
TRACE INEQUALITIES OF JENSEN TYPE FOR SELFADJOINT
OPERATORS IN HILBERT SPACES: A SURVEY OF RECENT

RESULTS

S. S. DRAGOMIR1;2

Abstract. Some new trace inequalities for convex functions of selfadjoint op-
erators in Hilbert spaces are surveyed. Reverse Jensen�s type trace inequalities
and some trace inequalities of Slater�s type for convex functions of selfadjoint
operators in Hilbert spaces under suitable assumptions for the involved opera-
tors are given. Applications for some convex functions of interest and reverses
of Hölder and Schwarz trace inequalities are also provided. The superadditiv-
ity and monotonicity of some associated functionals are investigated. Some
trace inequalities for matrices are also derived. Examples for the operator
power and logarithm are presented as well.

1. Introduction

1.1. Jensen�s Inequality. Let A be a selfadjoint operator on the complex Hilbert
space (H; h:; :i) with the spectrum Sp (A) included in the interval [m;M ] for some
real numbers m < M and let fE�g� be its spectral family. Then for any continuous
function f : [m;M ] ! C, it is well known that we have the following spectral
representation in terms of the Riemann-Stieltjes integral (see for instance [36, p.
257]):

(1.1) hf (A)x; yi =
Z M

m�0
f (�) d (hE�x; yi)

and

(1.2) kf (A)xk2 =
Z M

m�0
jf (�)j2 d kE�xk2 ;

for any x; y 2 H:
The function gx;y (�) := hE�x; yi is of bounded variation on the interval [m;M ]

and

gx;y (m� 0) = 0 while gx;y (M) = hx; yi
for any x; y 2 H: It is also well known that gx (�) := hE�x; xi is monotonic nonde-
creasing and right continuous on [m;M ] for any x 2 H.
The following result that provides an operator version for the Jensen inequality

may be found, for instance, in Mond & Peµcaríc [43] (see also [35, p. 5]):
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Theorem 1. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m; M with m < M: If f is a convex function
on [m;M ] ; then

(MP) f (hAx; xi) � hf (A)x; xi
for each x 2 H with kxk = 1:

As a special case of Theorem 1 we have the following Hölder-McCarthy inequal-
ity:

Theorem 2 (McCarthy, 1967, [41]). Let A be a selfadjoint positive operator on a
Hilbert space H. Then for all x 2 H with kxk = 1;
(i) hArx; xi � hAx; xir for all r > 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1;
(iii) If A is invertible, then hArx; xi � hAx; xir for all r < 0:

The following reverse for (MP) that generalizes the scalar Lah-Ribaríc inequality
for convex functions is well known, see for instance [35, p. 57]:

Theorem 3. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m; M with m < M: If f is a convex function
on [m;M ] ; then

(LR) hf (A)x; xi � M � hAx; xi
M �m f (m) +

hAx; xi �m
M �m f (M)

for each x 2 H with kxk = 1:

The following result that provides a reverse of the Jensen inequality has been
obtained in [20]:

Theorem 4 (Dragomir, 2008, [20]). Let I be an interval and f : I ! R be a convex
and di¤erentiable function on �I (the interior of I) whose derivative f 0 is continuous
on �I : If A is a selfadjoint operators on the Hilbert space H with Sp (A) � [m;M ] �
�I; then

(1.3) (0 �) hf (A)x; xi � f (hAx; xi) � hf 0 (A)Ax; xi � hAx; xi hf 0 (A)x; xi ;
for any x 2 H with kxk = 1:

Perhaps more convenient reverses of (MP) are the following inequalities that
have been obtained in the same paper [20]:

Theorem 5 (Dragomir, 2008, [20]). Let I be an interval and f : I ! R be a convex
and di¤erentiable function on �I (the interior of I) whose derivative f 0 is continuous
on �I : If A is a selfadjoint operators on the Hilbert space H with Sp (A) � [m;M ] �
�I; then

(0 �) hf (A)x; xi � f (hAx; xi)(1.4)

�

8>>><>>>:
1
2 (M �m)

h
kf 0 (A)xk2 � hf 0 (A)x; xi2

i1=2
1
2 (f

0 (M)� f 0 (m))
h
kAxk2 � hAx; xi2

i1=2
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;
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for any x 2 H with kxk = 1:
We also have the inequality

(0 �) hf (A)x; xi � f (hAx; xi)(1.5)

� 1

4
(M �m) (f 0 (M)� f 0 (m))

�

8><>:
[hMx�Ax;Ax�mxi hf 0 (M)x� f 0 (A)x; f 0 (A)x� f 0 (m)xi]

1
2 ;��hAx; xi � M+m

2

�� ���hf 0 (A)x; xi � f 0(M)+f 0(m)
2

���
� 1

4
(M �m) (f 0 (M)� f 0 (m)) ;

for any x 2 H with kxk = 1:
Moreover, if m > 0 and f 0 (m) > 0; then we also have

(0 �) hf (A)x; xi � f (hAx; xi)(1.6)

�

8>><>>:
1
4

(M�m)(f 0(M)�f 0(m))p
Mmf 0(M)f 0(m)

hAx; xi hf 0 (A)x; xi ;

�p
M �

p
m
��p

f 0 (M)�
p
f 0 (m)

�
[hAx; xi hf 0 (A)x; xi]

1
2 ;

for any x 2 H with kxk = 1:

In [21] we obtained the following operator version for Slater�s inequality as well
as a reverse of it:

Theorem 6 (Dragomir, 2008, [21]). Let I be an interval and f : I ! R be a convex
and di¤erentiable function on �I (the interior of I) whose derivative f 0 is continuous
on �I: If A is a selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] � �I
and f 0 (A) is a positive invertible operator on H then

0 � f

�
hAf 0 (A)x; xi
hf 0 (A)x; xi

�
� hf (A)x; xi(1.7)

� f 0
�
hAf 0 (A)x; xi
hf 0 (A)x; xi

��
hAf 0 (A)x; xi � hAx; xi hf 0 (A)x; xi

hf 0 (A)x; xi

�
;

for any x 2 H with kxk = 1:

For other similar results, see [21].
For some inequalities for convex functions see [8]-[13], [33] and [49]. For inequal-

ities for functions of selfadjoint operators, see [15]-[24], [40], [42], [43], [44], [45] and
the books [25], [26] and [35].
In order to state our results concerning some trace inequalities for convex func-

tions of selfadjoint operators on Hilbert space (H; h:; :i) we need some preparations
as follows.

1.2. Traces for Operators in Hilbert Spaces. Let (H; h�; �i) be a complex
Hilbert space and feigi2I an orthonormal basis of H: We say that A 2 B (H)
is a Hilbert-Schmidt operator if

(1.8)
X
i2I

kAeik2 <1:
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It is well know that, if feigi2I and ffjgj2J are orthonormal bases for H and A 2
B (H) then

(1.9)
X
i2I

kAeik2 =
X
j2I

kAfjk2 =
X
j2I

kA�fjk2

showing that the de�nition (1.8) is independent of the orthonormal basis and A is
a Hilbert-Schmidt operator i¤ A� is a Hilbert-Schmidt operator.
Let B2 (H) the set of Hilbert-Schmidt operators in B (H) : For A 2 B2 (H) we

de�ne

(1.10) kAk2 :=
 X
i2I

kAeik2
!1=2

for feigi2I an orthonormal basis of H: This de�nition does not depend on the choice
of the orthonormal basis.
Using the triangle inequality in l2 (I) ; one checks that B2 (H) is a vector space

and that k�k2 is a norm on B2 (H) ; which is usually called in the literature as the
Hilbert-Schmidt norm.
Denote the modulus of an operator A 2 B (H) by jAj := (A�A)

1=2
: Because

kjAjxk = kAxk for all x 2 H; A is Hilbert-Schmidt i¤ jAj is Hilbert-Schmidt and
kAk2 = kjAjk2 : From (1.9) we have that if A 2 B2 (H) ; then A� 2 B2 (H) and
kAk2 = kA�k2 :
The following theorem collects some of the most important properties of Hilbert-

Schmidt operators:

Theorem 7. We have
(i) (B2 (H) ; k�k2) is a Hilbert space with inner product

(1.11) hA;Bi2 :=
X
i2I

hAei; Beii =
X
i2I

hB�Aei; eii

and the de�nition does not depend on the choice of the orthonormal basis feigi2I ;
(ii) We have the inequalities

(1.12) kAk � kAk2
for any A 2 B2 (H) and
(1.13) kATk2 ; kTAk2 � kTk kAk2
for any A 2 B2 (H) and T 2 B (H) ;
(iii) B2 (H) is an operator ideal in B (H) ; i.e.

B (H)B2 (H)B (H) � B2 (H) ;
(iv) Bfin (H) ; the space of operators of �nite rank, is a dense subspace of B2 (H) ;
(v) B2 (H) � K (H) ; where K (H) denotes the algebra of compact operators on

H:

If feigi2I an orthonormal basis of H; we say that A 2 B (H) is trace class if

(1.14) kAk1 :=
X
i2I

hjAj ei; eii <1:

The de�nition of kAk1 does not depend on the choice of the orthonormal basis
feigi2I : We denote by B1 (H) the set of trace class operators in B (H) :
The following proposition holds:

e5011831
Typewritten Text
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Proposition 1. If A 2 B (H) ; then the following are equivalent:
(i) A 2 B1 (H) ;
(ii) jAj1=2 2 B2 (H) ;
(ii) A (or jAj) is the product of two elements of B2 (H) :

The following properties are also well known:

Theorem 8. With the above notations:
(i) We have

(1.15) kAk1 = kA
�k1 and kAk2 � kAk1

for any A 2 B1 (H) ;
(ii) B1 (H) is an operator ideal in B (H) ; i.e.

B (H)B1 (H)B (H) � B1 (H) ;
(iii) We have

B2 (H)B2 (H) = B1 (H) ;
(iv) We have

kAk1 = sup fjhA;Bi2j j B 2 B2 (H) ; kBk � 1g ;
(v) (B1 (H) ; k�k1) is a Banach space.
(iv) We have the following isometric isomorphisms

B1 (H) �= K (H)
� and B1 (H)� �= B (H) ;

where K (H)� is the dual space of K (H) and B1 (H)� is the dual space of B1 (H) :

We de�ne the trace of a trace class operator A 2 B1 (H) to be

(1.16) tr (A) :=
X
i2I

hAei; eii ;

where feigi2I an orthonormal basis of H: Note that this coincides with the usual
de�nition of the trace if H is �nite-dimensional. We observe that the series (1.16)
converges absolutely and it is independent from the choice of basis.
The following result collects some properties of the trace:

Theorem 9. We have
(i) If A 2 B1 (H) then A� 2 B1 (H) and

(1.17) tr (A�) = tr (A);

(ii) If A 2 B1 (H) and T 2 B (H) ; then AT; TA 2 B1 (H) and
(1.18) tr (AT ) = tr (TA) and jtr (AT )j � kAk1 kTk ;
(iii) tr (�) is a bounded linear functional on B1 (H) with ktrk = 1;
(iv) If A; B 2 B2 (H) then AB; BA 2 B1 (H) and tr (AB) = tr (BA) ;
(v) Bfin (H) is a dense subspace of B1 (H) :

Utilising the trace notation we obviously have that

hA;Bi2 = tr (B
�A) = tr (AB�) and kAk22 = tr (A

�A) = tr
�
jAj2

�
for any A; B 2 B2 (H) :
For the theory of trace functionals and their applications the reader is referred

to [50]. For some classical trace inequalities see [5], [7], [46] and [56], which are
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continuations of the work of Bellman [2]. For related works the reader can refer to
[1], [3], [5], [34], [37], [38], [39], [47] and [53].

2. Jensen�s Type Trace Inequalities

2.1. Some Trace Inequalities for Convex Functions. Consider the orthonor-
mal basis E := feigi2I in the complex Hilbert space (H; h�; �i) and for a nonzero
operator B 2 B2 (H) let introduce the subset of indices from I de�ned by

IE ,B := fi 2 I : Bei 6= 0g :
We observe that IE ,B is non-empty for any nonzero operator B and if ker (B) = 0;
i.e. B is injective, then IE ,B = I: We also have for B 2 B2 (H) that

tr
�
jBj2

�
= tr (B�B) =

X
i2I

hB�Bei; eii =
X
i2I

kBeik2 =
X
i2IE,B

kBeik2 :

Theorem 10 (Dragomir, 2014 [29]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If
f is a continuous convex function on [m;M ] ; E := feigi2I is an orthonormal basis
in H and B 2 B2 (H) n f0g ; then

tr(jBj2A)
tr(jBj2)

2 [m;M ] and

f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A tr�jBj2�(2.1)

� JE (f ;A;B) � tr
�
jBj2 f (A)

�
� 1

M �m

�
f (m) tr

h
jBj2 (M1H �A)

i
+ f (M) tr

h
jBj2 (A�m1H)

i�
;

where

(2.2) JE (f ;A;B) :=
X
i2IE,B

f

 
hB�ABei; eii
kBeik2

!
kBeik2 :

Proof. Since Sp (A) � [m;M ] ; then m kyk2 � hAy; yi � M kyk2 for any y 2 H:
Therefore

m kBeik2 � hABei; Beii �M kBeik2 ;
for any i 2 I; which implies that

m
X
i2I

kBeik2 �
X
i2I

hABei; Beii �M
X
i2I

kBeik2

and we conclude that
tr(jBj2A)
tr(jBj2)

2 [m;M ] :
By Jensen�s inequality (MP) we have

(2.3) f

 
hAy; yi
kyk2

!
� hf (A) y; yi

kyk2

for any y 2 H n f0g :
Let F be a �nite part of IE ,B : Then for any i 2 F we have from (2.3) that

f

 
hABei; Beii
kBeik2

!
� hf (A)Bei; Beii

kBeik2
;
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which is equivalent to

(2.4) f

 
hB�ABei; eii
kBeik2

!
kBeik2 � hB�f (A)Bei; eii :

Summing over i 2 F we get

(2.5)
X
i2F

f

 
hB�ABei; eii
kBeik2

!
kBeik2 �

X
i2F

hB�f (A)Bei; eii :

Using Jensen�s discrete inequality for �nite sums and for the positive weights wi

f

�P
i2F wiuiP
i2F wi

�
�
P

i2F wif (ui)P
i2F wi

;

we have

f

0@Pi2F
hB�ABei;eii
kBeik2

kBeik2P
i2F kBeik

2

1A �

P
i2F f

�
hB�ABei;eii
kBeik2

�
kBeik2P

i2F kBeik
2 ;

which is equivalent to

(2.6) f

 P
i2F hB�ABei; eiiP

i2F kBeik
2

!X
i2F

kBeik2 �
X
i2F

f

 
hB�ABei; eii
kBeik2

!
kBeik2 :

Therefore, for any F a �nite part of IE ,B we have from (2.5) that

f

 P
i2F hB�ABei; eiiP

i2F kBeik
2

!X
i2F

kBeik2 �
X
i2F

f

 
hB�ABei; eii
kBeik2

!
kBeik2(2.7)

�
X
i2F

hB�f (A)Bei; eii :

By the continuity of f we then have from (2.7) that

f

 P
i2IE,B hB

�ABei; eiiP
i2IE,B kBeik

2

! X
i2IE,B

kBeik2(2.8)

�
X
i2IE,B

f

 
hB�ABei; eii
kBeik2

!
kBeik2 �

X
i2IE,B

hB�f (A)Bei; eii

and since B 2 B2 (H) n f0g ; then alsoX
i2IE,B

kBeik2 =
X
i2I

kBeik2 = tr
�
jBj2

�
;

X
i2IE,B

hB�ABei; eii =
X
i2I

hB�ABei; eii = tr
�
jBj2A

�
and X

i2IE,B

hB�f (A)Bei; eii =
X
i2I

hB�f (A)Bei; eii = tr
�
jBj2 f (A)

�
:

From (2.8) we then get the �rst and the second inequality in (2.1).
From (LR) we also have

(2.9) hf (A) y; yi � 1

M �m [h(M1H �A) y; yi f (m) + h(A�m1H) y; yi f (M)]
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for any y 2 H:
This implies that

hf (A)Bei; Beii(2.10)

� 1

M �m [h(M1H �A)Bei; Beii f (m) + h(A�m1H)Bei; Beii f (M)]

for any i 2 I:
By summation we haveX
i2I

hf (A)Bei; Beii

� 1

M �m

"
f (m)

X
i2I

h(M1H �A)Bei; Beii+ f (M)
X
i2I

h(A�m1H)Bei; Beii
#

and the last part of (2.1) is proved. �

Remark 1. We observe that the quantities

Js (f ;A;B) = sup
E

JE (f ;A;B) and Ji (f ;A;B) = inf
E
JE (f ;A;B)

are �nite and satisfy the bounds

f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A tr�jBj2� � Ji (f ;A;B)(2.11)

� Js (f ;A;B) � tr
�
jBj2 f (A)

�
:

We have the following version for nonnegative operators P � 0; i.e. P satis�es
the condition hPx; xi � 0 for any x 2 H:

Corollary 1 (Dragomir, 2014 [29]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If
f is a continuous convex function on [m;M ] ; E := feigi2I is an orthonormal basis
in H and P 2 B1 (H) n f0g ; P � 0 then tr(PA)

tr(P ) 2 [m;M ] and

f

�
tr (PA)

tr (P )

�
tr (P )(2.12)

� KE (f ;A;P ) � tr (Pf (A))

� 1

M �m (f (m) tr [P (M1H �A)] + f (M) tr [P (A�m1H)]) ;

where

KE (f ;A;P ) :=
X
i2IE,P

f

 

P 1=2AP 1=2ei; ei

�
hPei; eii

!
hPei; eii

and
IE,P :=

n
i 2 I : P 1=2ei 6= 0

o
Moreover, the quantities

Ki (f ;A;P ) := inf
E
KE (f ;A;P ) and Ks (f ;A;P ) := sup

E

KE (f ;A;P )
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are �nite and satisfy the bounds

(2.13) f

�
tr (PA)

tr (P )

�
tr (P ) � Ki (f ;A;P ) � Ks (f ;A;P ) � tr (Pf (A)) :

The �nite dimensional case is of interest.
LetMn (C) be the space of all square matrices of order n with complex elements.

Corollary 2 (Dragomir, 2014 [29]). Let A 2 Mn (C) be a Hermitian matrix and
assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If f is a
continuous convex function on [m;M ] ; E := feigi2f1;:::;ng is an orthonormal basis
in Cn, then 1

n tr (A) 2 [m;M ] and

nf

�
tr (A)

n

�
� JE (f ;A) � tr (f (A))(2.14)

� 1

M �m [f (m) tr (MIn �A) + f (M) tr (A�mIn)] ;

where

JE (f ;A) :=
nX
i=1

f (hAei; eii) ;

and In is the identity matrix inMn (C) :

Remark 2. The second inequality in (2.14), namely
nX
i=1

f (hAei; eii) � tr (f (A))

for any feigi2f1;:::;ng an orthonormal basis in Cn; is known in literature as Peierls
Inequality. For a di¤erent proof and some applications, see, for instance [4].

2.2. Some Functional Properties. If we denote by B+1 (H) the convex cone of
nonnegative operators from B1 (H) we can consider the functional �f;A : B+1 (H) n
f0g ! [0;1) de�ned by

(2.15) �f;A (P ) := tr (Pf (A))� tr (P ) f
�
tr (PA)

tr (P )

�
� 0;

where A is a selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] for
some scalars m; M (m < M) and f is a continuous convex function on [m;M ] :
One can easily observe that, if f is a continuous strictly convex function on

[m;M ] ; then the inequality is strict in (2.15).

Theorem 11 (Dragomir, 2014 [29]). Let A be a selfadjoint operator on the Hilbert
space H with Sp (A) � [m;M ] for some scalars m; M with m < M and f is a
continuous convex function on [m;M ] :
(i) For any P; Q 2 B+1 (H) n f0g we have

(2.16) �f;A (P +Q) � �f;A (P ) + �f;A (Q) (� 0) ;
i.e. �f;A (�) is a superadditive functional on B+1 (H) n f0g ;
(ii) For any P; Q 2 B+1 (H) n f0g with P � Q we have

(2.17) �f;A (P ) � �f;A (Q) (� 0) ;
i.e. �f;A (�) is a monotonic nondecreasing functional on B+1 (H) n f0g ;
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(iii) If there exists the real numbers ; � > 0 such that �Q � P � Q with P;
Q 2 B+1 (H) n f0g ; then

(2.18) ��f;A (Q) � �f;A (P ) � �f;A (Q) (� 0) :

Proof. (i) Let P; Q 2 B+1 (H) n f0g : Then we have

�f;A (P +Q) = tr ((P +Q) f (A))� tr (P +Q) f
�
tr ((P +Q)A)

tr (P +Q)

�
(2.19)

= tr (Pf (A)) + tr (Pf (A))

� [tr (P ) + tr (Q)] f
�
tr (PA) + tr (QA)

tr (P ) + tr (Q)

�
:

By the convexity of f we have

f

�
tr (PA) + tr (QA)

tr (P ) + tr (Q)

�
= f

0@ tr (P ) tr(PA)tr(P ) + tr (Q)
tr(QA)
tr(Q)

tr (P ) + tr (Q)

1A(2.20)

�
tr (P ) f

�
tr(PA)
tr(P )

�
+ tr (Q) f

�
tr(QA)
tr(Q)

�
tr (P ) + tr (Q)

:

Making use of (2.19) and (2.20) we have

�f;A (P +Q) � tr (Pf (A)) + tr (Pf (A))

� [tr (P ) + tr (Q)]
tr (P ) f

�
tr(PA)
tr(P )

�
+ tr (Q) f

�
tr(QA)
tr(Q)

�
tr (P ) + tr (Q)

= tr (Pf (A)) + tr (Pf (A))

� tr (P ) f
�
tr (PA)

tr (P )

�
� tr (Q) f

�
tr (QA)

tr (Q)

�
= �f;A (P ) + �f;A (Q)

and the inequality (2.16) is proved.
(ii) Let P; Q 2 B+1 (H) n f0g with P � Q: Then on applying the superadditivity

property of �f;A for P �Q � 0 and Q � 0 we have

�f;A (P ) = �f;A (P �Q+Q) � �f;A (P �Q) + �f;A (Q) � �f;A (Q)

and the inequality (2.17) is proved.
(iii) If P � Q; then by the monotonicity property of �f;A we have

�f;A (P ) � �f;A (Q) = �f;A (Q)

and a similar inequality for �: �

We have the following particular case of interest:

Corollary 3. Let A 2 Mn (C) be a Hermitian matrix and assume that Sp (A) �
[m;M ] for some scalars m; M with m < M: If f is a continuous convex function
on [m;M ] ; there exists the real numbers ; � > 0 such that �In � P � In with P
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positive de�nite, where In is the identity matrix, then

�

�
tr (f (A))� nf

�
tr (A)

n

��
� tr (Pf (A))� tr (P ) f

�
tr (PA)

tr (P )

�
(2.21)

� 

�
tr (f (A))� nf

�
tr (A)

n

��
(� 0) :

The following result also holds:

Theorem 12 (Dragomir, 2014 [29]). Let A be a selfadjoint operator on the Hilbert
space H with Sp (A) � [m;M ] for some scalars m; M with m < M and f is a
continuous convex function on [m;M ] : For p � 1, the functional  p;f;A : B+1 (H) n
f0g ! [0;1) de�ned by

 p;f;A (P ) := [tr (P )]
1� 1

p �f;A (P )

is superadditive on B+1 (H) n f0g :

Proof. First of all we observe that the following elementary inequality holds:

(2.22) (�+ �)
p � (�)�p + �p

for any �; � � 0 and p � 1 (0 < p < 1) :
Indeed, if we consider the function fp : [0;1) ! R, fp (t) = (t+ 1)

p � tp we

have f 0p (t) = p
h
(t+ 1)

p�1 � tp�1
i
: Observe that for p > 1 and t > 0 we have that

f 0p (t) > 0 showing that fp is strictly increasing on the interval [0;1). Now for

t = �
� (� > 0; � � 0) we have fp (t) > fp (0) giving that

�
�
� + 1

�p
�
�
�
�

�p
> 1; i.e.,

the desired inequality (2.22).
For p 2 (0; 1) we have that fp is strictly decreasing on [0;1) which proves the

second case in (2.22).
Now, since �f;A (�) is superadditive on B+1 (H) nf0g and p � 1 then by (2.22) we

have

(2.23) �pf;A (P +Q) � [�f;A (P ) + �f;A (Q)]
p � �pf;A (P ) + �

p
f;A (Q)

for any P; Q 2 B+1 (H) n f0g :
Utilising (2.23) and the additivity property of tr (�) on B+1 (H) n f0g we have

�pf;A (P +Q)

tr (P +Q)
�
�pf;A (P ) + �

p
f;A (Q)

tr (P ) + tr (Q)
(2.24)

=
tr (P )

�pf;A(P )

tr(P ) + tr (Q)
�pf;A(Q)

tr(Q)

tr (P ) + tr (Q)

=
tr (P )

�
�f;A(P )

tr1=p(P )

�p
+ tr (Q)

�
�f;A(Q)

tr1=q(Q)

�p
tr (P ) + tr (Q)

=: I;

for any P; Q 2 B+1 (H) n f0g :
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Since for p � 1 the power function g (t) = tp is convex, then

I �

0@ tr (P ) �f;A(P )tr1=p(P )
+ tr (Q)

�f;A(Q)

tr1=q(Q)

tr (P ) + tr (Q)

1Ap

(2.25)

=

�
tr1�1=p (P )�f;A (P ) + tr

1�1=q (Q)�f;A (Q)

tr (P +Q)

�p
for any P; Q 2 B+1 (H) n f0g :
By combining (2.24) with (2.25) we get

�pf;A (P +Q)

tr (P +Q)
�
�
tr1�1=p (P )�f;A (P ) + tr

1�1=q (Q)�f;A (Q)

tr (P +Q)

�p
;

which is equivalent to

(2.26)
�f;A (P +Q)

tr1=p (P +Q)
� tr1�1=p (P )�f;A (P ) + tr

1�1=q (Q)�f;A (Q)

tr (P +Q)
;

for any P; Q 2 B+1 (H) n f0g :
Finally, if we multiply (2.26) by tr (P +Q) > 0 we get

 p;f;A (P +Q) �  p;f;A (P ) +  p;f;A (Q)

for any P; Q 2 B+1 (H) n f0g and the proof is complete. �

Corollary 4. With the assumptions of Theorem 12, the two parameters p; q � 1
functional  p;q;f;A : B+1 (H) n f0g ! [0;1) de�ned by

 p;q;f;A (P ) := [tr (P )]
q(1� 1

p ) �qf;A (P )

is superadditive on B+1 (H) n f0g :

Proof. Observe that  p;q;f;A (P ) =
�
 p;f;A (P )

�q
for P 2 B+1 (H) n f0g : Therefore,

by Theorem 12 and the inequality (2.22) for q � 1 we have that
 p;q;f;A (P +Q) =

�
 p;f;A (P +Q)

�q
�
�
 p;f;A (P ) +  p;f;A (Q)

�q
�
�
 p;f;A (P )

�q
+
�
 p;f;A (Q)

�q
=  p;q;f;A (P ) +  p;q;f;A (Q)

for any P; Q 2 B+1 (H) n f0g and the statement is proved. �

Remark 3. If we consider the functional
~ p;f;A (P ) := [tr (P )]

p�1
�pf;A (P )

then, for p � 1; ~ p;f;A (�) is superadditive on B+1 (H) n f0g :

Corollary 5. With the assumptions of Theorem 12 and for parameter p � 1; if
there exists the real numbers ; � > 0 such that �Q � P � Q with P;Q 2
B+1 (H) n f0g ; then

�2�
1
p [tr (Q)]

1� 1
p �f;A (Q) � [tr (P )]1�

1
p �f;A (P )(2.27)

� 2�
1
p [tr (Q)]

1� 1
p �f;A (Q) (� 0) :

The case of �nite-dimensional spaces is as follows:
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Corollary 6. Let A 2 Mn (C) be a Hermitian matrix and assume that Sp (A) �
[m;M ] for some scalars m; M with m < M: If f is a continuous convex function
on [m;M ] ; there exists the real numbers ; � > 0 such that �In � P � In with P
positive de�nite, then

�2�
1
pn1�

1
p

�
tr (f (A))� nf

�
tr (A)

n

��
(2.28)

� [tr (P )]1�
1
p

�
tr (Pf (A))� tr (P ) f

�
tr (PA)

tr (P )

��
� 2�

1
pn1�

1
p

�
tr (f (A))� nf

�
tr (A)

n

��
(� 0)

for any p � 1:

The following result also holds:

Theorem 13 (Dragomir, 2014 [29]). Let A be a selfadjoint operator on the Hilbert
space H with Sp (A) � [m;M ] for some scalars m; M with m < M and f is
a continuous strictly convex function on [m;M ] : For p 2 (0; 1), the functional
�p;f;A : B+1 (H) n f0g ! [0;1) de�ned by

�p;f;A (P ) :=
[tr (P )]

1� 1
p

�f;A (P )

is subadditive on B+1 (H) n f0g :

Proof. Let s := �p 2 (�1; 0) : For s < 0 we have the following inequality

(2.29) (�+ �)
s � �s + �s

for any �; � > 0:
Indeed, by the convexity of the function fs (t) = ts on (0;1) with s < 0 we have

that
(�+ �)

s � 2s�1 (�s + �s)
for any �; � > 0 and since, obviously, 2s�1 (�s + �s) � �s + �s; then (2.29) holds
true.
Taking into account that �f;A (�) is superadditive and s 2 (�1; 0) we have

(2.30) �sf;A (P +Q) � [�f;A (P ) + �f;A (Q)]
s � �sf;A (P ) + �

s
f;A (Q)

for any P; Q 2 B+1 (H) n f0g :
Since tr (�) is additive on B+1 (H) n f0g ; then by (2.31) we have

�sf;A (P +Q)

tr (P +Q)
�
�sf;A (P ) + �

s
f;A (Q)

tr (P ) + tr (Q)
(2.31)

=
tr (P )

�
�f;A(P )

tr1=s(P )

�s
+ tr (Q)

�
�f;A(Q)

tr1=s(Q)

�s
tr (P ) + tr (Q)

=
tr (P )

�
tr1=s(P )
�f;A(P )

��s
+ tr (Q)

�
tr1=s(Q)
�f;A(Q)

��s
tr (P ) + tr (Q)

=: J

for any P; Q 2 B+1 (H) n f0g :
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By the concavity of the function g (t) = t�s with s 2 (�1; 0) we also have

(2.32) J �

24 tr (P ) tr1=s(P )�f;A(P )
+ tr (Q) tr

1=s(Q)
�f;A(Q)

tr (P ) + tr (Q)

35�s

for any P; Q 2 B+1 (H) n f0g :
Making use of (2.31) and (2.32) we get

�sf;A (P +Q)

tr (P +Q)
�

24 tr (P ) tr1=s(P )�f;A(P )
+ tr (Q) tr

1=s(Q)
�f;A(Q)

tr (P ) + tr (Q)

35�s

for any P; Q 2 B+1 (H) n f0g ; and by taking the power �1=s > 0 we get

��1f;A (P +Q)

tr�1=s (P +Q)
�

tr1+1=s(P )
�f;A(P )

+ tr1+1=s(Q)
�f;A(Q)

tr (P ) + tr (Q)
;

which is equivalent to

tr1+1=s (P +Q)

�f;A (P +Q)
� tr1+1=s (P )

�f;A (P )
+
tr1+1=s (Q)

�f;A (Q)

for any P; Q 2 B+1 (H) n f0g :
This completes the proof. �

The following result may be stated as well:

Corollary 7. With the assumptions of Theorem 13, the two parameters 0 < p;
q < 1 functional �p;q;f;A : B+1 (H) n f0g ! [0;1) de�ned by

�p;q;f;A (P ) =
trq(1�

1
p ) (P )

�qf;A (P )

is subadditive on B+1 (H) n f0g :

Remark 4. If we consider the functional ~�p;f;A (P ) =
trp�1(P )
�pf;A(P )

for 0 < p < 1, then

~�p;f;A (�) is also subadditive on B+1 (H) n f0g :

2.3. Some Examples. We consider the power function f : (0;1) ! (0;1) ;
f (t) = tr with t 2 Rn f0g : For r 2 (�1; 0)[ [1;1), f is convex while for r 2 (0; 1),
f is concave.
Let r � 1 and A be a selfadjoint operator on the Hilbert space H and assume

that Sp (A) � [m;M ] for some scalars m; M with 0 � m < M: If E := feigi2I is
an orthonormal basis in H and P 2 B+1 (H) n f0g then

[tr (PA)]
r
[tr (P )]

1�r(2.33)

� KE (r;A;P ) � tr (PAr)

� 1

M �m (mr tr [P (M1H �A)] +Mr tr [P (A�m1H)]) ;

where
KE (r;A;P ) :=

X
i2IE,P

D
P 1=2AP 1=2ei; ei

Er
hPei; eii1�r :
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Moreover, the quantities

Ki (r;A;P ) := inf
E
KE (r;A;P ) and Ks (r;A;P ) := sup

E

KE (r;A;P )

are �nite and satisfy the bounds

(2.34) [tr (PA)]
r
[tr (P )]

1�r � Ki (r;A;P ) � Ks (r;A;P ) � tr (PAr) :
Now, if we take A = P; P 2 B+1 (H) n f0g, then by (2.33) we have

(2.35)
�
tr
�
P 2
��r
[tr (P )]

1�r � KE (r;P ) � tr
�
P r+1

�
where

KE (r;P ) :=
X
i2IE,P



P 2ei; ei

�r hPei; eii1�r :
If we consider the functional �r;A : B+1 (H) n f0g ! [0;1) de�ned by

(2.36) �r;A (P ) := tr (PA
r)� [tr (PA)]r [tr (P )]1�r � 0;

where A is a selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] �
[0;1); then �r;A (�) is superadditive, monotonic nondecreasing and if there exists
the real numbers ; � > 0 such that �Q � P � Q with P; Q 2 B+1 (H)nf0g ; then
(2.37) ��r;A (Q) � �r;A (P ) � �r;A (Q) (� 0) :
Consider the convex function f : (0;1) ! (0;1) ; f (t) = � ln t and let A be a

selfadjoint operator on the Hilbert space H and assume that Sp (A) � [m;M ] for
some scalars m; M with 0 < m < M: If E := feigi2I is an orthonormal basis in H
and P 2 B+1 (H) n f0g then�

tr (PA)

tr (P )

�tr(P )
� LE (A;P ) � exp [tr (P lnA)](2.38)

� m
tr[P(M1H�A)]

M�m M
tr[P(A�m1H)]

M�m ;

where

LE (A;P ) :=
Y

i2IE,P

 

P 1=2AP 1=2ei; ei

�
hPei; eii

!hPei;eii
:

Moreover, the quantities

Li (A;P ) := inf
E
LE (A;P ) and Ls (A;P ) := sup

E

LE (A;P )

are �nite and satisfy the bounds

(2.39)
�
tr (PA)

tr (P )

�tr(P )
� Ls (A;P ) � Li (A;P ) � exp [tr (P lnA)] :

Now, if we take A = P; P 2 B+1 (H) n f0g, then by (2.38) we get

(2.40)

 
tr
�
P 2
�

tr (P )

!tr(P )
� LE (P ) � exp [tr (P lnP )]

where

LE (P ) :=
Y

i2IE,P

 

P 2ei; ei

�
hPei; eii

!hPei;eii
:
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Consider the functional �A : B+1 (H) n f0g ! (0;1) de�ned by

�A (P ) :=

�
tr(PA)
tr(P )

�tr(P )
exp (tr (P lnA))

� 1;

where A is a selfadjoint operator on the Hilbert space H and such that Sp (A) �
[m;M ] for some scalars m; M with 0 < m < M:
Observe that

�� ln;A (P ) := ln

�
tr (PA)

tr (P )

�tr(P )
� ln [exp (tr (P lnA))] = ln [�A (P )]

for P 2 B+1 (H) n f0g :
Utilising the properties of �� ln;A (�) we conclude that �A (�) is supermultiplica-

tive, i.e.

�A (P +Q) � �A (P ) �A (Q) � 1
for any P;Q 2 B+1 (H) n f0g : The functional �A (�) is also monotonic nondecreasing
on B1 (H) n f0g :
Consider the convex function f (t) = t ln t and let A be a selfadjoint operator on

the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars m; M with
0 < m < M: If E := feigi2I is an orthonormal basis in H and P 2 B+1 (H) n f0g
then �

tr (PA)

tr (P )

�tr(PA)
� IE (A;P ) � exp [tr (PA lnA)](2.41)

� m
m tr[P(M1H�A)]

M�m M
M tr[P(A�m1H)]

M�m ;

where

IE (A;P ) :=
Y

i2IE,P

 

P 1=2AP 1=2ei; ei

�
hPei; eii

!hP 1=2AP 1=2ei;eii
:

Moreover, the quantities

Ii (A;P ) := inf
E
IE (A;P ) and Is (A;P ) := sup

E

IE (A;P )

are �nite and satisfy the bounds

(2.42)
�
tr (PA)

tr (P )

�tr(PA)
� Ii (A;P ) � Is (A;P ) � exp [tr (PA lnA)] :

Now, if we take A = P; P 2 B+1 (H) n f0g, then by (2.41) we get

(2.43)

 
tr
�
P 2
�

tr (P )

!tr(P 2)

� IE (P ) � exp
�
tr
�
P 2 lnP

��
where

IE (P ) :=
Y

i2IE,P

 

P 2ei; ei

�
hPei; eii

!hP 2ei;eii
:
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Observe that for f (t) = t ln t we have

�(�) ln(�);A (P ) = tr (PA lnA)� tr (PA) ln
�
tr (PA)

tr (P )

�

= ln

264exp [tr (PA lnA)]�
tr(PA)
tr(P )

�tr(PA)
375

for any P 2 B+1 (H) n f0g :
Consider the functional �A : B+1 (H) n f0g ! (0;1) de�ned by

�A (P ) :=
exp [tr (PA lnA)]�

tr(PA)
tr(P )

�tr(PA) � 1:

Utilising the properties of �(�) ln(�);A (�) we can conclude that �A (�) is supermulti-
plicative and monotonic nondecreasing on B+1 (H) n f0g :

2.4. More Inequalities for Convex Functions. We recall the gradient inequal-
ity for the convex function f : [m;M ]! R, namely

(2.44) f (&)� f (�) � �f (�) (& � �)

for any &; � 2 [m;M ] where �f (�) 2
�
f 0� (�) ; f

0
+ (�)

�
; (for � = m we take �f (�) =

f 0+ (m) and for � =M we take �f (�) = f 0� (M)). Here f
0
+ (m) and f

0
� (M) are the

lateral derivatives of the convex function f:
The following result holds:

Theorem 14 (Dragomir, 2014 [30]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If
f is a continuous convex function on [m;M ] and B 2 B2 (H) n f0g ; then we have
tr(jBj2A)
tr(jBj2)

2 [m;M ],

�f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A tr

�
jB�j2A

�
� tr

�
jBj2A

�
tr
�
jBj2

�(2.45)

�
tr
�
jB�j2 f (A)

�
tr
�
jBj2

� � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A ;

where

�f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A 2

24f 0�
0@ tr

�
jBj2A

�
tr
�
jBj2

�
1A ; f 0+

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A35

and the Jensen�s inequality

(2.46) f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A �

tr
�
jBj2 f (A)

�
tr
�
jBj2

� :
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Proof. Let E := feigi2I be an orthonormal basis in H. Utilising the gradient
inequality (2.44) we get

(2.47) f (&)� f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A � �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@& � tr

�
jBj2A

�
tr
�
jBj2

�
1A

for any & 2 [m;M ] ; since obviously, by Sp (A) � [m;M ] we have

m kBeik2 � hABei; Beii �M kBeik2 ;

for i 2 I; which, by summation shows that

tr
�
jBj2A

�
tr
�
jBj2

� 2 [m;M ] :

The inequality (2.47) implies in the operator order of B (H) that

(2.48) f (A)�f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A 1H � �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@A� tr

�
jBj2A

�
tr
�
jBj2

� 1H

1A ;

which can be written as

hf (A) y; yi � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A hy; yi(2.49)

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@hAy; yi � tr

�
jBj2A

�
tr
�
jBj2

� hy; yi

1A ;

for any y 2 H: This inequality is also of interest in itself.
Taking in (2.49) y = Bei we get

hf (A)Bei; Beii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A hBei; Beii

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@hABei; Beii � tr

�
jBj2A

�
tr
�
jBj2

� hBei; Beii

1A ;

which is equivalent to

hB�f (A)Bei; eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1ADjBj2 ei; eiE(2.50)

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@hB�ABei; eii � tr

�
jBj2A

�
tr
�
jBj2

� D
jBj2 ei; ei

E1A ;

for any i 2 I:
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Summing in (2.50) we get

X
i2I

hB�f (A)Bei; eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1AX

i2I

D
jBj2 ei; ei

E
(2.51)

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@X

i2I
hB�ABei; eii �

tr
�
jBj2A

�
tr
�
jBj2

� X
i2I

D
jBj2 ei; ei

E1A :

HoweverX
i2I

hB�f (A)Bei; eii =
X
i2I

hBB�f (A) ei; eii

=
X
i2I

D
jB�j2 f (A) ei; ei

E
= tr

�
jB�j2 f (A)

�
and X

i2I
hB�ABei; eii =

X
i2I

hBB�Aei; eii = tr
�
jB�j2A

�
:

By (2.51) we get

tr
�
jB�j2 f (A)

�
� f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A tr�jBj2�(2.52)

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A�tr�jB�j2A�� tr�jBj2A�� ;

and the inequality (2.45) is thus proved.
Taking in (2.49) y = B�ei we also get

hf (A)B�ei; B�eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A hB�ei; B�eii

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@hAB�ei; B�eii � tr

�
jBj2A

�
tr
�
jBj2

� hB�ei; B�eii

1A ;

which is equivalent to

hBf (A)B�ei; eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A hBB�ei; eii(2.53)

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@hBAB�ei; eii � tr

�
jBj2A

�
tr
�
jBj2

� hBB�ei; eii

1A ;

for any i 2 I:
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Summing in (2.53) we get

X
i2I

hBf (A)B�ei; eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1AX

i2I
hBB�ei; eii(2.54)

� �f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A0@X

i2I
hBAB�ei; eii �

tr
�
jBj2A

�
tr
�
jBj2

� X
i2I

hBB�ei; eii

1A :

SinceX
i2I

hBf (A)B�ei; eii = tr (Bf (A)B�) = tr (B�Bf (A)) = tr
�
jBj2 f (A)

�
;

X
i2I

hBB�ei; eii = tr (BB�) = tr (B�B) = tr
�
jBj2

�
and X

i2I
hBAB�ei; eii = tr (BAB�) = tr (B�BA) = tr

�
jBj2A

�
;

then by (2.54) we get

tr
�
jBj2 f (A)

�
� f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A tr�jBj2� � 0

and the inequality (2.46) is obtained. �

Remark 5. The inequality (2.46) is obviously not as good as the �rst part of (2.1).
However it is the natural alternative of Jensen�s inequality for trace and provides
simple and nice examples for various convex functions of interest. The proof here
is also simpler than the one from [29] and has some natural reverses as follows.

Corollary 8. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m; M with m < M: If f is a continuous
convex function on [m;M ] and P 2 B1 (H) n f0g ; P � 0 then tr(PA)

tr(P ) 2 [m;M ] and

(2.55) f

�
tr (PA)

tr (P )

�
� tr (Pf (A))

tr (P )
:

The proof follows by either (2.45) or (2.46) on choosing B = P 1=2; P 2 B1 (H) n
f0g ; P � 0:

3. Reverses of Jensen�s Trace Inequality

3.1. A Reverse of Jensen�s Inequality. The following lemma is of interest in
itself:
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Lemma 1 (Dragomir, 2014 [30]). Let S be a selfadjoint operator such that 1H �
S � �1H for some real constants � � : Then for any B 2 B2 (H) n f0g we have

0 �
tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2

(3.1)

� 1

2
(�� ) 1

tr
�
jBj2

� tr
0@jBj2

������S �
tr
�
jBj2 S

�
tr
�
jBj2

� 1H

������
1A

� 1

2
(�� )

264 tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2
375
1=2

� 1

4
(�� )2 :

Proof. The �rst inequality follows by Jensen�s inequality (2.46) for the convex func-
tion f (t) = t2:
Now, observe that

1

tr
�
jBj2

� tr
0@jBj2�S � � + 

2
1H

�0@S � tr
�
jBj2 S

�
tr
�
jBj2

� 1H

1A1A(3.2)

=
1

tr
�
jBj2

� tr
0@jBj2 S

0@S � tr
�
jBj2 S

�
tr
�
jBj2

� 1H

1A1A
� � + 

2

1

tr
�
jBj2

� tr
0@jBj2

0@S � tr
�
jBj2 S

�
tr
�
jBj2

� 1H

1A1A

=
tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2

since, obviously

tr

0@jBj2
0@S � tr

�
jBj2 S

�
tr
�
jBj2

� 1H

1A1A = 0:

Now, since 1H � S � �1H then

����S � � + 2 1H

���� � 1

2
(�� ) :
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Taking the modulus in (3.2) and using the properties of trace, we have

tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2

(3.3)

=
1

tr
�
jBj2

�
������tr
0@jBj2�S � � + 

2
1H

�0@S � tr
�
jBj2 S

�
tr
�
jBj2

� 1H

1A1A������
� 1

tr
�
jBj2

� tr
0@jBj2

������
�
S � � + 

2
1H

�0@S � tr
�
jBj2 S

�
tr
�
jBj2

� 1H

1A������
1A

� 1

2
(�� ) 1

tr
�
jBj2

� tr
0@jBj2

������S �
tr
�
jBj2 S

�
tr
�
jBj2

� 1H

������
1A ;

which proves the �rst part of (3.1).
By Schwarz inequality for trace we also have

1

tr
�
jBj2

� tr
0@jBj2

������S �
tr
�
jBj2 S

�
tr
�
jBj2

� 1H

������
1A(3.4)

�

264 1

tr
�
jBj2

� tr
0B@jBj2

0@S � tr
�
jBj2 S

�
tr
�
jBj2

� 1H

1A2
1CA
375
1=2

=

264 tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2
375
1=2

:

From (3.3) and (3.4) we get

tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2

� 1

2
(�� )

264 tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2
375
1=2

;

which implies that

264 tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2
375
1=2

� 1

2
(�� ) :
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By (3.4) we then obtain

1

tr
�
jBj2

� tr
0@jBj2

������S �
tr
�
jBj2 S

�
tr
�
jBj2

� 1H

������
1A

�

264 tr
�
jBj2 S2

�
tr
�
jBj2

� �

0@ tr
�
jBj2 S

�
tr
�
jBj2

�
1A2
375
1=2

� 1

2
(�� )

that proves the last part of (3.1). �

Remark 6. Let S be a selfadjoint operator such that 1H � S � �1H for some
real constants � � : Then for any P 2 B1 (H) n f0g ; P � 0 we have

0 �
tr
�
PS2

�
tr (P )

�
�
tr (PS)

tr (P )

�2
(3.5)

� 1

2
(�� ) 1

tr (P )
tr

�
P

����S � tr (PS)tr (P )
1H

�����

� 1

2
(�� )

"
tr
�
PS2

�
tr (P )

�
�
tr (PS)

tr (P )

�2#1=2
� 1

4
(�� )2 :

The following result provides reverses for the inequalities (2.45) and (2.46) above:

Theorem 15 (Dragomir, 2014 [30]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If
f is a continuously di¤erentiable convex function on [m;M ] and B 2 B2 (H) n f0g ;
then we have

tr
�
jB�j2 f (A)

�
tr
�
jBj2

� � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A(3.6)

�
tr
�
jB�j2 f 0 (A)A

�
tr
�
jBj2

� �
tr
�
jBj2A

�
tr
�
jBj2

� tr
�
jB�j2 f 0 (A)

�
tr
�
jBj2

�
and

0 �
tr
�
jBj2 f (A)

�
tr
�
jBj2

� � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A(3.7)

�
tr
�
jBj2 f 0 (A)A

�
tr
�
jBj2

� �
tr
�
jBj2A

�
tr
�
jBj2

� tr
�
jBj2 f 0 (A)

�
tr
�
jBj2

� =: K (f 0; B;A) :
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Moreover, we have

K (f 0; B;A)(3.8)

�

8>>>>>><>>>>>>:
1
2 [f

0 (M)� f 0 (m)]
tr

 
jBj2

�����A� tr(jBj2A)
tr(jBj2)

1H

�����
!

tr(jBj2)

1
2 (M �m)

tr

 
jBj2

�����f 0(A)� tr(jBj2f0(A))
tr(jBj2)

1H

�����
!

tr(jBj2)

�

8>>>>>>><>>>>>>>:

1
2 [f

0 (M)� f 0 (m)]
"
tr(jBj2A2)
tr(jBj2)

�
�
tr(jBj2A)
tr(jBj2)

�2#1=2

1
2 (M �m)

"
tr
�
jBj2[f 0(A)]

2
�

tr(jBj2)
�
�
tr(jBj2f 0(A))
tr(jBj2)

�2#1=2
� 1

4
[f 0 (M)� f 0 (m)] (M �m) :

Proof. By the gradient inequality we have

(3.9) f (�)� f (&) � f 0 (�) (� � &)

for any � ; & 2 [m;M ] :
This inequality implies in the operator order

f (A)� f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A 1H � f 0 (A)

0@A� tr
�
jBj2A

�
tr
�
jBj2

� 1H

1A
that is equivalent to

hf (A) y; yi � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A hy; yi(3.10)

� hf 0 (A)Ay; yi �
tr
�
jBj2A

�
tr
�
jBj2

� hf 0 (A) y; yi

for any y 2 H; which is of interest in itself as well.
Let E := feigi2I be an orthonormal basis in H. If we take in (3.10) y = Bei and

sum, then we get

X
i2I

hf (A)Bei; Beii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1AX

i2I
hBei; Beii

�
X
i2I

hf 0 (A)ABei; Beii �
tr
�
jBj2A

�
tr
�
jBj2

� X
i2I

hf 0 (A)Bei; Beii ;
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which is equivalent to

X
i2I

hB�f (A)Bei; eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1AX

i2I
hB�Bei; eii

�
X
i2I

hB�f 0 (A)ABei; eii �
tr
�
jBj2A

�
tr
�
jBj2

� X
i2I

hB�f 0 (A)Bei; eii

and the inequality (3.6) is obtained.
If we take in (3.10) y = B�ei and sum, then we get

X
i2I

hf (A)B�ei; B�eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1AX

i2I
hB�ei; B�eii

�
X
i2I

hf 0 (A)AB�ei; B�eii �
tr
�
jBj2A

�
tr
�
jBj2

� X
i2I

hf 0 (A)B�ei; B�eii

that is equivalent to

X
i2I

hBf (A)B�ei; eii � f

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1AX

i2I
hBB�ei; eii(3.11)

�
X
i2I

hBf 0 (A)AB�ei; eii �
tr
�
jBj2A

�
tr
�
jBj2

� X
i2I

hBf 0 (A)B�ei; eii

and the inequality (3.7) is obtained.
Now, since f is continuously convex on [m;M ] ; then f 0 is monotonic nondecreas-

ing on [m;M ] and f 0 (m) � f 0 (t) � f 0 (M) for any t 2 [m;M ] : We also observe
that

1

tr
�
jBj2

� tr
0@jBj2 �f 0 (A)� f 0 (m) + f 0 (M)

2
1H

�24A� tr
�
jBj2A

�
tr
�
jBj2

� 1H

351A(3.12)

=
1

tr
�
jBj2

� tr
0@jBj2 f 0 (A)

24A� tr
�
jBj2A

�
tr
�
jBj2

� 1H

351A
� f 0 (m) + f 0 (M)

2

1

tr
�
jBj2

� tr
0@jBj2

24A� tr
�
jBj2A

�
tr
�
jBj2

� 1H

351A
= K (f 0; B;A) :

Since ����f 0 (A)� f 0 (m) + f 0 (M)

2
1H

���� � 1

2
[f 0 (M)� f 0 (m)] 1H ;
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then by taking the modulus in (3.12) and utilizing the properties of trace we have

0 � K (f 0; B;A)(3.13)

� 1

tr
�
jBj2

�
� tr

0@jBj2
������
�
f 0 (A)� f 0 (m) + f 0 (M)

2
1H

�24A� tr
�
jBj2A

�
tr
�
jBj2

� 1H

35������
1A

� 1

2
[f 0 (M)� f 0 (m)] 1

tr
�
jBj2

� tr
0@jBj2

������A�
tr
�
jBj2A

�
tr
�
jBj2

� 1H

������
1A ;

and the �rst inequality in the �rst branch of (3.8) is proved.
We have m1H � A �M1H and by applying Lemma 1 we can state that

1

tr
�
jBj2

� tr
0@jBj2

������A�
tr
�
jBj2A

�
tr
�
jBj2

� 1H

������
1A(3.14)

�

264 tr
�
jBj2A2

�
tr
�
jBj2

� �

0@ tr
�
jBj2A

�
tr
�
jBj2

�
1A2
375
1=2

� 1

2
(M �m) :

Making use of (3.13) and (3.14) we deduce the second and the third inequalities in
the �rst branch of (3.8).
We observe that K (f 0; B;A) can be also represented as

K (f 0; B;A)

=
1

tr
�
jBj2

� tr
0@jBj2

24f 0 (A)� tr
�
jBj2 f 0 (A)

�
tr
�
jBj2

� 1H

35�A� m+M

2
1H

�1A :

Applying a similar argument as above for this representation, we get the second
branch of the inequality (3.8).
The proof is complete. �

Corollary 9. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m; M with m < M: If f is a continuously
di¤erentiable convex function on [m;M ] and P 2 B1 (H) n f0g ; P � 0; then we
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have

0 � tr (Pf (A))

tr (P )
� f

�
tr (PA)

tr (P )

�
(3.15)

� tr (Pf 0 (A)A)

tr (P )
� tr (PA)
tr (P )

� tr (Pf
0 (A))

tr (P )

�

8>>><>>>:
1
2 [f

0 (M)� f 0 (m)] tr(P jA�
tr(PA)
tr(P )

1H j)
tr(P )

1
2 (M �m)

tr

�
P

����f 0(A)� tr(Pf0(A))
tr(P )

1H

�����
tr(P )

�

8>>>>>><>>>>>>:

1
2 [f

0 (M)� f 0 (m)]
�
tr(PA2)
tr(P ) �

�
tr(PA)
tr(P )

�2�1=2

1
2 (M �m)

"
tr
�
P [f 0(A)]

2
�

tr(P ) �
�
tr(Pf 0(A))

tr(P )

�2#1=2
� 1

4
[f 0 (M)� f 0 (m)] (M �m) :

Remark 7. LetMn (C) be the space of all square matrices of order n with complex
elements and A 2 Mn (C) be a Hermitian matrix such that Sp (A) � [m;M ] for
some scalarsm; M withm < M: If f is a continuously di¤erentiable convex function
on [m;M ] ; then by taking P = In, the identity matrix, in (3.15) we get

0 � tr (f (A))

n
� f

�
tr (A)

n

�
(3.16)

� tr (f 0 (A)A)

n
� tr (A)

n

tr (f 0 (A))

n

�

8>><>>:
1
2 [f

0 (M)� f 0 (m)] tr(jA�
tr(A)
n Inj)

n

1
2 (M �m)

tr

�����f 0(A)� tr(f0(A))
n In

�����
n

�

8>>>>>><>>>>>>:

1
2 [f

0 (M)� f 0 (m)]
�
tr(A2)
n �

�
tr(A)
n

�2�1=2

1
2 (M �m)

"
tr
�
[f 0(A)]

2
�

n �
�
tr(f 0(A))

n

�2#1=2
� 1

4
[f 0 (M)� f 0 (m)] (M �m) :

3.2. Some Examples. We consider the power function f : (0;1) ! (0;1) ;
f (t) = tr with t 2 Rn f0g : For r 2 (�1; 0)[ [1;1), f is convex while for r 2 (0; 1),
f is concave. Denote B+1 (H) := fP with P 2 B1 (H) and P � 0g :
Let r � 1 and A be a selfadjoint operator on the Hilbert space H and assume

that Sp (A) � [m;M ] for some scalars m; M with 0 � m < M: If P 2 B+1 (H)nf0g ;
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then

0 � tr (PAr)

tr (P )
�
�
tr (PA)

tr (P )

�r
(3.17)

� r

"
tr (PAr)

tr (P )
� tr (PA)
tr (P )

tr
�
PAr�1

�
tr (P )

#

�

8>>>><>>>>:
1
2r
�
Mr�1 �mr�1� tr(P jA� tr(PA)

tr(P )
1H j)

tr(P )

1
2r (M �m)

tr

 
P

�����Ar�1�
tr(PAr�1)

tr(P )
1H

�����
!

tr(P )

�

8>>>>>><>>>>>>:

1
2r
�
Mr�1 �mr�1� � tr(PA2)

tr(P ) �
�
tr(PA)
tr(P )

�2�1=2

1
2r (M �m)

"
tr(PA2(r�1))

tr(P ) �
�
tr(PAr�1)
tr(P )

�2#1=2
� 1

4
r
�
Mr�1 �mr�1� (M �m) :

Consider the convex function f : (0;1) ! (0;1) ; f (t) = � ln t and let A be a
selfadjoint operator on the Hilbert space H and assume that Sp (A) � [m;M ] for
some scalars m; M with 0 < m < M: If P 2 B+1 (H) n f0g ; then

0 � ln
�
tr (PA)

tr (P )

�
� tr (P lnA)

tr (P )
(3.18)

� tr (PA)

tr (P )

tr
�
PA�1

�
tr (P )

� 1

�

8>>>><>>>>:
M�m
2mM

tr(P jA� tr(PA)
tr(P )

1H j)
tr(P )

1
2 (M �m)

tr

 
P

�����A�1�
tr(PA�1)

tr(P )
1H

�����
!

tr(P )

�

8>>>>>><>>>>>>:

M�m
2mM

�
tr(PA2)
tr(P ) �

�
tr(PA)
tr(P )

�2�1=2

1
2 (M �m)

"
tr(PA�2)
tr(P ) �

�
tr(PA�1)
tr(P )

�2#1=2

� (M �m)2

4mM
:

Consider the convex function f (t) = t ln t and let A be a selfadjoint operator on
the Hilbert space H and assume that Sp (A) � [m;M ] for some scalars m; M with
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0 < m < M: If P 2 B+1 (H) n f0g ; then

0 � tr (PA lnA)

tr (P )
� tr (PA)
tr (P )

ln

�
tr (PA)

tr (P )

�
(3.19)

� tr (PA ln (eA))

tr (P )
� tr (PA)
tr (P )

tr (P ln (eA))

tr (P )

�

8>><>>:
1
2 ln

�
M
m

� tr(P jA� tr(PA)
tr(P )

1H j)
tr(P )

1
2 (M �m) tr(P jln(eA)�

tr(P ln(eA))
tr(P )

1H j)
tr(P )

�

8>>>>><>>>>>:
1
2 ln

�
M
m

� � tr(PA2)
tr(P ) �

�
tr(PA)
tr(P )

�2�1=2

1
2 (M �m)

�
tr(P [ln(eA)]2)

tr(P ) �
�
tr(P ln(eA))

tr(P )

�2�1=2
� 1

4
(M �m) ln

�
M

m

�
:

3.3. Further Reverse Inequalities for Convex Functions. The following re-
verses of Jensen�s trace inequality also hold:

Theorem 16 (Dragomir, 2014 [32]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If
f is a continuos convex function on [m;M ] and P 2 B1 (H) n f0g ; P � 0 is such
that tr(PA)tr(P ) 2 (m;M) then we have

0 � tr (Pf (A))

tr (P )
� f

�
tr (PA)

tr (P )

�
(3.20)

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m 	f

�
tr (PA)

tr (P )
;m;M

�

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m sup

t2(m;M)

	f (t;m;M)

�
�
M � tr (PA)

tr (P )

��
tr (PA)

tr (P )
�m

�
f 0� (M)� f 0+ (m)

M �m

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
;

where 	f (�;m;M) : (m;M)! R is de�ned by

	f (t;m;M) =
f (M)� f (t)

M � t � f (t)� f (m)
t�m :
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We also have

0 � tr (Pf (A))

tr (P )
� f

�
tr (PA)

tr (P )

�
(3.21)

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m 	f

�
tr (PA)

tr (P )
;m;M

�
� 1

4
(M �m)	f

�
tr (PA)

tr (P )
;m;M

�
� 1

4
(M �m) sup

t2(m;M)

	f (t;m;M)

� 1

4
(M �m)

�
f 0� (M)� f 0+ (m)

�
;

for any P 2 B1 (H) n f0g ; P � 0 such that tr(PA)tr(P ) 2 (m;M) :

Proof. Since f is convex, then we have

f (t) = f

�
m (M � t) +M (t�m)

M �m

�
� (M � t) f (m) + (t�m) f (M)

M �m
for any t 2 [m;M ] :
This scalar inequality implies, by utilizing the spectral representation of contin-

uous functions of selfadjoint operators, the following inequality

(3.22) f (A) � f (m) (M1M �A) + f (M) (A�m1H)
M �m

in the operator order of B (H).
Utilising the properties of the trace and the inequality (3.22), we have

tr (Pf (A))

tr (P )
� f

�
tr (PA)

tr (P )

�
(3.23)

=
tr (Pf (A))

tr (P )
� f

0@ tr
�
P m(M1H�A)+M(A�1Hm)

M�m

�
tr (P )

1A
�
tr
�
P f(m)(M1M�A)+f(M)(A�m1H)

M�m

�
tr (P )

� f

0@ tr
�
P m(M1H�A)+M(A�1Hm)

M�m

�
tr (P )

1A
=

�
M � tr(PA)

tr(P )

�
f (m) +

�
tr(PA)
tr(P ) �m

�
f (M)

M �m

� f

0@
�
M � tr(PA)

tr(P )

�
m+

�
tr(PA)
tr(P ) �m

�
M

M �m

1A
=: B (f; P;A;m;M)

for any P 2 B1 (H) n f0g ; P � 0:
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By denoting

�f (t;m;M) :=
(t�m) f (M) + (M � t) f (m)

M �m � f (t) ; t 2 [m;M ]

we have

�f (t;m;M) =
(t�m) f (M) + (M � t) f (m)� (M �m) f (t)

M �m(3.24)

=
(t�m) f (M) + (M � t) f (m)� (M � t+ t�m) f (t)

M �m

=
(t�m) [f (M)� f (t)]� (M � t) [f (t)� f (m)]

M �m

=
(M � t) (t�m)

M �m 	f (t;m;M)

for any t 2 (m;M) :
Therefore

(3.25) B (f; P;A;m;M) =

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m 	f

�
tr (PA)

tr (P )
;m;M

�
;

provided that tr(PA)tr(P ) 2 (m;M) :
If tr(PA)tr(P ) 2 (m;M) ; then

	f

�
tr (PA)

tr (P )
;m;M

�
(3.26)

� sup
t2(m;M)

	f (t;m;M)

= sup
t2(m;M)

�
f (M)� f (t)

M � t � f (t)� f (m)
t�m

�
� sup

t2(m;M)

�
f (M)� f (t)

M � t

�
+ sup
t2(m;M)

�
�f (t)� f (m)

t�m

�
= sup

t2(m;M)

�
f (M)� f (t)

M � t

�
� inf
t2(m;M)

�
f (t)� f (m)

t�m

�
= f 0� (M)� f 0+ (m) ;

which by (3.23) and (3.25) produces the second, third and fourth inequalities in
(3.20).
Since, obviously

1

M �m

�
M � tr (PA)

tr (P )

��
tr (PA)

tr (P )
�m

�
� 1

4
(M �m) ;

then the last part of (3.20) also holds.
The second part of the theorem is clear and the details are omitted. �

The following result also holds:

Theorem 17 (Dragomir, 2014 [32]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m; M with m < M: If
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f is a continuos convex function on [m;M ] then for all P 2 B1 (H) n f0g ; P � 0
we have that tr(PA)tr(P ) 2 [m;M ] and

0 � tr (Pf (A))

tr (P )
� f

�
tr (PA)

tr (P )

�
(3.27)

� 2max

8<:M � tr(PA)
tr(P )

M �m ;

tr(PA)
tr(P ) �m
M �m

9=;
�
f (m) + f (M)

2
� f

�
m+M

2

��

� 2
�
f (m) + f (M)

2
� f

�
m+M

2

��
:

Proof. Since m1H � A � M1H ; it follows that m tr (P ) � tr (PA) � M tr (P ) for
any P 2 B1 (H) n f0g ; P � 0; which shows that tr(PA)tr(P ) 2 [m;M ] :
Further on, we recall the following result (see for instance [12]) that provides a

re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
i2f1;:::;ng

fpig
"
1

n

nX
i=1

f (xi)� f
 
1

n

nX
i=1

xi

!#
(3.28)

� 1

Pn

nX
i=1

pif (xi)� f
 
1

Pn

nX
i=1

pixi

!

� n max
i2f1;:::;ng

fpig
"
1

n

nX
i=1

f (xi)� f
 
1

n

nX
i=1

xi

!#
;

where f : C ! R is a convex function de�ned on the convex subset C of the linear
space X; fxigi2f1;:::;ng � C are vectors and fpigi2f1;:::;ng are nonnegative numbers
with Pn :=

Pn
i=1 pi > 0:

For n = 2 we deduce from (3.28) that

2min ft; 1� tg
�
f (x) + f (y)

2
� f

�
x+ y

2

��
(3.29)

� tf (x) + (1� t) f (y)� f (tx+ (1� t) y)

� 2max ft; 1� tg
�
f (x) + f (y)

2
� f

�
x+ y

2

��

for any x; y 2 C and t 2 [0; 1] :
If we use the second inequality in (3.29) for the convex function f : I ! R where

m; M 2 R, m < M with [m;M ] = I; we have for x = m; y =M and t =
M� tr(PA)

tr(P )

M�m
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that

B (f; P;A;m;M) =

�
M � tr(PA)

tr(P )

�
f (m) +

�
tr(PA)
tr(P ) �m

�
f (M)

M �m

� f

0@m
�
M � tr(PA)

tr(P )

�
+M

�
tr(PA)
tr(P ) �m

�
M �m

1A
� 2max

8<:M � tr(PA)
tr(P )

M �m ;

tr(PA)
tr(P ) �m
M �m

9=;
�
�
f (m) + f (M)

2
� f

�
m+M

2

��
:

Making use of (3.23) we deduce the �rst inequality in (3.27).
Since

max

8<:M � tr(PA)
tr(P )

M �m ;

tr(PA)
tr(P ) �m
M �m

9=; � 1;

the last part of (3.27) is also proved. �

3.4. Some Examples. For p > 1 and 0 < m < M < 1 consider the convex
function f (t) = tp de�ned on [m;M ] : Then 	p (�;m;M) : (m;M) ! R is de�ned
by

	p (t;m;M) =
Mp � tp
M � t � tp �mp

t�m

=
t (Mp �mp)� tp (M �m)�mM

�
Mp�1 �mp�1�

(M � t) (t�m) :

Let A be a nonnegative selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m; M with 0 � m < M: If P 2 B1 (H)nf0g ;
P � 0 such that tr(PA)tr(P ) 2 (m;M) ; then we have from (3.20) that

0 � tr (PAp)

tr (P )
�
�
tr (PA)

tr (P )

�p
(3.30)

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m 	p

�
tr (PA)

tr (P )
;m;M

�

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m sup

t2(m;M)

	p (t;m;M)

� p

�
M � tr (PA)

tr (P )

��
tr (PA)

tr (P )
�m

�
Mp�1 �mp�1

M �m

� 1

4
p (M �m)

�
Mp�1 �mp�1�
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and from (3.21) that

0 � tr (PAp)

tr (P )
�
�
tr (PA)

tr (P )

�p
(3.31)

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m 	p

�
tr (PA)

tr (P )
;m;M

�
� 1

4
(M �m)	p

�
tr (PA)

tr (P )
;m;M

�
� 1

4
(M �m) sup

t2(m;M)

	p (t;m;M)

� 1

4
p (M �m)

�
Mp�1 �mp�1� :

For p = 2; we have

	2 (t;m;M) =
M2 � t2
M � t � t2 �m2

t�m =M �m

and by (3.30) we get

0 �
tr
�
PA2

�
tr (P )

�
�
tr (PA)

tr (P )

�2
�
�
M � tr (PA)

tr (P )

��
tr (PA)

tr (P )
�m

�
(3.32)

� 1

4
(M �m)2

for any P 2 B1 (H) n f0g ; P � 0:
Making use of the inequality (3.27) we have

0 � tr (PAp)

tr (P )
�
�
tr (PA)

tr (P )

�p
(3.33)

� 2max

8<:M � tr(PA)
tr(P )

M �m ;

tr(PA)
tr(P ) �m
M �m

9=;
�
mp +Mp

2
�
�
m+M

2

�p�

� 2
�
mp +Mp

2
�
�
m+M

2

�p�
;

for any positive operator A with Sp (A) � [m;M ] and for any P 2 B1 (H) n f0g ;
P � 0:
In particular, for p = 2 we get

0 �
tr
�
PA2

�
tr (P )

�
�
tr (PA)

tr (P )

�2
(3.34)

� 1

2
(M �m)max

�
M � tr (PA)

tr (P )
;
tr (PA)

tr (P )
�m

�
� 1

2
(M �m)2 :

Since

max

�
M � tr (PA)

tr (P )
;
tr (PA)

tr (P )
�m

�
=
1

2
(M �m) +

���� tr (PA)tr (P )
� 1
2
(m+M)

���� ;
then the second inequality in (3.34) is not as good as the second inequality in (3.32).
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For p = �1 and 0 < m < M < 1 consider the convex function f (t) =
t�1 de�ned on [m;M ] : Then 	�1 (�;m;M) : (m;M)! R is de�ned by

	�1 (t;m;M) =
M�1 � t�1
M � t � t�1 �m�1

t�m =
M �m
mMt

:

The de�nition of 	�1 (�;m;M) can be extended to the closed interval [m;M ] : We
also have that

sup
t2(m;M)

	�1 (t;m;M) =
M �m
m2M

:

From the inequality (3.20) we get

0 �
tr
�
PA�1

�
tr (P )

� tr (P )

tr (PA)
(3.35)

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
mM

tr (P )

tr (PA)

� 1

m2M

�
M � tr (PA)

tr (P )

��
tr (PA)

tr (P )
�m

�
� 1

4

(M �m)2 (M +m)

m2M2
;

while from (3.21) we get

0 �
tr
�
PA�1

�
tr (P )

� tr (P )

tr (PA)
(3.36)

�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
mM

tr (P )

tr (PA)

� 1

4

(M �m)2

mM

tr (P )

tr (PA)
� 1

4

(M �m)2

m2M

for any positive de�nite operator A with Sp (A) � [m;M ] and P 2 B1 (H) n f0g ;
P � 0: Since m > 0; then tr (PA) � m tr (P ) > 0:
From the inequality (3.27) we have

0 �
tr
�
PA�1

�
tr (P )

� tr (P )

tr (PA)
(3.37)

� (M �m)2

mM (m+M)
max

8<:M � tr(PA)
tr(P )

M �m ;

tr(PA)
tr(P ) �m
M �m

9=;
� (M �m)2

mM (m+M)
;

for any positive de�nite operator A with Sp (A) � [m;M ] and any P 2 B1 (H)nf0g ;
P � 0:
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In order to compare the upper bounds provided by (3.36) and (3.37) consider
the di¤erence

�(m;M) :=
1

4

(M �m)2

m2M
� (M �m)2

mM (m+M)

=
(M �m)2

mM

�
1

4m
� 1

m+M

�
=
(M �m)2 (M � 3m)
4m2M (m+M)

;

where 0 < m < M:
We observe that if M < 3m; then the upper bound provided by (3.36) is better

than the bound provided by (3.37). The conclusion is the other way around if
M � 3m:
If we consider the convex function f (t) = � ln t de�ned on [m;M ] � (0;1) ;

then 	� ln (�;m;M) : (m;M)! R is de�ned by

	� ln (t;m;M) =
� lnM + ln t

M � t � � ln t+ lnm
t�m

=
(M �m) ln t� (M � t) lnm� (t�m) lnM

(M � t) (t�m)

= ln

�
tM�m

mM�tM t�m

� 1
(M�t)(t�m)

:

Utilising the inequality (3.20) we have

0 � ln
�
tr (PA)

tr (P )

�
� tr (P lnA)

tr (P )
(3.38)

� 1

M �m ln

0B@
�
tr(PA)
tr(P )

�M�m

mM� tr(PA)
tr(P ) M

tr(PA)
tr(P )

�m

1CA
�

�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

�
M �m sup

t2(m;M)

	� ln (t;m;M)

� 1

Mm

�
M � tr (PA)

tr (P )

��
tr (PA)

tr (P )
�m

�
� (M �m)2

4mM
;

for any positive de�nite operator A with Sp (A) � [m;M ] and P 2 B1 (H) n f0g ;
P � 0:
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From (3.21) we have

0 � ln
�
tr (PA)

tr (P )

�
� tr (P lnA)

tr (P )
(3.39)

� 1

M �m ln

0B@
�
tr(PA)
tr(P )

�M�m

mM� tr(PA)
tr(P ) M

tr(PA)
tr(P )

�m

1CA
� 1

4

(M �m)�
M � tr(PA)

tr(P )

��
tr(PA)
tr(P ) �m

� ln
0B@

�
tr(PA)
tr(P )

�M�m

mM� tr(PA)
tr(P ) M

tr(PA)
tr(P )

�m

1CA
� 1

4
(M �m) sup

t2(m;M)

	� ln (t;m;M)

� (M �m)2

4mM
;

for any positive de�nite operator A with Sp (A) � [m;M ] and P 2 B1 (H) n f0g ;
P � 0:
From the inequality (3.27) we get

0 � ln
�
tr (PA)

tr (P )

�
� tr (P lnA)

tr (P )
(3.40)

� max

8<:M � tr(PA)
tr(P )

M �m ;

tr(PA)
tr(P ) �m
M �m

9=; ln
 �

m+M
2

�2
mM

!

� ln
 �

m+M
2

�2
mM

!
;

for any positive de�nite operator A with Sp (A) � [m;M ] and P 2 B1 (H) n f0g ;
P � 0:
We observe that, since lnx � x� 1 for any x > 0; then

ln

 �
m+M
2

�2
mM

!
�
�
m+M
2

�2
mM

� 1 = (M �m)2

4mM
;

which shows that the absolute upper bound for

ln

�
tr (PA)

tr (P )

�
� tr (P lnA)

tr (P )

provided by the inequality (3.40) is better than the one provided by (3.39).

3.5. Reverses of Hölder�s Inequality. We have the following result:

Theorem 18 (Dragomir, 2014 [32]). Assume that p; q > 1 with 1
p +

1
q = 1: Let S

be a positive operator that commutes with Q; a positive invertible operator and such
that there exists the constants k; K > 0 with

(3.41) k1H � SQ1�q � K1H :

If Sp; Qq 2 B1 (H) ; then we have

(3.42) 0 � [tr (Sp)]1=p [tr (Qq)]1=q � tr (SQ) � Bp (k;K) tr (Q
q) ;
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where

(3.43) Bp (k;K) =

8>><>>:
1

41=p
p1=p (K � k)1=p

�
Kp�1 � kp�1

�1=p
;

21=p
h
kp+Kp

2 �
�
k+K
2

�pi1=p
:

Proof. If we write the inequality

(3.44) 0 � tr (PAp)

tr (P )
�
�
tr (PA)

tr (P )

�p
� 1

4
p (M �m)

�
Mp�1 �mp�1�

for the operators P = Qq and A = SQ1�q then we get

0 �
tr
�
Qq
�
SQ1�q

�p�
tr (Qq)

�
 
tr
�
QqSQ1�q

�
tr (Qq)

!p
(3.45)

� 1

4
p (K � k)

�
Kp�1 � kp�1

�
:

Observe that, by the properties of trace we have

tr
�
QqSQ1�q

�
= tr

�
SQ1�qQq

�
= tr (SQ) :

It is known, see for instance [52, p. 356-358], that if A and B are two commuting
bounded selfadjoint operators on the complex Hilbert space H; then there exists a
bounded selfadjoint operator T on H and two bounded functions ' and  such that
A = ' (T ) and B =  (T ) : Moreover, if fE�g is the spectral family over the closed
interval [0; 1] for the selfadjoint operator T , then T =

R 1
0� �dE�; where the integral

is taken in the Riemann-Stieltjes sense, the functions ' and  are summable with
respect with fE�g on [0; 1] and

A = ' (T ) =

Z 1

0�
' (�) dE� and B =  (T ) =

Z 1

0�
 (�) dE�:

Now, if A and B are as above with Sp (A) ; Sp (B) � J an interval of real numbers,
then for any continuous functions f; g : J ! C we have the representations

f (A) =

Z 1

0�
(f � ') (�) dE� and g (B) =

Z 1

0�
(g �  ) (�) dE�:

If we apply the above property to the commuting selfadjoint operators S and Q;
then we have two positive functions ' and  such that S = ' (T ) and Q =  (T ) :
Moreover, using the integral representation for functions of selfadjoint operators,
we have

Qq
�
SQ1�q

�p
= [ (T )]

q
�
' (T ) [ (T )]

1�q
�p

=

Z 1

0�
[ (�)]

q
�
' (�) [ (�)]

1�q
�p
dE�

=

Z 1

0�
[ (�)]

q
[' (�)]

p
[ (�)]

(1�q)p
dE�

=

Z 1

0�
[' (�)]

p
[ (�)]

q+p�qp
dE� =

Z 1

0�
[' (�)]

p
dE� = Sp:



TRACE INEQUALITIES OF JENSEN TYPE 39

Therefore, the inequality (3.45) is equivalent to

(3.46) 0 � tr (Sp)

tr (Qq)
�
�
tr (SQ)

tr (Qq)

�p
� 1

4
p (K � k)

�
Kp�1 � kp�1

�
;

which is of interest in itself.
From this inequality we have

tr (Sp) [tr (Qq)]
p�1 � (tr (SQ))p + 1

4
p (K � k)

�
Kp�1 � kp�1

�
[tr (Qq)]

p
:

Taking the power 1=p 2 (0; 1) and using the property that
(�+ �)

r � �r + �r; where �; � � 0 and r 2 (0; 1) ;
we get

[tr (Sp)]
1=p
[tr (Qq)]

(p�1)=p

�
�
(tr (SQ))

p
+
1

4
p (K � k)

�
Kp�1 � kp�1

�
[tr (Qq)]

p

�1=p
� tr (SQ) + 1

41=p
p1=p (K � k)1=p

�
Kp�1 � kp�1

�1=p
[tr (Qq)] ;

i.e.

[tr (Sp)]
1=p
[tr (Qq)]

1=q � tr (SQ)

� 1

41=p
p1=p (K � k)1=p

�
Kp�1 � kp�1

�1=p
[tr (Qq)]

The second part follows from the inequality

0 � tr (PAp)

tr (P )
�
�
tr (PA)

tr (P )

�p
� 2

�
mp +Mp

2
�
�
m+M

2

�p�
;

and the details are omitted. �

Remark 8. We observe that under the previous assumptions, from any upper bound
for the di¤erence

0 � tr (PAp)

tr (P )
�
�
tr (PA)

tr (P )

�p
we can deduce in a similar way an upper bound for the Hölder�s di¤erence

0 � [tr (Sp)]1=p [tr (Qq)]1=q � tr (SQ) :
Also, if the commutativity property of the operators S and Q is dropped, then we
can prove that

(3.47) 0 �
h
tr
�
Qq
�
SQ1�q

�p�i1=p
[tr (Qq)]

1=q � tr (SQ) � Bp (k;K) tr (Q
q)

with the same Bp (k;K) : However, the noncommutative case of the second inequal-
ity in (3.42) is an open question for the author.

The following reverse of Schwarz inequality holds:

Corollary 10. Let S be a positive operator that commutes with Q; a positive in-
vertible operator and such that there exists the constants k; K > 0 with

(3.48) k1H � SQ�1 � K1H :
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If S2; Q2 2 B1 (H) ; then we have

(3.49) 0 �
�
tr
�
S2
��1=2 �

tr
�
Q2
��1=2 � tr (SQ) � p

2

2
(K � k) tr

�
Q2
�
:

Remark 9. If we take p = q = 2 in (3.47) and drop the commutativity assumption,
then we get

0 �
�
tr
�
QSQ�1S

��1=2 �
tr
�
Q2
��1=2 � tr (SQ) � p

2

2
(K � k) tr

�
Q2
�
;

provided that (3.48) holds true.
Also, if we use the inequality (3.32), then we have

0 � tr
�
QSQ�1S

�
tr
�
Q2
�
� [tr (SQ)]2(3.50)

�
�
K tr

�
Q2
�
� tr (SQ)

� �
tr (SQ)� k tr

�
Q2
��
� 1

4
(K � k)2

�
tr
�
Q2
��2

provided that (3.42) holds true.

4. Slater�s Type Trace Inequalities

4.1. Slater�s Type Inequalities. Suppose that I is an interval of real numbers
with interior �I and f : I ! R is a convex function on I. Then f is continuous on
�I and has �nite left and right derivatives at each point of �I. Moreover, if x; y 2 �I
and x < y; then f 0� (x) � f 0+ (x) � f 0� (y) � f 0+ (y) which shows that both f

0
� and

f 0+ are nondecreasing function on �I. It is also known that a convex function must
be di¤erentiable except for at most countably many points.
For a convex function f : I ! R, the subdi¤erential of f denoted by @f is the

set of all functions ' : I ! [�1;1] such that '
�
�I
�
� R and

f (x) � f (a) + (x� a)' (a) for any x; a 2 I:
It is also well known that if f is convex on I; then @f is nonempty, f 0�, f

0
+ 2 @f

and if ' 2 @f , then
f 0� (x) � ' (x) � f 0+ (x) for any x 2 �I.

In particular, ' is a nondecreasing function. If f is di¤erentiable and convex on �I,
then @f = ff 0g :
The following result is well known in the literature as Slater inequality:

Theorem 19 (Slater, 1981, [51]). If f : I ! R is a nonincreasing (nondecreasing)
convex function, xi 2 I; pi � 0 with Pn :=

Pn
i=1 pi > 0 and

Pn
i=1 pi' (xi) 6= 0;

where ' 2 @f; then

(4.1)
1

Pn

nX
i=1

pif (xi) � f

�Pn
i=1 pixi' (xi)Pn
i=1 pi' (xi)

�
:

As pointed out in [11, p. 208], the monotonicity assumption for the derivative '
can be replaced with the condition

(4.2)

Pn
i=1 pixi' (xi)Pn
i=1 pi' (xi)

2 I;

which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.
The following result holds:
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Theorem 20 (Dragomir, 2014 [31]). Let I be an interval and f : I ! R be a convex
and di¤erentiable function on �I (the interior of I) whose derivative f 0 is continuous
on �I: If A is a selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] � �I
and f 0 (A) is a positive invertible operator on H; then

0 � f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� tr [Pf (A)]

tr (P )
(4.3)

� f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

��
tr [PAf 0 (A)]

tr [Pf 0 (A)]
� tr (PA)
tr (P )

�
;

for any P 2 B+1 (H) n f0g :

Proof. Since f is convex and di¤erentiable on �I, then we have

(4.4) f 0 (s) (t� s) � f (t)� f (s) � f 0 (t) (t� s)

for any t; s 2 [m;M ] :
Now, if we �x t 2 [m;M ] and use the continuous functional calculus for the

operator A; then we have

(4.5) tf 0 (A)�Af 0 (A) � f (t) � 1H � f (A) � f 0 (t) t � 1H � f 0 (t)A

for any t 2 [m;M ].
If we apply the property of the trace to the inequality (4.5) then we have

t tr [Pf 0 (A)]� tr [PAf 0 (A)] � f (t) tr (P )� tr [Pf (A)](4.6)

� f 0 (t) t tr (P )� f 0 (t) tr (PA)

for any P 2 B+1 (H) n f0g :
Now, since A is selfadjoint with m1H � A �M1H and f 0 (A) is positive, then

mf 0 (A) � Af 0 (A) �Mf 0 (A) :

If we apply again the property of the trace, then we get

m tr [Pf 0 (A)] � tr [PAf 0 (A)] �M tr [Pf 0 (A)] ;

which shows that

t0 :=
tr [PAf 0 (A)]

tr [Pf 0 (A)]
2 [m;M ] :

Observe that since f 0 (A) is a positive invertible operator onH; then tr [Pf 0 (A)] > 0
for any P 2 B+1 (H) n f0g :
Finally, if we put t = t0 in the equation (4.6), then we get

tr [PAf 0 (A)]

tr [Pf 0 (A)]
tr [Pf 0 (A)]� tr [PAf 0 (A)](4.7)

� f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
tr (P )� tr [Pf (A)]

� f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]
tr (P )

� f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
tr (PA) ;

which is equivalent to the desired result (4.3). �
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Remark 10. It is important to observe that, the condition that f 0 (A) is a positive
invertible operator on H can be replaced with the more general assumption that

(4.8)
tr [PAf 0 (A)]

tr [Pf 0 (A)]
2 �I and tr [Pf 0 (A)] 6= 0

for any P 2 B+1 (H) n f0g ; which may be easily veri�ed for particular convex func-
tions f in various examples as follows.
Also, as pointed out by the referee, if hf 0 (A)x; xi > 0 for any x 2 H; x 6= 0;

then tr [Pf 0 (A)] > 0 for any P 2 B+1 (H) n f0g and the inequality (4.3) is valid as
well.

Remark 11. Now, if the function is concave on �I and the condition (4.8) holds,
then we have the inequalities

0 � tr [Pf (A)]

tr (P )
� f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
(4.9)

� f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

��
tr (PA)

tr (P )
� tr [PAf

0 (A)]

tr [Pf 0 (A)]

�
;

for any P 2 B+1 (H) n f0g :

Utilising the inequality (4.9) for the concave function f : (0;1)! R, f (t) = ln t;
then we can state that

(4.10) 0 � tr (P lnA)

tr (P )
� ln

�
tr (P )

tr (PA�1)

�
�
tr
�
PA�1

�
tr (P )

tr (PA)

tr (P )
� 1

for any positive invertible operator A and P with P 2 B+1 (H) n f0g :
Utilising the inequality (4.3) for the convex function f : (0;1)! R, f (t) = t�1;

then we can state that

(4.11) 0 �
tr
�
PA�2

�
tr (PA�1)

�
tr
�
PA�1

�
tr (P )

� tr (PA)

tr (P )

tr
�
PA�2

�
tr (PA�1)

�
tr
�
PA�1

�
tr (PA�2)

;

for any positive invertible operator Aand P with P 2 B+1 (H) n f0g :
If we take B = A�1 in (4.11), then we get the equivalent inequality

(4.12) 0 �
tr
�
PB2

�
tr (PB)

� tr (PB)
tr (P )

�
tr
�
PB2

�
tr (PB)

tr
�
PB�1

�
tr (P )

� tr (PB)

tr (PB2)
;

for any positive invertible operator B and P with P 2 B1 (H) n f0g :
If we write the inequality (4.3) for the convex function f (t) = exp (�t) with

� 2 R n f0g ; then we get

0 � exp
�
�
tr [PA exp (�A)]

tr [P exp (�A)]

�
� tr [P exp (�A)]

tr (P )
(4.13)

� � exp

�
�
tr [PA exp (�A)]

tr [P exp (�A)]

��
tr [PA exp (�A)]

tr [P exp (�A)]
� tr (PA)
tr (P )

�
;

for any selfadjoint operator A and P 2 B+1 (H) n f0g :
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4.2. Further Reverses. We use the following Grüss�type inequalities [28]:

Lemma 2 (Dragomir, 2014 [28]). Let S be a selfadjoint operator with m1H � S �
M1H and f : [m;M ] ! C a continuous function of bounded variation on [m;M ].
For any C 2 B (H) and P 2 B+1 (H) n f0g we have the inequality���� tr (Pf (S)C)tr (P )

� tr (Pf (S))
tr (P )

tr (PC)

tr (P )

����(4.14)

� 1

2

M_
m

(f)
1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����

� 1

2

M_
m

(f)

24 tr
�
P jCj2

�
tr (P )

�
���� tr (PC)tr (P )

����2
351=2 ;

where
M_
m

(f) is the total variation of f on the interval.

If the function f : [m;M ] ! C is Lipschitzian with the constant L > 0 on
[m;M ] ; i.e.

jf (t)� f (s)j � L jt� sj

for any t; s 2 [m;M ] ; then���� tr (Pf (S)C)tr (P )
� tr (Pf (S))

tr (P )

tr (PC)

tr (P )

����(4.15)

� L

S � tr (PS)tr (P )
1H

 1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����

� L

S � tr (PS)tr (P )
1H


24 tr

�
P jCj2

�
tr (P )

�
���� tr (PC)tr (P )

����2
351=2

for any C 2 B (H) and P 2 B+1 (H) n f0g.

Proof. For the sake of completeness we give here a simple proof.
We observe that, for any � 2 C we have

1

tr (P )
tr

�
P (A� �1H)

�
C � tr (PC)

tr (P )
1H

��
(4.16)

=
1

tr (P )
tr

�
PA

�
C � tr (PC)

tr (P )
1H

��
� �

tr (P )
tr

�
P

�
C � tr (PC)

tr (P )
1H

��
=
tr (PAC)

tr (P )
� tr (PA)
tr (P )

tr (PC)

tr (P )
:
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Taking the modulus in (4.16) and utilising the properties of the trace, we have���� tr (PAC)tr (P )
� tr (PA)
tr (P )

tr (PC)

tr (P )

����(4.17)

=
1

tr (P )

����tr �P (A� �1H)�C � tr (PC)tr (P )
1H

������
=

1

tr (P )

����tr �(A� �1H)�C � tr (PC)tr (P )
1H

�
P

�����
� kA� �1Hk

1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����
for any � 2 C.
From the inequality (4.17) we have���� tr (Pf (S)C)tr (P )

� tr (Pf (S))
tr (P )

tr (PC)

tr (P )

����(4.18)

� kf (S)� �1Hk
1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����
for any � 2 C.
From (4.18) we get���� tr (Pf (S)C)tr (P )

� tr (Pf (S))
tr (P )

tr (PC)

tr (P )

����(4.19)

�
f (S)� f (m) + f (M)

2
1H

 1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

����� :
Since f is of bounded variation on [m;M ] ; then we have����f (t)� f (m) + f (M)

2

���� = ����f (t)� f (m) + f (t)� f (M)2

����(4.20)

� 1

2
[jf (t)� f (m)j+ jf (M)� f (t)j] � 1

2

M_
m

(f)

for any t 2 [m;M ] :
From (4.20) we get in the order B (H) that����f (S)� f (m) + f (M)

2
1H

���� � 1

2

M_
m

(f) 1H ;

which implies that

(4.21)

f (S)� f (m) + f (M)

2
1H

 � 1

2

M_
m

(f) :

Making use of (4.20) and (4.21) we get the �rst inequality in (4.14).
The second part is obvious by the Schwarz inequality for traces

tr
�����C � tr(PC)

tr(P ) 1H

�
P
����

tr (P )
�

0BB@ tr
�����C � tr(PC)

tr(P ) 1H

�
P 1=2

���2�
tr (P )

1CCA
1=2

;
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and by noticing that

(4.22)
tr

�����C � tr(PC)
tr(P ) 1H

�
P 1=2

���2�
tr (P )

=
tr
�
P jCj2

�
tr (P )

�
���� tr (PC)tr (P )

����2
for any C 2 B (H) and P 2 B+1 (H) n f0g :
From (4.18) we also have���� tr (Pf (S)C)tr (P )

� tr (Pf (S))
tr (P )

tr (PC)

tr (P )

����(4.23)

�
f (S)� f � tr (SP )tr (P )

�
1H

 1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����
any C 2 B (H) and P 2 B+1 (H) n f0g :
Since

jf (t)� f (s)j � L jt� sj

for any t; s 2 [m;M ] ; then we have in the order B (H) that

jf (S)� f (s) 1H j � L jS � s1H j

for any s 2 [m;M ] : In particular, we have����f (S)� f � tr (SP )tr (P )

�
1H

���� � L

����S � tr (SP )tr (P )
1H

���� ;
which implies thatf (S)� f � tr (SP )tr (P )

�
1H

 � L

S � tr (SP )tr (P )
1H


and by (4.23) we get the �rst inequality in (4.15).
The second part is obvious. �

We also have the following reverse of Schwarz inequality [28]:

Lemma 3 (Dragomir, 2014 [28]). If C is a selfadjoint operator with k1H � C �
K1H for some real numbers k < K; then

0 �
tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2
(4.24)

� 1

2
(K � k) 1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����

� 1

2
(K � k)

"
tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2#1=2
� 1

4
(K � k)2 ;

for any P 2 B+1 (H) n f0g :
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Proof. If we take in (4.14) f (t) = t and S = C we get����� tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2�����(4.25)

� 1

2
(K � k) 1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����

� 1

2
(K � k)

"
tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2#1=2
:

Since by (4.22) we have

tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2
� 0;

then by (4.25) we get

0 �
tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2
(4.26)

� 1

2
(K � k) 1

tr (P )
tr

������C � tr (PC)tr (P )
1H

�
P

�����

� 1

2
(K � k)

"
tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2#1=2
:

Utilising the inequality between the �rst and last term in (4.26) we also have"
tr
�
PC2

�
tr (P )

�
�
tr (PC)

tr (P )

�2#1=2
� 1

2
(K � k) ;

which proves the last part of (4.24). �

Theorem 21 (Dragomir, 2014 [31]). Let I be an interval and f : I ! R be a
convex and di¤erentiable function on �I whose derivative f 0 is continuous on �I: If
A is a selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] � �I and
f 0 (A) is a positive invertible operator on H; or

tr [PAf 0 (A)]

tr [Pf 0 (A)]
2 �I; tr [Pf 0 (A)] 6= 0

for any P 2 B+1 (H) n f0g ; then

0 � f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� tr [Pf (A)]

tr (P )
(4.27)

� tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
L (P;A; f 0 (A)) ;
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for any P 2 B+1 (H) n f0g ; where

L (P;A; f 0 (A)) :=
tr [PAf 0 (A)]

tr (P )
� tr (PA)
tr (P )

tr [Pf 0 (A)]

tr (P )

�

8>>><>>>:
1
2 (f

0 (M)� f 0 (m)) 1
tr(P ) tr

�����A� tr(PA)
tr(P ) 1H

�
P
����

1
2 (M �m) 1

tr(P ) tr

������f 0 (A)� tr(Pf 0(A))
tr(P ) 1H

�
P

�����

�

8>>>>>><>>>>>>:

1
2 (f

0 (M)� f 0 (m))
�
tr(PA2)
tr(P ) �

�
tr(PA)
tr(P )

�2�1=2

1
2 (M �m)

"
tr
�
P [f 0(A)]

2
�

tr(P ) �
�
tr(Pf 0(A))

tr(P )

�2#1=2
� 1

4
(f 0 (M)� f 0 (m)) (M �m) :

Proof. Utilising Lemma 2 and Lemma 3 we have

0 � tr (Pf 0 (A)A)

tr (P )
� tr (Pf

0 (A))

tr (P )

tr (PA)

tr (P )
(4.28)

� 1

2
(f 0 (M)� f 0 (m)) 1

tr (P )
tr

������A� tr (PA)tr (P )
1H

�
P

�����

� 1

2
(f 0 (M)� f 0 (m))

"
tr
�
PA2

�
tr (P )

�
�
tr (PA)

tr (P )

�2#1=2
� 1

4
(f 0 (M)� f 0 (m)) (M �m)

and

0 � tr (Pf 0 (A)A)

tr (P )
� tr (Pf

0 (A))

tr (P )

tr (PA)

tr (P )
(4.29)

� 1

2
(M �m) 1

tr (P )
tr

������f 0 (A)� tr (Pf 0 (A))tr (P )
1H

�
P

�����

� 1

2
(M �m)

24 tr
�
P [f 0 (A)]

2
�

tr (P )
�
�
tr (Pf 0 (A))

tr (P )

�2351=2

� 1

4
(f 0 (M)� f 0 (m)) (M �m)

for any P 2 B+1 (H) n f0g :
The positivity of

tr (Pf 0 (A)A)

tr (P )
� tr (Pf

0 (A))

tr (P )

tr (PA)

tr (P )

follows by µCeby�ev�s trace inequality for synchronous functions of selfadjoint oper-
ators, see [27]. �

The case of convex and monotonic functions is as follows:
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Corollary 11. Let I be an interval and f : I ! R be a convex and di¤erentiable
function on �I whose derivative f 0 is continuous on �I: If A is a selfadjoint operator
on the Hilbert space H with Sp (A) � [m;M ] � �I and f 0 (m) > 0, then

(4.30) 0 � f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� tr [Pf (A)]

tr (P )
� f 0 (M)

f 0 (m)
L (P;A; f 0 (A)) ;

for any P 2 B+1 (H) n f0g :

The proof follows by (4.27) observing that

0 � tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� f 0 (M)

f 0 (m)

for any P 2 B+1 (H) n f0g :
If we consider the monotonic nondecreasing convex function f (t) = tp with p � 1

and t � 0; then by (4.30) we have the sequence of inequalities

0 �
�
tr (PAp)

tr (PAp�1)

�p
� tr (PA

p)

tr (P )
(4.31)

� p

�
M

m

�p�1 
tr (PAp)

tr (P )
� tr (PA)
tr (P )

tr
�
PAp�1

�
tr (P )

!

� 1

2
p2
�
M

m

�p�1

�

8>>><>>>:
�
Mp�1 �mp�1� 1

tr(P ) tr
�����A� tr(PA)

tr(P ) 1H

�
P
����

(M �m) 1
tr(P ) tr

������Ap�1 � tr(PAp�1)
tr(P ) 1H

�
P

�����
� 1

2
p2
�
M

m

�p�1

�

8>>>>>><>>>>>>:

�
Mp�1 �mp�1� � tr(PA2)

tr(P ) �
�
tr(PA)
tr(P )

�2�1=2

(M �m)
"
tr(PA2(p�1))

tr(P ) �
�
tr(PAp�1)
tr(P )

�2#1=2

� 1

4
p2
�
M

m

�p�1 �
Mp�1 �mp�1� (M �m)

for any P 2 B+1 (H) n f0g and A with Sp (A) � [m;M ] � (0;1) :

Theorem 22 (Dragomir, 2014 [31]). Let I be an interval and f : I ! R be a
convex and twice di¤erentiable function on �I whose second derivative f 00 is bounded
on �I; i.e. there is a positive constant K such that 0 � f 00 (t) � K for any t 2 �I: If
A is a selfadjoint operator on the Hilbert space H with Sp (A) � [m;M ] � �I and
f 0 (A) is a positive invertible operator on H; or

tr [PAf 0 (A)]

tr [Pf 0 (A)]
2 �I; tr [Pf 0 (A)] 6= 0
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for any P 2 B+1 (H) n f0g ; then

0 � f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� tr [Pf (A)]

tr (P )
(4.32)

� K

A� tr (PA)tr (P )
1H

 1

tr (P )
tr

������A� tr (PA)tr (P )
1H

�
P

�����
� tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�

� K

A� tr (PA)tr (P )
1H


"
tr
�
PA2

�
tr (P )

�
�
tr (PA)

tr (P )

�2#1=2
� tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� 1

2
(M �m)K

A� tr (PA)tr (P )
1H

 tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
for any P 2 B+1 (H) n f0g :

Proof. From (4.27) we have

0 � f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� tr [Pf (A)]

tr (P )
(4.33)

� tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
L (P;A; f 0 (A)) ;

for any P 2 B+1 (H) n f0g :
From (4.15) we also have

(0 �)L (P;A; f 0 (A))(4.34)

� K

A� tr (PA)tr (P )
1H

 1

tr (P )
tr

������A� tr (PA)tr (P )
1H

�
P

�����

� K

A� tr (PA)tr (P )
1H


"
tr
�
PA2

�
tr (P )

�
�
tr (PA)

tr (P )

�2#1=2
for any P 2 B+1 (H) n f0g :
Therefore, by (4.33) and (4.34) we get

0 � f

�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
� tr [Pf (A)]

tr (P )

� K

A� tr (PA)tr (P )
1H

 1

tr (P )
tr

������A� tr (PA)tr (P )
1H

�
P

�����
� tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�

� K

A� tr (PA)tr (P )
1H


"
tr
�
PA2

�
tr (P )

�
�
tr (PA)

tr (P )

�2#1=2
� tr (P )

tr [Pf 0 (A)]
f 0
�
tr [PAf 0 (A)]

tr [Pf 0 (A)]

�
that proves the second and third inequalities in (4.32).
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The last part follows by Lemma 3. �

The inequality (4.32) can be also written for the convex function f (t) = tp with
p � 1 and t � 0; however the details are not presented here.
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