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SOME BOUNDS FOR THE COMPLEX CEBYSEV FUNCTIONAL
OF FUNCTIONS OF BOUNDED VARIATION

S. S. DRAGOMIR!:2

ABSTRACT. In this paper we provide several bounds for the modulus of the
complex Cebysev functional
1 b 1 b b
CUg)= g [ TWs®at- o [rvd [ gwa
—a Jq b—a /g, a

under various assumptions for the integrable functions f, g : [a,b] — C. We
show amongst others that, if f and g are of bounded variation on [a, b], then

max {|C (f,9)|,1C (If1, )|, 1C (f,1aD], 1C (I£],1gDI} < C (V. Vg) ,

where the cumulative variation function Vy : [a,b] — [0,00) is defined by
Vi (t) == \/Z (f). Applications for the trapezoid and mid-point inequalities
are provided.

1. INTRODUCTION

For Lebesgue integrable functions f, ¢ : [a,b] — C we consider the complex
Cebysev functional

b b b
Clrg) =5 [ f@g@ad- = [ f@d— [ g

For two integrable real-valued functions f, g : [a,b] — R, in order to compare
the integral mean of the product with the product of the integral means, in 1934,
G. Griiss [14] showed that

1
(1) Cfg) < 7 (M —m) (N =),
provided m, M, n, N are real numbers with the property that
(1.2) —co<m< f<M<oo, —oo<n<g<N<oo ae on [ab].

The constant i is best possible in (1.1) in the sense that it cannot be replaced
by a smaller one. For other results, see [4], [3], [16], [6] and [7].

In order to extend this inequality for complex-valued functions we need the
following preparations.

For ¢, ® € C and [a,b] an interval of real numbers, define the sets of complex-
valued functions (see [6], [8] and [13])

Ul (6, @) = {g  [a,b] — C| Re [(q» — (1) (m— a)} >0 for ae. t € [a, b]}
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2 S.S. DRAGOMIRY2

and
o+

Aoy (0,®) := {g: [a,b] — C| ‘g(t) - 2‘ < % |® — ¢| for ae. t € [a,b]}.

For any ¢, ® € C, ¢ # ®, we have that Uy, (¢, ®) and A, 4 (¢, ®) are non-
empty, convex and closed sets and

(1.3) Uta,p) (6, @) = Dpap) (¢, P).-
We observe that for any z € C we have the equivalence
o+ 1
_ < Z|®—

if and only if _
Re[(®—2)(2-9¢)] >0.

This follows by the equality

2

@ %
oo 3 neto e

that holds for any z € C.
The equality (1.3) is thus a simple consequence of this fact.
For any ¢, ® € C, ¢ # ®,we also have that

(14)  Ujap) (¢,®) ={g:[a,b] = C| (Re® —Reyg (t)) (Reg (t) — Reg)
+(Im®—-Img(t)) (Img(t) —Ime) > 0 for ae. t € [a,b]}.

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢), then we can define
the following set of functions as well:

(15)  Siap (¢ @) :={g:[a,] = C| Re(®) = Reg (1) = Re(¢)
and Im (®) > Img (¢t) > Im (¢) for a.e. t € [a,b]}.

One can easily observe that S‘[a,b] (¢, D) is closed, convex and

(16) @ 7é S[a,b] (d)? q)) - U[a,b] ((ba (I)) .

This fact provides also numerous example of complex functions belonging to the

class Ajgp (0, @) .
In [6] we obtained the following complex version of Griiss’ inequality:

(17) Ol < 712 ol[¥—w

provided f € A[mb] (¢, ®) and g € A[%b] (v, ¥), where g denotes the complex
conjugate function of g.
We denote the variance of the complex-valued function f : [a,b] — C by D (f)

and defined as
1 b
h—a / f(t)di
where f denotes the complex conjugate function of f.
If we apply the inequality (1.7) for g = f, then we get

(18) D(f)< 5 1®—d.

97 1/2

)

b
D =[C(N" = 52 [ 1P -
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We observe that, if g € A[a’b] (1, ¥), then )g (t) — #

< 1|V -9 forae. te
[a, b] that is equivalent to ‘g (t) — ’HT\I" < % ’@ - E| meaning that g € A[a’b] (@, @)
and by 1.7, for g instead of g we also have

1
(19) O ()l < 3 12— ol [ — ]

provided f € A[a)b] (¢,®) and g € A[a,b] (Y, ¥).
We can also consider the following quantity associated with a complex-valued
function f : [a,b] — C,

b
E(f)=|C(f,NI'"* = /f2 dt_(bia/f(t)dt)

By using (1.9) we also have

911/2

(1.10) E(f)< @9

For an integrable function f : [a,b] — C, consider the mean deviation of f

defined by
1 1
R(f)::b_a/a f(t)——b_a/af(s)ds dt

The following result holds (see [11] or the more extensive preprint version [10]).

Theorem 1. Let f : [a,b] — C be of bounded variation on [a,b] and g : [a,b] — C
a Lebesgue integrable function on [a,b]. Then

yor

b
(1.11) C(f,9)| < <=\/(H

DN | =
l\')\»—l

b
where \/ (f) denotes the total variation of f on the interval [a,b]. The constant 3

a
is best possible in (1.11).

Corollary 1. If f, g : [a,b] — C are of bounded variation on [a,b], then

@
1, 1 1
(1.12) Cral<zVOR6 <3V D60 <1V Vo

The constant % is best possible in (1.12).
We also have

1 b
(1.13) D(f) < §\G/<f>,

and the constant & is best possible in (1.13).

Utilising the above results we can state, for a function of bounded variation
f :]a,b] — C, that

b

<53V

a

(1.14)

b
1
=Y r=;

l\DM—l
l\DM—‘
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In the recent paper [12] we obtained the following result that extends to complex
functions the inequalities obtained in [1]:

Theorem 2. Let f, g : [a,b] — C be measurable on [a,b]. Then
inf lg — 11l B () € Luc [0.b] and f € Lia.b],
-

még%”g*?/”qup(f)a geLq[aab]a fELp[aab},

1.15) |C'(f,9)| <
( ) €9l < andp,q>1with%+%=l,

5 nf g =3l R (F) i 9 € L1a,b] and f € Loc [a,].

a ~E
An important corollary of this result is:

Corollary 2. Assume that g : [a,b] — C is measurable on [a,b] and g € Ap, ) (¢, V)
for some distinct complex numbers 1, ¥. Then

(1.16) O 9l < 5 10—l R()
if f € Lla,b].

In particular, we have
1
(117) D (g) < 51— ¥|R(g).

This generalizes the following result obtained by Cheng and Sun [5] by a more
complicated technique

(118) C(fg)l < 5 (M —m)R(P),

provided m < g < M for a.e. z € [a,b]. The constant 1 is best in (1.18) as shown
by Cerone and Dragomir in [2] where a general version for Lebesgue integral and
measurable spaces was also given.

Motivated by the above results, in this paper we establish other bounds for the
absolute value of the Cebysev functional when the complex-valued functions are of
bounded variation. Applications for the trapezoid and mid-point inequalities are
also provided.

2. MAIN RESULTS

We have the following inequality for the complex Cebysev functional that extends
naturally the real case:

Theorem 3. If f, g : [a,b] — C are Lebesgue integrable on [a,b], then
(2.1) max {|C (f,9)[, |C(|f1.9)l,1C (f,1gD], |C (1 f], gD} < D (f) D (9)

and

(2.2) max {|C (£, 9. 1C (If, D). |C (£ lg])[} < D(f)D(g).

Proof. As in the real case, we have Korkine’s identity

1 b b
CUD = / / (F(5) = £(5)) (g (t) — g (s)) deds,

that can be proved directly by doing the calculations in the right hand side.
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By the properties of modulus, we have

[(F @) = F () (g(®) =g =11 () = F(s)l|g () — g ()]
[(LF O =1f ()] (g (&) — g ()],
29 1(F@) =) g @] —1g(s)DI,
|5 @O =1f (D) (g O] = lg (s)D]

for any t, s € [a,b].
Using the properties of the integral versus the modulus, we also have

ey aa / / 70~ F(5)l1 (1) — g (5)| deds

f;jfabuf £ (5)) (9(t) ~ g (s))] drds,
o1 fabfab|<|f —1f (5)]) (9 (t) — g (5))] dtds,
T20-0 | Ly L 10 ® f(S))(Ig()I—Ig(S)\)Idtds,
L2 L2 @)1= 1 ) (g ()] = lg (s)])] deds,
TP L2 ) = £ (5)) (9 (8) — g (s)) deds] ,
o1 f;’f;’uf ~ 17 () (g (1) ~ g (s)) deds|,
“a—a) | [P0 — () (g (1) — g ()]) deds
fff;’uf —1£ ) (lg ()] = lg (s)]) dtds
IC (f,9)],
(11,9,
C (.19,
C(11,19D)] -

Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

(2.4) O / / ()~ £ (5)]] (1) — g (s) drds
ot / e dtdsr/g
[ / / 9.8 |dtds]1/2

/a/a|f s)|? dtds
=fa [ 00— 1 TO T
T /a/ (F@) - 7)) deds

—C(f,f) (f),

and since
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and a similar equality for g, hence we get from (2.3) and (2.4) the desired result

(2.1).
The inequality (2.2) follows from (2.1). O

For a function of bounded variation f : [a,b] — C we define the Cumulative
Variation Function (CVF) of f by Vy : [a,b] — [0,00) where Vy () := \/Z (f), the
total variation of f on the interval [a,t] with ¢ € [a, ]].

It is know that the CVF is monotonic nondecreasing on [a,b] and is continuous
in a point ¢ € [a,b] if and only if the generating function f is continuous in that
point. If f is Lipschitzian with the constant L > 0, i.e.

|f(¢) = f(s)| < Lt —s| for any ¢, s € [a,b],
then V; is also Lipschitzian with the same constant.

Theorem 4. Let f, g : [a,b] — C be Lebesgue measurable on [a,b].
(i) If f is of bounded variation and g is Lebesgue integrable on [a,b], then

(2.5)  max{[C(f,9)|,|1C(f],9)],1C (f; gD 1C (f], gD} < D (Vy) D(g);

(i) If f and g are of bounded variation on [a,b], then

(2.6) max {|C (f,9)|,|C (If, 91, 1C (f:1gD], 1C (15 1gD[} < € (Vy, Vg) 5

(iti) If f is Lipschitzian with the constant L > 0 and g is of bounded variation
on [a,b], then

(2.7) max {|C (f, ). |C ([f1. 9. |1C (f,1gDI. [C(|f], gD} < LC (€, V),
where £ is the identity mapping of the interval [a,b], namely £ (t) =t, t € [a,b].

Proof. (i) If f is of bounded variation then for a < s < t < b we have

F &)= F() <\ (F)=Vi ()= Vi (s).
If a <t < s <bthen also
1F &)= F() <\ (F)=Vi(s) = Vi (t).

Therefore
|f (@) = f(s)] < Vi (t) = Vi (s)]

for any t, s € [a,b].
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Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

(28) Yo / / ()~ £ (5)l] (1) — g (s) drds
. / 0= st dtds]
[t //w 1
[2 / Vi () = Vs (5)] dtds] "
[ //w 1

=D (Vy)D ( )-
By utilising the inequality (2.3) and (2.8) we get the desired result (2.5).
(ii) If f and g are of bounded variation on [a, b] , then for any ¢, s € [a, b] we have
1 (&) = F()g () =g ()] < Vi (8) = Vi (8)[ Vg (8) = V5 (s)]
= (Vi (t) = Vi () (Vg (t) = V4 (s))

since V (-) and Vj (-) are monotonic nondecreasing on [a, b] .
Then

(2.9) / / £ () = £ ()19 (t) — g (5)] deds

<

5 M/ / (Vi () = Vi () (Vy (£) — Vy (5)) dtds
= C(vavg)-

By utilising the inequality (2.3) and (2.9) we get the desired result (2.6).
(iii) If f is Lipschitzian with the constant L > 0 and g is of bounded variation
on [a,b], then

[F (@) = F(s)l1g () =g ()] < Lt —s][Vy (8) = Vg ()]
=L(t=s5)(Vy(t) = Vy(s))

since V7 (-) is monotonic nondecreasing on [a, b] .
Then

(2.10) / / £ (&) — £ ()19 (t) — g (5)) deds

b a)? // (t—s) -V, (s)) dtds

= LC’ V¢, V)
By utilising the inequality (2.3) and (2.10) we get the desired result (2.7). O
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In 1970, A. M. Ostrowski [17] proved amongst others the following result that is
somehow a mixture of the Cebysev and Griiss results

(b—a) (M —m)|lg'll ,

ool =

(2.11) IC(f:9)] <

provided f is Lebesgue integrable on [a,b] and satisfying (1.2) while g : [a,b] — R
is absolutely continuous and ¢’ € L [a,b] . Here the constant % is also sharp.
The following lemma for real-valued functions holds [9)].

Lemma 1. Let h: [a,b] — R be an integrable function on [a,b] such that
(2.12) —00<y<h(z)<T < oo for a.e. x on [a,b].

Then we have the inequality

(2.13) bla/ab /jh(t)dt—i_c(j/abh(u)du

b b —a
(bla/u h(u)du—v) (F_bla/a h(u)du) llii’y

dx

The constants % and % are sharp in the sense that they cannot be replaced by smaller
constants.

When one functions is complex-valued, we can state the following refinement and
extension of Ostrowski’s inequality (2.11). This extends the corresponding result

from [9] in which both functions are real-valued.

Theorem 5. Let f : [a,b] — R be measurable and such that there exist the constants
m, M € R with

(2.14) —oco<m< f(z) <M < oo forae. zon [a,b].

If g : [a,b] — C is absolutely continuous on [a,b] with ¢ € Ly [a,b] then we have
the inequality

(5 Ja (@) —m) (M — 5 J1 (@) do)
M—-m

(215) [C(f,9)| < 3 ]l (b-a)

< %(b—a) (M =m) gl

The constants % and % are sharp in the above sense.



SOME BOUNDS FOR THE COMPLEX CEBYSEV FUNCTIONAL 9
Proof. Integrating by parts, we have
b T
1
f(t)dt —
—a Jg a

u)du) g (x)dx
1 v ’
— [(/ 10

~[ow [f(w)—bla/abf(wdu] dx]
= b—a/ dx—f—bf z)dz - b—a/f

770 f7 )

Taking the modulus, we have

1C(f.9)] < (u) du||g' ()| dz
<9l —— b u) du|dx (by Lemma 1)
b
1 (ﬁfaf(x)dfﬁ—m) (M- 3 [1 £ @do)
<519l A (- a).
The sharpness of the constants follows from the real-valued case outlined in
[9]. |

3. SOME EXAMPLES

Assume that the function f : [a,b] — C is of bounded variation on [a,b]. Since
the function V; is monotonic nondecreasing on [a, b], then 0 < V() < \/Z (f) for
any t € [a,b], and by (1.8) we have D (V) < %\/Z (f) . Utilising (2.5) we have

b

3.1 max{[C(f,9)],|C(f], 9], 1C(f;lgD], [C(1f], gD} < %\/(f)D(g)

a

for any g Lebesgue integrable function on [a, b] .
If g € Apay (¥, ¥) for some distinct complex numbers ¢, ¥, then by (3.1) we
have

b
(3.2)  max{|C(f,9)|.|C(f],9)l.1C(f;1gDl1C(1£]:1gD]} < i v =\ (f)

If f and g are of bounded variation on [a,b], then V; and Vj are monotonic
nondecreasing on [a, b] and by (1.12) we have

b 1 b b
<Ivnpm<ivinvae.

a

1 b

(3.3) |C (V. Vg

w\»—*

w\
@<
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By utilising the inequality (2.6) we then have

(3.4) s (10 (1.9 1C711LIC . a1 IC U7l
b b b
I nrw <V < VOV

If f and g are of bounded variation on [a, b], then by (1.15) we have
i _
inf |V —7llee B (V)

(3.5) c (v v,) < =y L 1Ve =, By (V).
. frVe)l = wherep,q>1with%+%:1,

a inf Ve =y Beo (V).

By utilising the inequality (2.6) we then have

(3.6) max {|C (f,9)[,|C (If],9)],1C (f, gD, 1C (1 f], gD}
Wireljfc Ve =l B (V)

W inf [|Vy —7ll, £y (Vi)
wherep, q>1with%—|—%:l,

IN

5oa inf [[Vy =l Ree (Vi)

—% yeC

From (3.6) we get in particular

(3.7) max {|C (f,9)|,|C (If],9)],|C

b

Vg_%\/(g)

a

gDl 1€ (Uf1 Lo}
b
<3V

Now, we observe that for f = ¢, where /¢ is the identity mapping of the interval
[a,b], namely ¢ (t) =t, t € [a,b], we have

[\p\p—l —~

o0

1 b a+b 1
R(E)_bia/a - ‘dt—4(b—a).
Then we have by (1.18) that
1 b
(3:8) CVy) <5 (b=a)\/(9).

Therefore, if f is Lipschitzian with the constant L > 0 and g is of bounded variation
on [a,b], then by (2.7) and (3.8) we have

b

(3.9) max{|C (£, 9)l,IC(f, 9l 1C(f, gDl [C (] gD} < 5 (b—a)L\/(g)-

a
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b
From (2.15) for f =V}, and g = ¢ we have m =0 and M = \/ (h) and

(3.10) |C (£, Vh)] <

provided that h : [a,b] — C is of bounded variation on [a, b] .
Therefore, if f is Lipschitzian with the constant L > 0 and g is of bounded
variation on [a,b], then by (2.7) and (3.10) we have

(3.11) max{|C(f,9)[,|C (If1,9)I,|C (£ 1gD], 1C (1 f], 19D}

b b b
S%L u%/@ v, (6) dt /an(t)dtgé(b—a)L\/(g).
b—a)\/(9) ¢

a

This is an improvement of the inequality (3.9) above.

It is known that, if h : [a,b] — C is absolutely continuous on [a,b], then [15,
Theorem 16] V}, is absolutely continuous and Vj, (z) = [.” [W' ()| dt for any « € [a, b].
Moreover, V) (z) = |1/ (z)| for a.e. x € [a,b].

Assume that g : [a,b] — C is absolutely continuous with ¢’ € L [a,b] and
f :]a,b] — C is of bounded variation. From (2.15) for Vy, V, we have

b b
B12) W5l [1-——— [V | [vow
b—a)\/(9)

b

<2 0=V (gl

a

By using (2.6) we then have
(3.13) max {|C (f,9)|,|C (If,9)|,1C (f;19D], 1C (1F15 DI}

a
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provided that g : [a,b] — C is absolutely continuous with ¢’ € L [a,b] and f :
[a,b] — C is of bounded variation on [a, b] .

4. APPLICATIONS FOR TRAPEZOID INEQUALITY

Let h : [a,b] — C be an absolutely continuous function on [a,b]. Then we have
the trapezoid equality

for any § € C. This is obvious integrating by parts in the right hand side of the
equality.
Using the inequality (1.12) for f =h' — 0 and g = ¢ — “—*b we get

/j(t—a;—b)(h’( —5)dt ;\b/ ( aé”’).

a+b 1 b a+b 1 b a+b
R(E_ 2) - b—a/a = _b—a/a (5_ 2 )ds

B 1/b a+b 1
- b—al,

5 dt=-(b—a),
then by (4.1) and (4.2) we get

1
b
h(a);h(b) —bia/a h(t) dt

1

—a

(4.2)

Since

t—

b

Sé(b—a)\/(h’—

a

(4.3)

provided that h’ is of bounded variation and ¢ € C.
If

b

(1.4 V(-5 < j0-aw-u

a

for some complex numbers ¢, ¥ € C, then by (4.3) we get

h(a)+h(®) 1 /bh(t)dtg

(4.5) 5 —_

(b_a)2|\ll_w|a

1
16

provided h satisfies the condition (4.4). We observe that, a sufficient condition
for the condition (4.4) to hold is that h is twice differentiable on (a,b) and h” €

Afa ) (9, ).
Using the inequality (1.12) for f =¢— %t and g = b’ — § we get

/;(t—a;_b) (W (1) — 6)dt| < \/(Z—a;—b)R(h’—é)

a

b
\/(ﬁ—a;—b):b—a

1

—a

(4.6)

l\.')\»—l

Since
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and

then by (4.6) and (4.1) we get

M®+h@—¢ialﬁumt

(4.7) .

dt

1 b
<3/
=3/ —
provided h : [a,b] — C is an absolutely continuous function on [a, b] .

If we use the inequality (1.16) for f = h' with h' € A, ) (¢, @) for some distinct

complex numbers ¢, ® and g = £ — %L then

2
1 b
<gle-oir(e-257)
1

1

(4.8) —

/ab<ta;b)h’(t)dt .

By using (4.1) we then get

b
h(a);h(w - bia/a h(t) dt

g(b—a)|‘1)—¢|-

1
<S0-a)@-0

provided h : [a,b] — C is an absolutely continuous function on [a,b] and there exist

the distinct complex numbers ¢, ® such that i’ € Ajg ) (¢, P) .

Forng—%”’wehave

vg(t):\:/(e—“;b) —t—a, tefab).

If we use the inequality (3.11) for f = h' and g = ¢ — % we get

(4.9) bia /:(t—a;b)h’(t)dt
el Y Phwal [ wa
i (b—a)\b/(g)/a /a

namely '

(4.10) bia /:<t—a—2|—b)h’(t)dt gé(b—a)ﬂ(,

provided A’ is Lipschitzian with the constant K > 0.
If we use (4.1) and (4.10), we get

a ’ 2
h( );h(b)bia/a h(t) dt gé(bfa) K

provided A’ is Lipschitzian with the constant K > 0.
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5. APPLICATIONS FOR MID-POINT INEQUALITY

Let h : [a,b] — C be an absolutely continuous function on [a,b]. Then we have
the mid-point equality

b b
(5.1) h<a;b>—b1a/ h(t)dt:ﬁ p(t) (W () = §)dt

for any 0 € C, where the kernel p : [a,b] — R is given by
t—aifte [ “+b},

(5.2) p(t) =
t—bifte (L p].

This is obvious integrating by parts in the right hand side of the equality.
Using the inequality (1.12) for f = h' — ¢ and g = p we get

b 1 b
[ rouw-sa <3\ o

1 1
== [ b@la=10-a).
then by (5.1) and (5.3) we get
a+b 1 b
h - h(t)dt
() o

provided that h’ is of bounded variation and ¢ € C.
If h satisfies the condition (4.4) for some complex numbers ¢, ¥ € C, then by

(5.4) we get
b
h(a;b)_bi(l/ h(t)dt| <

provided h satisfies the condition (4.4). We observe that, a sufficient condition
for the condition (4.4) to hold is that h is twice differentiable on (a,b) and h"” €

A[a,b] (% \Ij) .
Using the inequality (1.12) for f =p and g = b/ — 6 we get

b 1 b
/ap(t)(h’( 5) dt g§Y

b
Since \/ (p) =b—a and

1 b
I = / —
R (I —9) b—a/a R’ (t)
then by (5.1) and (5.6) we get

a+b 1 b 1 [
- < —
h( 2 ) b—a ah(t)dt72/a

provided h : [a,b] — C is an absolutely continuous function on [a, b] .

1
b—a

(5.3)

Since

b

<Lo-a)\ -

a

(5.4)

(5.5) (b—a)® ¥ — 9|

L
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1

(5.6) ——

h(b) — h(a)
b—a

dt,

(5.7) R (t) — dt

h(b) = h(a)
b
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If we use the inequality (1.16) for f = h' with b’ € Ay, (¢, ®) for some distinct
complex numbers ¢, ® and g = p, then

/b<m%>

By (5.1) and (5.8) we get
b
h <“+b> ~ Y hwyar

Lo-a)®—g).

1
< 1B -9 R(p) =

(5.8)

b—a

1
<-(b—a)|®-
) - <sb-ale—gl,

provided that h : [a,b] — C is an absolutely continuous function on [a,b] and A’
€ Algp) (¢, @) for some distinct complex numbers ¢, ®

The kernel p defined by (5.2) is of bounded variation and we have for ¢ € [a, “TH’]
that V, (t) = /' (p) =t —a and for t € (2, b]

a

Vo=V ®o+\®=t-q

2

therefore, for any ¢ € [a,b] we have V), (¢) = ¢t — a. We observe that, this is an
example of a function of bounded variation for the CVF is differentiable for every
t € la,b].

Now, if we take g = p and f = A/ — § and use the inequality (2.6), then we get

R (Y L a
( 2> AL

I I
< / Vh’*& (t) (t - a) dt — 5 / Vh/,g (t) dt.

“b—a

(5.9)

Using the inequality (2.15) we also have
(5.10)  |C (V5,0 — a)|

1 (ﬁ f; Vi —s () dx) (\/Z (W =0) — 545 ff Vi s () dx)
"2 YACED
1 b
b—a)\/ (W -0).

a

(b—a)

IN
oo |

Then by (5.1) and (5.10) we get

a+b 1 b
h< 5 >_b ah(t)dt

1 1 b b
<3 1_(b—a - /_6)/thf_5(33)dx /thf_s(x)dx

b
< - bfa\/

for any 6 € C, where h : [a,b] — C is an absolutely continuous function on [a, b]
and the derivative is of bounded variation. This is a refinement of (5.4).

(5.11)
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