f = h0 and g = `� a+b
2 we get

1

b� a

�����
Z b

a

�
t� a+ b

2

�
h0 (t) dt

�����(4.9)

� 1

2
K

0BBBB@1� 1

(b� a)
b_
a

(g)

Z b

a

(t� a) dt

1CCCCA
Z b

a

(t� a) dt

namely

(4.10)
1

b� a

�����
Z b

a

�
t� a+ b

2

�
h0 (t) dt

����� � 1

8
(b� a)2K;

provided h0 is Lipschitzian with the constant K > 0:
If we use (4.1) and (4.10), we get�����h (a) + h (b)2

� 1

b� a

Z b

a

h (t) dt

����� � 1

8
(b� a)2K

provided h0 is Lipschitzian with the constant K > 0:
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5. Applications for Mid-Point Inequality

Let h : [a; b] ! C be an absolutely continuous function on [a; b]. Then we have
the mid-point equality

(5.1) h

�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt =
1

b� a

Z b

a

p (t) (h0 (t)� �) dt

for any � 2 C, where the kernel p : [a; b]! R is given by

(5.2) p (t) :=

8<: t� a if t 2
�
a; a+b2

�
;

t� b if t 2
�
a+b
2 ; b

�
:

This is obvious integrating by parts in the right hand side of the equality.
Using the inequality (1.12) for f = h0 � � and g = p we get

(5.3)
1

b� a

�����
Z b

a

p (t) (h0 (t)� �) dt
����� � 1

2

b_
a

(h0 � �)R (p) :

Since

R (p) =
1

b� a

Z b

a

jp (t)j dt = 1

4
(b� a) ;

then by (5.1) and (5.3) we get

(5.4)

�����h
�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt

����� � 1

8
(b� a)

b_
a

(h0 � �)

provided that h0 is of bounded variation and � 2 C.
If h satis�es the condition (4.4) for some complex numbers  ; 	 2 C, then by

(5.4) we get

(5.5)

�����h
�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt

����� � 1

16
(b� a)2 j	�  j

provided h satis�es the condition (4.4). We observe that, a su¢ cient condition
for the condition (4.4) to hold is that h is twice di¤erentiable on (a; b) and h00 2
��[a;b] ( ;	) :
Using the inequality (1.12) for f = p and g = h0 � � we get

(5.6)
1

b� a

�����
Z b

a

p (t) (h0 (t)� �) dt
����� � 1

2

b_
a

(p)R (h0 � �) :

Since
b_
a

(p) = b� a and

R (h0 � �) = 1

b� a

Z b

a

����h0 (t)� h (b)� h (a)
b� a

���� dt;
then by (5.1) and (5.6) we get

(5.7)

�����h
�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt

����� � 1

2

Z b

a

����h0 (t)� h (b)� h (a)
b� a

���� dt
provided h : [a; b]! C is an absolutely continuous function on [a; b] :
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If we use the inequality (1.16) for f = h0 with h0 2 ��[a;b] (�;�) for some distinct
complex numbers �; � and g = p; then

(5.8)
1

b� a

�����
Z b

a

p (t)h0 (t) dt

����� � 1

2
j�� �jR (p) = 1

8
(b� a) j�� �j :

By (5.1) and (5.8) we get�����h
�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt

����� � 1

8
(b� a) j�� �j ;

provided that h : [a; b] ! C is an absolutely continuous function on [a; b] and h0
2 ��[a;b] (�;�) for some distinct complex numbers �; �.
The kernel p de�ned by (5.2) is of bounded variation and we have for t 2

�
a; a+b2

�
that Vp (t) =

Wt
a (p) = t� a and for t 2

�
a+b
2 ; b

�
Vp (t) =

t_
a

(p) =

a+b
2_
a

(p) +
t_

a+b
2

(p) = t� a;

therefore, for any t 2 [a; b] we have Vp (t) = t � a: We observe that, this is an
example of a function of bounded variation for the CVF is di¤erentiable for every
t 2 [a; b].
Now, if we take g = p and f = h0 � � and use the inequality (2.6), then we get�����h

�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt

�����(5.9)

� 1

b� a

Z b

a

Vh0�� (t) (t� a) dt�
1

2

Z b

a

Vh0�� (t) dt:

Using the inequality (2.15) we also have

jC (Vh0��; `� a)j(5.10)

� 1

2

�
1
b�a

R b
a
Vh0�� (x) dx

��Wb
a (h

0 � �)� 1
b�a

R b
a
Vh0�� (x) dx

�
Wb
a (h

0 � �)
(b� a)

� 1

8
(b� a)

b_
a

(h0 � �) :

Then by (5.1) and (5.10) we get�����h
�
a+ b

2

�
� 1

b� a

Z b

a

h (t) dt

�����(5.11)

� 1

2

 
1� 1

(b� a)
Wb
a (h

0 � �)

Z b

a

Vh0�� (x) dx

!Z b

a

Vh0�� (x) dx

� 1

8
(b� a)

b_
a

(h0 � �)

for any � 2 C, where h : [a; b] ! C is an absolutely continuous function on [a; b]
and the derivative is of bounded variation. This is a re�nement of (5.4).
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