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Abstract. This short survey paper contains brief historical information, main
known facts and original author’s results on the theory of the Buschman–

Erdélyi transmutations and some of their applications. The operators of
Buschman–Erdélyi type were first studied by E.T. Copson, R.G. Buschman
and A. Erdélyi as integral operators. In 1990’s the author was first to prove

the transmutational nature of these operators and published papers with de-
tailed study of their properties. This class include as special cases such fa-

mous objects as the Sonine–Poisson–Delsarte transmutations and the frac-

tional Riemann–Lioville integrals. In this paper, the Buschman–Erdelyi trans-
mutations are logically classified as operators of the first kind with special

case of zero order smoothness operators, second kind and third kind with
special case of unitary Sonine–Katrakhov and Poisson–Katrakhov transmuta-

tions. We study such properties as transmutational conditions, factorizations,

norm estimates, connections with classical integral transforms. Applications
are considered to singular partial differential equations, embedding theorems

with sharp constants in Kipriyanov spaces, Euler–Poisson–Darboux equation

including Copson lemma, generalized translations, Dunkl operators, Radon
transform, generalized harmonics theory, Hardy operators, V.Katrakhov’s re-

sults on pseudodifferential operators and boundary–value problems of new kind

for equations with solutions of arbitrary growth at the isolated singularity for
elliptic partial differential equations.

1. Introduction: an idea of transmutations,
historical information and applications

This paper was published in [1] in the special issue of the Journal of Inequal-
ities and Special Functions dedicated to Professor Ivan Dimovski’s contributions
to different fields of mathematics: transmutation theory, special functions, integral
transforms, function theory etc.

Let us start with the main definition.

Definition 1. For a given pair of operators (A,B) an operator T is called trans-
mutation (or intertwining) operator if on elements of some functional spaces the
following property is valid

T A = B T. (1.1)

It is obvious that the notion of transmutation is direct and far going generaliza-
tion of the matrix similarity from linear algebra. But the transmutations do not
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reduce to similar operators because intertwining operators often are not bounded
in classical spaces and the inverse operator may not exist or not be bounded in
the same space. As a consequence, spectra of intertwining operators are not the
same as a rule. Moreover transmutations may be unbounded. It is the case for
the Darboux transformations which are defined for a pair of differential operators
and are differential operators themselves, in this case all three operators are un-
bounded in classical spaces. But the theory of the Darboux transformations is
included in transmutation theory too. Also a pair of intertwining operators may
not be differential ones. In transmutation theory there are problems for the follow-
ing various types of operators: integral, integro–differential, difference–differential
(e.g. the Dunkl operator), differential or integro–differential of infinite order (e.g.
in connection with Schur’s lemma), general linear operators in functional spaces,
pseudodifferential and abstract differential operators.

All classical integral transforms due to Definition 1 are also special cases of
transmutations, they include the Fourier, Petzval (Laplace), Mellin, Hankel, Weier-
strass, Kontorovich–Lebedev, Meyer, Stankovic, Obrechkoff, finite Grinberg and
other transforms.

In quantum physics, in study of Shrödinger equation and inverse scattering the-
ory, the underlying transmutations are called wave operators.

The commuting operators are also a special class of transmutations. The most
important class consists of operators commuting with derivatives. In this case
transmutations as commutants are usually in the form of formal series, pseudodif-
ferential or infinite order differential operators. Finding of commutants is directly
connected with finding all transmutations in the given functional space. For these
problems works a theory of operator convolutions, including the Berg–Dimovski
convolutions [2]. Also, more and more applications are developed connected with
the transmutation theory for commuting differential operators, such problems are
based on classical results of J.L. Burchnall, T.W.Chaundy. The transmutations
are also connected with factorization problems for integral and differential opera-
tors. Special class of transmutations are the so called Dirichlet–to–Neumann and
Neumann–to–Dirichlet operators which link together solutions of the same equation
but with different kinds of boundary conditions.

And how the transmutations usually works? Suppose we study properties for a
rather complicated operator A. But suppose also that we know the corresponding
properties for a model more simple operator B and transmutation (1.1) readily
exists. Then we usually may copy results for the model operator B to correspond-
ing ones for the more complicated operator A. This is shortly the main idea of
transmutations.

Let us consider for example an equation Au = f , then applying to it a transmuta-
tion with property (1.1) we consider a new equation Bv = g, with v = Tu, g = Tf .
So if we can solve the simpler equation Bv = g, then the initial one is also solved
and has solution u = T−1v. Of course, it is supposed that the inverse operator
exists and its explicit form is known. This is a simple application of the transmuta-
tion technique for finding and proving formulas for solutions of ordinary and partial
differential equations.

The monographs [3]-[8] are completely devoted to the transmutation theory and
its applications, note also author’s survey [9]. Moreover, essential parts of mono-
graphs [2], [10]-[22], [11], etc. include material on transmutations, the complete
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list of books which investigate some transmutational problems is now near of 100
items.

We use the term “transmutation” due to [5]: “Such operators are often called
transformation operators by the Russian school (Levitan, Naimark, Marchenko et.
al.), but transformation seems too broad term, and, since some of the machinery
seems “magical” at times, we have followed Lions and Delsarte in using the word
“transmutation”.

Now the transmutation theory is a completely formed part of the mathematical
world in which methods and ideas from different areas are used: differential and
integral equations, functional analysis, function theory, complex analysis, special
functions, fractional integrodifferentiation.

The transmutation theory is deeply connected with many applications in dif-
ferent fields of mathematics. The transmutation operators are applied in inverse
problems via the generalized Fourier transform, spectral function and famous Lev-
itan equation; in scattering theory the Marchenko equation is formulated in terms
of transmutations; in spectral theory transmutations help to prove trace formulas
and asymptotics for spectral function; estimates for transmutational kernels control
stability in inverse and scattering problems; for nonlinear equations via Lax method
transmutations for Sturm–Lioville problems lead to proving existence and explicit
formulas for soliton solutions. Special kinds of transmutations are the generalized
analytic functions, generalized translations and convolutions, Darboux transforma-
tions. In the theory of partial differential equations the transmutations works for
proving explicit correspondence formulas among solutions of perturbed and non–
perturbed equations, for singular and degenerate equations, pseudodifferential op-
erators, problems with essential singularities at inner or corner points, estimates of
solution decay for elliptic and ultraelliptic equations. In function theory transmu-
tations are applied to embedding theorems and generalizations of Hardy operators,
Paley–Wiener theory, generalizations of harmonic analysis based on generalized
translations. Methods of transmutations are used in many applied problems: in-
vestigation of Jost solutions in scattering theory, inverse problems, Dirac and other
matrix systems of differential equations, integral equations with special function
kernels, probability theory and random processes, stochastic random equations,
linear stochastic estimation, inverse problems of geophysics and transsound gas dy-
namics. Also a number of applications of the transmutations to nonlinear equations
is permanently increased.

In fact, the modern transmutation theory originated from two basic examples,
see [9]. The first is the transmutation T for Sturm–Lioville problems with some
potential q(x) and natural boundary conditions

T (D2 y(x) + q(x)y(x)) = D2 (Ty(x)), D2 y(x) = y′′(x), (1.2)

The second example is a problem of studying transmutations intertwining the Bessel
operator Bν and the second derivative:

T (Bν) f =
(
D2

)
Tf, Bν = D2 +

2ν + 1

x
D, D2 =

d2

dx2
, ν ∈ C. (1.3)

This class of transmutations includes the Sonine–Poisson–Delsarte, Buschman–
Erdélyi operators and their generalizations. Such transmutations found many appli-
cations for a special class of partial differential equations with singular coefficients.
A typical equation of this class is the B–elliptic equation with the Bessel operator
in some variables of the form
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n∑
k=1

Bν,xk
u(x1, . . . , xn) = f. (1.4)

Analogously, B–hyperbolic and B–parabolic equations are considered, this termi-
nology was proposed by I.Kipriyanov. This class of equations was first studied by
Euler, Poisson, Darboux and continued in Weinstein’s theory of generalized axially
symmetric potential (GASPT). These problems were further investigated by Zhito-
mirslii, Kudryavtsev, Lizorkin, Matiychuk, Mikhailov, Olevskii, Smirnov, Tersenov,
He Kan Cher, Yanushauskas, Egorov and others.

In the most detailed and complete way, equations with Bessel operators were
studied by the Voronezh mathematician Kipriyanov and his disciples Ivanov, Ryzhkov,
Katrakhov, Arhipov, Baidakov, Bogachov, Brodskii, Vinogradova, Zaitsev, Zasorin,
Kagan, Katrakhova, Kipriyanova, Kononenko, Kluchantsev, Kulikov, Larin, Leizin,
Lyakhov, Muravnik, Polovinkin, Sazonov, Sitnik, Shatskii, Yaroslavtseva. The
essence of Kipriyanov’s school results was published in [15]. For classes of equations
with Bessel operators, Kipriyanov introduced special functional spaces which were
named after him [23]. In this field interesting results were investigated by Katrakhov
and his disciples, now these problems are considered by Gadjiev, Guliev, Glushak,
Lyakhov, Shishkina with their coauthors and students. Abstract equations of the
form (1.4) originated from the monograph [10] were considered by Egorov, Rep-
nikov, Kononenko, Glushak, Shmulevich and others. And transmutations are one
of basic tools for equations with Bessel operators, they are applied to construction
of solutions, fundamental solutions, study of singularities, new boundary–value and
other problems.

We must note that the term “operator” is used in this paper for brevity in
the broad and sometimes not exact meaning, so appropriate domains and function
classes are not always specified. It is easy to complete and make strict for every
special result.

2. Buschman–Erdélyi transmutations

The term “Buschman–Erdélyi transmutations” was introduced by the author
and is now accepted. Integral equations with these operators were studied in mid–
1950th. The author was first to prove the transmutational nature of these operators.
The classical Sonine and Poisson operators are special cases of the Buschman–
Erdélyi transmutations and Sonine–Dimovski and Poisson–Dimovski transmuta-
tions are their generalizations for the hyper–Bessel equations and functions.

The Buschman–Erdélyi transmutations have many modifications. The author
introduced convenient classification of them. Due to this classification we intro-
duce Buschman–Erdélyi transmutations of the first kind, their kernels are expressed
in terms of Legendre functions of the first kind. In the limiting case we define
Buschman–Erdélyi transmutations of zero order smoothness being important in
applications. The kernels of Buschman–Erdélyi transmutations of the second kind
are expressed in terms of Legendre functions of the second kind. Some combination
of operators of the first kind and the second kind leads to operators of the third
kind. For the special choice of parameters they are unitary operators in the stan-
dard Lebesgue space. The author proposed the terms “Sonine–Katrakhov” and
“Poisson–Katrakhov” transmutations in honor of V.Katrakhov who introduced
and studied these operators.
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The study of integral equations and invertibility for the Buschman–Erdélyi op-
erators was started in 1960-th by P. Buschman and A. Erdélyi, [24]–[27]. These op-
erators also were investigated by Higgins, Ta Li, Love, Habibullah, K.N. Srivastava,
Ding Hoang An, Smirnov, Virchenko, Fedotova, Kilbas, Skoromnik and others.
During this period, for this class of operators were considered only problems of
solving integral equations, factorization and invertibility, cf. [28].

The most detailed study of the Buschman–Erdélyi transmutations was taken
by the author in 1980–1990th [31]–[33] and continued in [29]–[42] and some other
papers. Interesting and important results were proved by N. Virchenko and A.
Kilbas and their disciples [43]–[45].

Let us first consider the most well–known transmutations for the Bessel operator
and the second derivative:

T (Bν) f =
(
D2

)
Tf, Bν = D2 +

2ν + 1

x
D, D2 =

d2

dx2
, ν ∈ C. (2.1)

Definition 2. The Poisson transmutation is defined by

Pνf =
1

Γ(ν + 1)2νx2ν

∫ x

0

(
x2 − t2

)ν− 1
2 f(t) dt, ℜν > −1

2
. (2.2)

Respectivelt, the Sonine transmutation is defined by

Sνf =
2ν+

1
2

Γ( 12 − ν)

d

dx

∫ x

0

(
x2 − t2

)−ν− 1
2 t2ν+1f(t) dt, ℜν <

1

2
. (2.3)

The operators (2.2)–(2.3) intertwine by the formulas

SνBν = D2Sν , PνD
2 = BνPν . (2.4)

The definition may be extended to ν ∈ C. We will use more historically exact term
as the Sonine–Poisson–Delsarte transmutations, [9].

An important generalization for the Sonine–Poisson–Delsarte are the transmu-
tations for the hyper–Bessel operators and functions. Such functions were first
considered by Kummer and Delerue. The detailed study on these operators and
hyper–Bessel functions was done by Dimovski and further, by Kiryakova. The
corresponding transmutations have been called by Kiryakova [11] as the Sonine–
Dimovski and Poisson–Dimovski transmutations. In hyper–Bessel operators theory
the leading role is for the Obrechkoff integral transform [46]–[48], [11]. It is a
transform with Meijer’s G–function kernel which generalizes the Laplace, Meijer
and many other integral transforms introduced by different authors. Various re-
sults on the hyper–Bessel functions, connected equations and transmutations were
many times reopened. The same is true for the Obrechkoff integral transform. It
my opinion, the Obrechkoff transform together with the Laplace, Fourier, Mellin,
Stankovic transforms are essential basic elements from which many other transforms
are constructed with corresponding applications.

Let us define and study some main properties of the Buschman–Erdélyi trans-
mutations of the first kind. This class of transmutations for some choice of parame-
ters generalize the Sonine–Poisson–Delsart transmutations, Riemann–Liouville and
Erdélyi–Kober fractional integrals, Mehler–Fock transform.
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Definition 3. Define the Buschman–Erdélyi operators of the first kind by

Bν,µ
0+ f =

∫ x

0

(
x2 − t2

)−µ
2 Pµ

ν

(x
t

)
f(t)d t, (2.5)

Eν,µ
0+ f =

∫ x

0

(
x2 − t2

)−µ
2 Pµ

ν

(
t

x

)
f(t)d t, (2.6)

Bν,µ
− f =

∫ ∞

x

(
t2 − x2

)−µ
2 Pµ

ν

(
t

x

)
f(t)d t, (2.7)

Eν,µ
− f =

∫ ∞

x

(
t2 − x2

)−µ
2 Pµ

ν

(x
t

)
f(t)d t. (2.8)

Here Pµ
ν (z) is the Legendre function of the first kind, Pµ

ν (z) is this function on
the cut −1 ≤ t ≤ 1 ([52]), f(x) is a locally summable function with some growth
conditions at x → 0, x → ∞. The parameters are µ, ν ∈ C, ℜµ < 1, ℜν ≥ −1/2.

Now consider some main properties for this class of transmutations, following
essentially [31], [33], and also [9], [29]. All functions further are defined on positive
semiaxis. So we use notations L2 for the functional space L2(0,∞) and L2,k for
power weighted space L2,k(0,∞) equipped with norm∫ ∞

0

|f(x)|2x2k+1 dx, (2.9)

N denotes the set of naturals, N0–positive integer, Z–integer and R–real numbers.
First, add to Definition 3 a case of parameter µ = 1. It defines a very important

class of operators.

Definition 4. Define for µ = 1 the Buschman–Erdélyi operators of zero order
smoothness by

Bν,1
0+f = 1S

ν
0+f =

d

dx

∫ x

0

Pν

(x
t

)
f(t) dt, (2.10)

Eν,1
0+f = 1P

ν
−f =

∫ x

0

Pν

(
t

x

)
df(t)

dt
dt, (2.11)

Bν,1
− f = 1S

ν
−f =

∫ ∞

x

Pν

(
t

x

)
(−df(t)

dt
) dt, (2.12)

Eν,1
− f = 1P

ν
0+f = (− d

dx
)

∫ ∞

x

Pν

(x
t

)
f(t) dt, (2.13)

where Pν(z) = P 0
ν (z) is the Legendre function.

Theorem 2.1. The next formulas hold true for factorizations of Buschman–Erdélyi
transmutations for suitable functions via Riemann–Liouville fractional integrals and
Buschman–Erdélyi operators of zero order smoothness:

Bν, µ
0+ f = I1−µ

0+ 1S
ν
0+f, Bν, µ

− f = 1P
ν
− I1−µ

− f, (2.14)

Eν, µ
0+ f = 1P

ν
0+ I1−µ

0+ f, Eν, µ
− f = I1−µ

− 1S
ν
−f. (2.15)

These formulas allow to separate parameters ν and µ. We will prove soon that
operators (2.10)–(2.13) are isomorphisms of L2(0,∞) except for some special pa-
rameters. So, operators (2.5)–(2.8) roughly speaking are of the same smoothness
in L2 as integrodifferentiations I1−µ and they coincide with them for ν = 0. It is
also possible to define Buschman–Erdélyi operators for all µ ∈ C.
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Definition 5. Define the number ρ = 1−Reµ as smoothness order for Buschman–
Erdélyi operators (2.5)–(2.8).

So for ρ > 0 (otherwise for Reµ > 1) the Buschman–Erdélyi operators are
smoothing and for ρ < 0 (otherwise for Reµ < 1) they decrease smoothness in L2

spaces. Operators (2.10)–(2.13) for which ρ = 0 due to Definition 5 are of zero
smoothness order in accordance with their definition.

For some special parameters ν, µ the Buschman–Erdélyi operators of the first
kind are reduced to other known operators. So for µ = −ν or µ = ν+2 they reduce
to Erdélyi–Kober operators, for ν = 0 they reduce to fractional integrodifferentia-
tion I1−µ

0+ or I1−µ
− , for ν = − 1

2 , µ = 0 or µ = 1 kernels reduce to elliptic integrals,

for µ = 0, x = 1, v = it − 1
2 the operator Bν, 0

− differs only by a constant from
Mehler–Fock transform.

As a pair for the Bessel operator consider a connected one

Lν = D2 − ν(ν + 1)

x2
=

(
d

dx
− ν

x

)(
d

dx
+

ν

x

)
, (2.16)

which for ν ∈ N is an angular momentum operator from quantum physics. Their
transmutational relations are established in the next theorem.

Theorem 2.2. For a given pair of transmutations Xν , Yν

XνLν = D2Xν , YνD
2 = LνYν (2.17)

define the new pair of transmutations by formulas

Sν = Xν−1/2x
ν+1/2, Pν = x−(ν+1/2)Yν−1/2. (2.18)

Then for the new pair Sν , Pν the next formulas are valid:

SνBν = D2Sν , PνD
2 = BνPν . (2.19)

Theorem 2.3. Let Reµ ≤ 1. Then an operator Bν, µ
0+ on proper functions is a

Sonine type transmutation and (2.17) is valid.

The same result holds true for other Buschman–Erdélyi operators, Eν, µ
− is Sonine

type and Eν, µ
0+ , Bν, µ

− are Poisson type transmutations.
From these transmutation connections, we conclude that the Buschman–Erdélyi

operators link the corresponding eigenfunctions for the two operators. They lead
to formulas for the Bessel functions via exponents and trigonometric functions, and
vice versa which generalize the classical Sonine and Poisson formulas.

Now consider factorizations of the Buschman–Erdélyi operators. First let us list
the main forms of fractional integrodifferentiations: Riemann–Liouville, Erdélyi–
Kober, fractional integral by function g(x), cf. [28],

Iα0+,xf =
1

Γ(α)

∫ x

0

(x− t)
α−1

f(t)d t, (2.20)

Iα−,xf =
1

Γ(α)

∫ ∞

x

(t− x)
α−1

f(t)d t,

Iα0+,2,ηf =
2x−2(α+η)

Γ(α)

∫ x

0

(
x2 − t2

)α−1
t2η+1f(t)d t, (2.21)

Iα−,2,ηf =
2x2η

Γ(α)

∫ ∞

x

(
t2 − x2

)α−1
t1−2(α+η)f(t)d t,
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Iα0+,gf =
1

Γ(α)

∫ x

0

(g(x)− g(t))
α−1

g′(t)f(t)d t, (2.22)

Iα−,gf =
1

Γ(α)

∫ ∞

x

(g(t)− g(x))
α−1

g′(t)f(t)d t.

In all cases ℜα > 0 and the operators may be further defined for all α, see [28].
In the case of g(x) = x (2.22) reduces to the Riemann–Liouville integral, in the
case of g(x) = x2 (2.22) reduces to the Erdélyi–Kober operator, and in the case of
g(x) = lnx – to the Hadamard fractional integrals.

Theorem 2.4. The following factorization formulas are valid for the Buschman–
Erdélyi operators of the first kind via the Riemann–Liouville and Erdélyi–Kober
fractional integrals:

Bν, µ
0+ = Iν+1−µ

0+ I
−(ν+1)

0+; 2, ν+ 1
2

(
2

x

)ν+1

, (2.23)

Eν, µ
0+ =

(x
2

)ν+1

Iν+1
0+; 2,− 1

2

I
−(ν+µ)
0+ , (2.24)

Bν, µ
− =

(
2

x

)ν+1

I
−(ν+1)
−; 2, ν+1I

ν−µ+2
− , (2.25)

Eν, µ
− = I

−(ν+µ)
− Iν+1

−; 2, 0

(x
2

)ν+1

. (2.26)

The Sonine–Poisson–Delsarte transmutations also are special cases for this class
of operators.

Now let us study the properties of the Buschman–Erdélyi operators of zero or-
der smoothness, defined by (2.10)–(2.13). A similar operator was introduced by
Katrakhov by multiplying the Sonine operator with a fractional integral, his aim
was to work with transmutation obeying good estimates in L2(0,∞).

We use the Mellin transform defined by [49]

g(s) = Mf(s) =

∫ ∞

0

xs−1f(x) dx. (2.27)

The Mellin convolution is defined by

(f1 ∗ f2)(x) =
∫ ∞

0

f1

(
x

y

)
f2(y)

dy

y
, (2.28)

so the convolution operator with kernel K acts under the Mellin transform as a
multiplication on multiplicator

M [Af ](s) = M [

∫ ∞

0

K

(
x

y

)
f(y)

dy

y
](s) = M [K ∗ f ](s) = mA(s)Mf(s), (2.29)

mA(s) = M [K](s).

We observe that the Mellin transform is a generalized Fourier transform on
semiaxis with Haar measure dy

y , [50]. It plays important role for the theory of special

functions, for example the gamma function is a Mellin transform of the exponential.
With the Mellin transform the important breakthrough in evaluating integrals was
done in 1970th when mainly by O. Marichev, the famous Slater’s theorem was
adapted for calculations. The Slater’s theorem taking the Mellin transform as
input gives the function itself as output via hypergeometric functions, see [49]. This
theorem occurred to be the milestone of powerful computer method for calculating



NORM INEQUALITIES BUSCHMAN–ERDÉLYI TRANSMUTATIONS 9

integrals for many problems in differential and integral equations. The package
Mathematica of Wolfram Research is based on this theorem in calculating integrals.

Theorem 2.5. The Buschman–Erdélyi operator of zero order smoothness 1S
ν
0+

defined by (2.10) acts under the Mellin transform as convolution (2.29) with mul-
tiplicator

m(s) =
Γ(−s/2 + ν

2 + 1)Γ(−s/2− ν
2 + 1/2)

Γ(1/2− s
2 )Γ(1−

s
2 )

(2.30)

for ℜs < min(2 + ℜν, 1−ℜν). Its norm is a periodic in ν and equals

∥Bν,1
0+∥L2

=
1

min(1,
√
1− sinπν)

. (2.31)

This operator is bounded in L2(0,∞) if ν ̸= 2k + 1/2, k ∈ Z and unbounded if
ν = 2k + 1/2, k ∈ Z.

Corollary 2.6. The norms of operators (2.10)–(2.13) are periodic in ν with period
2 ∥Xν∥ = ∥Xν+2∥, Xν is any of operators (2.10)–(2.13).

Corollary 2.7. The norms of the operators 1S
ν
0+, 1P

ν
− are not bounded in general,

every norm is greater or equals to 1. The norms are equal to 1 if sinπν ≤ 0.
The operators 1S

ν
0+, 1P

ν
− are unbounded in L2 if and only if sinπν = 1 (or ν =

(2k) + 1/2, k ∈ Z).

Corollary 2.8. The norms of the operators 1P
ν
0+, 1S

ν
− are all bounded in ν, every

norm is not greater then
√
2. The norms are equal to 1 if sinπν ≥ 0. The operators

1P
ν
0+, 1S

ν
− are bounded in L2 for all ν. The maximum of norm equals

√
2 is achieved

if and only if sinπν = −1 ( ν = −1/2 + (2k), k ∈ Z).

The most important property of the Buschman–Erdélyi operators of zero order
smoothness is the unitarity for integer ν. It is just the case if we interpret for these
parameters the operator Lν as angular momentum operator in quantum mechanics.

Theorem 2.9. The operators (2.10)–(2.13) are unitary in L2 if and only if the
parameter ν is an integer. In this case the pairs of operators (1S

ν
0+, 1P

ν
−) and

(1S
ν
−, 1P

ν
0+) are mutually inverse.

To formulate an interesting special case, let us suppose that operators (2.10)–
(2.13) act on functions permitting outer or inner differentiation in integrals, it is
enough to suppose that xf(x) → 0 for x → 0. Then for ν = 1

1P
1
0+f = (I −H1)f, 1S

1
−f = (I −H2)f, (2.32)

and H1, H2 are the famous Hardy operators,

H1f =
1

x

x∫
0

f(y)dy, H2f =

∞∫
x

f(y)

y
dy, (2.33)

I is the identic operator.

Corollary 2.10. The operators (2.32) are unitary in L2 and mutually inverse.
They are transmutations for the pair of differential operators d2/dx2 and d2/dx2 −
2/x2.
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The unitarity of the shifted Hardy operators (2.32) in L2 is a known fact [51].
Below in application section, we introduce a new class of generalizations for the
classical Hardy operators.

Now we list some properties of the operators acting as convolutions by the for-
mula (2.29) and with some multiplicator under the Mellin transform and being
transmutations for the second derivative and angular momentum operator in quan-
tum mechanics.

Theorem 2.11. Let an operator Sν act by formulas (2.29) and (2.17). Then:
a) its multiplicator satisfies a functional equation

m(s) = m(s− 2)
(s− 1)(s− 2)

(s− 1)(s− 2)− ν(ν + 1)
; (2.34)

b) if any function p(s) is periodic with period 2 (p(s) = p(s−2)), then a function
p(s)m(s) is a multiplicator for a new transmutation operator Sν

2 also acting by the
rule (2.17).

This theorem confirms the importance of studying transmutations in terms of
the Mellin transform and multiplicator functions.

Define the Stieltjes transform by (cf. [28])

(Sf)(x) =

∞∫
0

f(t)

x+ t
dt.

This operator also acts by the formula (2.29) with multiplicator p(s) = π/ sin(πs),
it is bounded in L2. Obviously p(s) = p(s− 2). So from Theorem 2.11 it follows a
convolution of the Stieltjes transform with bounded transmutations (2.10)–(2.13),
also transmutations of the same class bounded in L2.

In this way many new classes of transmutations were introduced with special
functions as kernels.

3. Sonine–Katrakhov and Poisson–Katrakhov transmutations

Now we construct transmutations which are unitary for all ν. They are defined
by formulas

Sν
Uf = − sin

πν

2
2S

νf + cos
πν

2
1S

ν
−f, (3.1)

P ν
Uf = − sin

πν

2
2P

νf + cos
πν

2
1P

ν
−f. (3.2)

For all values ν ∈ R they are linear combinations of Buschman–Erdélyi transmuta-
tions of the first and second kinds of zero order smoothness. Also they are in the
defined below class of Buschman–Erdélyi transmutations of the third kind. The
following integral representations are valid:

Sν
Uf = cos

πν

2

(
− d

dx

) ∞∫
x

Pν

(
x

y

)
f(y) dy (3.3)

+
2

π
sin

πν

2

 x∫
0

(x2−y2)−
1
2Q1

ν

(
x

y

)
f(y) dy−

∞∫
x

(y2−x2)−
1
2Q1

ν

(
x

y

)
f(y) dy

)
,
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P ν
Uf = cos

πν

2

x∫
0

Pν

(y
x

)(
d

dy

)
f(y) dy (3.4)

− 2

π
sin

πν

2

−
x∫

0

(x2−y2)−
1
2Q1

ν

(y
x

)
f(y) dy−

∞∫
x

(y2−x2)−
1
2Q1

ν

(y
x

)
f(y) dy

)
.

Theorem 3.1. The operators (3.1)–(3.2), (3.3)–(3.4) for all ν ∈ R are unitary,
mutually inverse and conjugate in L2. They are transmutations acting by (2.16).
Sν
U is a Sonine type transmutation and P ν

U is a Poisson type one.

Transmutations like (3.3)–(3.4) but with kernels in more complicated form with
hypergeometric functions were first introduced by Katrakhov in 1980. Due to this,
the author proposed terms for this class of operators as Sonine–Katrakhov and
Poisson–Katrakhov. In author’s papers these operators were reduced to more simple
form of Buschman–Erdélyi ones. It made possible to include this class of operators
in general composition (or factorization) method [32], [34], [36].

4. Applications of Buschman–Erdélyi transmutations

4.1. Copson lemma. Consider the partial differential equation with two variables
on the plane

∂2u(x, y)

∂x2
+

2α

x

∂u(x, y)

∂x
=

∂2u(x, y)

∂y2
+

2β

y

∂u(x, y)

∂y

(this is EPD equation or B–hyperbolic one in Kipriyanov’s terminology) for x >
0, y > 0 and β > α > 0 with boundary conditions on the characteristics

u(x, 0) = f(x), u(0, y) = g(y), f(0) = g(0).

It is supposed that the solution u(x, y) is continuously differentiable in the closed
first quadrant and has second derivatives in this open quadrant, boundary functions
f(x), g(y) are differentiable.

Then if the solution exists, the next formulas hold true:

∂u

∂y
= 0, y = 0,

∂u

∂x
= 0, x = 0, (4.1)

2βΓ(β +
1

2
)

∫ 1

0

f(xt)tα+β+1
(
1− t2

) β−1
2 P 1−β

−α t dt (4.2)

= 2αΓ(α+
1

2
)

∫ 1

0

g(xt)tα+β+1
(
1− t2

)α−1
2 P 1−α

−β t dt,

⇓

g(y) =
2Γ(β + 1

2 )

Γ(α+ 1
2 )Γ(β − α)

y1−2β

∫ y

0

x2α−1f(x)
(
y2 − x2

)β−α−1
x dx, (4.3)

where Pµ
ν (z) is the Legendre function of the first kind [9].

So the main conclusion from the Copson lemma is that the data on characteristics
can not be taken arbitrary, these functions must be connected by the Buschman–
Erdélyi operators of the first kind, for more detailed consideration cf. [9].
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4.2. Norm estimates and embedding theorems in Kipriyanov spaces. Con-
sider a set of functions D(0,∞). If f(x) ∈ D(0,∞) then f(x) ∈ C∞(0,∞), f(x) is
zero at infinity. On this set, define the seminorms

∥f∥hα
2
= ∥Dα

−f∥L2(0,∞) (4.4)

∥f∥ĥα
2
= ∥xα(− 1

x

d

dx
)αf∥L2(0,∞), (4.5)

here Dα
− is the Riemann–Liouville fractional integrodifferentiation, operator in (4.5)

is defined by

(− 1

x

d

dx
)β = 2βI−β

−; 2, 0x
−2β , (4.6)

I−β
−;2, 0 is the Erdélyi–Kober operator, α ∈ R. For β = n ∈ N0 the expression (4.6)
reduces to classical derivatives.

Theorem 4.1. Let f(x) ∈ D(0,∞). Then the next formulas are valid:

Dα
−f = 1S

α−1
− xα(− 1

x

d

dx
)αf, (4.7)

xα(− 1

x

d

dx
)αf = 1P

α−1
− Dα

−f. (4.8)

So the Buschman–Erdélyi transmutations of zero order smoothness for α ∈ N
link differential operators in seminorms definitions (4.4) and (4.5).

Theorem 4.2. Let f(x) ∈ D(0,∞). Then the next inequalities hold true for semi-
norms:

∥f∥hα
2
≤ max(1,

√
1 + sinπα)∥f∥ĥα

2
, (4.9)

∥f∥ĥα
2
≤ 1

min(1,
√
1 + sinπα)

∥f∥hα
2
, (4.10)

here α is any real number except α ̸= − 1
2 + 2k, k ∈ Z.

The constants in inequalities (4.9)–(4.10) are not greater than 1, it will be used
below. If sinπα = −1 or α = − 1

2 +2k, k ∈ Z, then the estimate (4.10) is not valid.
Define on D(0,∞) the Sobolev norm

∥f∥Wα
2
= ∥f∥L2(0,∞) + ∥f∥hα

2
. (4.11)

Define one more norm,

∥f∥
Ŵα

2
= ∥f∥L2(0,∞) + ∥f∥ĥα

2
(4.12)

Define the spaces Wα
2 , Ŵα

2 as closures of D(0,∞) in (4.11) or (4.12), respectively.

Theorem 4.3. a) For all α ∈ R the space Ŵα
2 is continuously imbedded in Wα

2 ,
moreover

∥f∥Wα
2
≤ A1∥f∥Ŵα

2
, (4.13)

with A1 = max(1,
√
1 + sinπα).

b) Let sinπα ̸= −1 or α ̸= − 1
2 + 2k, k ∈ Z. Then the inverse embedding of Wα

2

in Ŵα
2 is valid, moreover

∥f∥
Ŵα

2
≤ A2∥f∥Wα

2
, (4.14)

with A2 = 1/min(1,
√
1 + sinπα).
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c) Let sinπα ̸= −1, then the spaces Wα
2 and Ŵα

2 are isomorphic with equivalent
norms.

d) The constants in embedding inequalities (4.13)–(4.14) are sharp.

In fact this theorem is a direct corollary of the results on boundedness and norm
estimates in L2 of the Buschman–Erdélyi transmutations of zero order smooth-
ness. In the same manner, from the unitarity of these operators it follows the next
theorem.

Theorem 4.4. The norms

∥f∥Wα
2
=

s∑
j=0

∥Dj
−f∥L2 , (4.15)

∥f∥
Ŵα

2
=

s∑
j=0

∥xj(− 1

x

d

dx
)jf∥L2 (4.16)

are equivalent for integer s ∈ Z. Moreover, each term in (4.15) equals to appropriate
term in (4.16) of the same index j.

I. Kipriyanov introduced in [23] function spaces which essentially influenced the
theory of partial differential equations with Bessel operators and in more general
sense, the theory of singular and degenerate equations. These spaces are defined in
the following next way. First we consider subset of even functions in D(0,∞) with
all zero derivatives of odd orders at x = 0. Denote this set as Dc(0,∞) and equip
it with a norm

∥f∥
W̃ s

2,k
= ∥f∥L2,k

+ ∥B
s
2

k ∥L2,k
, (4.17)

where s is an even natural number, B
s/2
k is an iteration of the Bessel operator.

Define the Kipriyanov spaces for even s as a closure of Dc(0,∞) in the norm (4.17).
It is a known fact that equivalent to (4.17) norm may be defined by [23],

∥f∥
W̃ s

2,k
= ∥f∥L2,k

+ ∥xs(− 1

x

d

dx
)sf∥L2,k

(4.18)

So the norm W̃ s
2, k may be defined for all s. Essentially this approach is the same

as in [23], another approach is based on usage of the Hankel transform. Below we

adopt the norm (4.18) for the space W̃ s
2,k.

Define the weighted Sobolev norm by

∥f∥W s
2,k

= ∥f∥L2,k
+ ∥Ds

−f∥L2,k
(4.19)

and a space W s
2, k as a closure of Dc(0,∞) in this norm.

Theorem 4.5. a) Let k ̸= −n, n ∈ N. Then the space W̃ s
2, k is continuously

embedded into W s
2, k, and there exists a constant A3 > 0 such that

∥f∥W s
2,k

≤ A3∥f∥W̃ s
2,k

, (4.20)

b) Let k+ s ̸= −2m1− 1, k− s ̸= −2m2− 2, m1 ∈ N0, m2 ∈ N0. Then the inverse

embedding holds true of W s
2, k into W̃ s

2, k, and there exists a constant A4 > 0, such
that

∥f∥
W̃ s

2,k
≤ A4∥f∥W s

2,k
. (4.21)

c) If the above mentioned conditions are not valid, then the embedding theorems
under considerations fail.
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Corollary 4.6. Let the next conditions hold true: k ̸= −n, n ∈ N; k + s ̸=
−2m1 − 1, m1 ∈ N0; k − s ̸= −2m2 − 2, m2 ∈ N0. Then the Kipriyanov spaces
may be defined as closure of Dc(0,∞) in the weighted Sobolev norm (4.19).

Corollary 4.7. The sharp constants in embedding theorems (4.20)–(4.21) are:

A3 = max(1, ∥1Ss−1
− ∥L2,k

), A4 = max(1, ∥1P s−1
− ∥L2,k

).

It is obvious that the theorem above and its corollaries are direct consequences
of estimates for the Buschman–Erdélyi transmutations. The sharp constants in
embedding theorems (4.20)–(4.21) are also direct consequences of estimates for the
Buschman–Erdélyi transmutations of zero order smoothness. Estimates in Lp,α

not included in this article allow to consider embedding theorems for the general
Sobolev and Kipriyanov spaces.

So by applying the Buschman–Erdélyi transmutations of zero order smoothness,
we received an answer to a problem which for a long time was discussed in “folklore”:
– are the Kipriyanov spaces isomorphic to power weighted Sobolev spaces or not?
Of course we investigated just the simplest case, the results can be generalized to
other seminorms, higher dimensions, bounded domains but the principal idea is
clear. All that do not in any sense disparage neither essential role nor necessity for
applications of the Kipriyanov spaces in the theory of partial differential equations.

The importance of the Kipriyanov spaces is a special case of the next general
principle of L.Kudryavtsev:

“EVERY EQUATION MUST BE INVESTIGATED IN ITS OWN SPACE!”

The embedding theorems proved in this section may be applied to direct trans-
fer of known solution estimates for B–elliptic equations in Kipriyanov spaces (cf.
[15],[23] ) to new estimates in weighted Sobolev spaces, it is a direct consequence
of boundedness and transmutation properties of the Buschman–Erdélyi transmu-
tations.

4.3. Solution representations to partial differential equations with Bessel
operators. The above classes of transmutations may be used for deriving explicit
formulas for solutions of partial differential equations with Bessel operators via
unperturbed equation solutions. An example is the B–elliptic equation of the form

n∑
k=1

Bν,xk
u(x1, . . . , xn) = f, (4.22)

and similar B–hyperbolic and B–parabolic equations. This idea early works by the
Sonine–Poisson–Delsarte transmutations, cf. [3]–[5], [10], [15]. New results follow
automatically for new classes of transmutations.

4.4. Applications to Dunkl operators. In recent years the Dunkl operators
were thoroughly studied. These are difference–differentiation operators consisting
of combinations of classical derivatives and finite differences. In higher dimensions,
the Dunkl operators are defined by symmetry and reflection groups. For this class
there are many results on transmutations which are of Sonine–Poisson–Delsarte
and Buschman–Erdélyi types, cf. [53] and references therein.
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4.5. Applications of Buschman–Erdélyi operators to the Radon trans-
form. It was proved by Ludwig in [54] that the Radon transform in terms of
spherical harmonics acts in every harmonics at radial components as Buschman–
Erdélyi operators. Let us formulate this result.

Theorem 4.8. (Ludwig theorem, [54],[50]) Let the function f(x) be expanded in
Rn by spherical harmonics

f(x) =
∑
k,l

fk,l(r)Yk,l(θ). (4.23)

Then the Radon transform of this function may be calculated as another series in
spherical harmonics,

Rf(x) = g(r, θ) =
∑
k,l

gk,l(r)Yk,l(θ), (4.24)

gk,l(r) = (n)

∫ ∞

r

(
1− s2

r2

)n−3
2

C
n−2
2

l

(s
r

)
fk,l(r)r

n−2 ds, (4.25)

where (n) is some known constant, C
n−2
2

l

(
s
r

)
is the Gegenbauer function [52]. The

inverse formula is also valid of representing values fk,l(r) via gk,l(r).

The Gegenbauer function may be easily reduced to the Legendre function, [52].
So the Ludwig formula (4.25) reduces the Radon transform in terms of spherical
harmonics series and up to unimportant power and constant terms to Buschman–
Erdélyi operators of the first kind.

Exactly, this formula in dimension two was developed by Cormack as the first
step to the Nobel prize. Special cases of Ludwig’s formula proved in 1966 are for
any special spherical harmonics and in the simplest case on pure radial function, in
this case it is reduced to Sonine–Poisson–Delsarte transmutations of Erdélyi–Kober
type. Besides the fact that such formulas are known for about half a century they
are rediscovered still... As consequences of the above connections, the results may
be proved for integral representations, norm estimates, inversion formulas for the
Radon transform via Buschman–Erdélyi operators. In particular, it makes clear
that different kinds of inversion formulas for the Radon transform are at the same
time inversion formulas for the Buschman–Erdélyi transmutations of the first kind
and vice versa. A useful reference for this approach is [55].

4.6. Application of the Buschman–Erdélyi transmutations for estimation
of generalized Hardy operators. We proved unitarity of the shifted Hardy
operators (2.32) and mentioned that it is a known fact from [51]. It is interesting
that the Hardy operators naturally arise in transmutation theory. Use Theorem 7
with integer parameter which guarantees the unitarity for finding more unitary in
L2(0,∞) integral operators of very simple form.

Theorem 4.9. The next are pairs of unitary mutually inverse integral operators
in L2(0,∞):
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U3f = f +

∫ x

0

f(y)
dy

y
, U4f = f +

1

x

∫ ∞

x

f(y) dy,

U5f = f + 3x

∫ x

0

f(y)
dy

y2
, U6f = f − 3

x2

∫ x

0

yf(y) dy,

U7f = f +
3

x2

∫ ∞

x

yf(y) dy, U8f = f − 3x

∫ ∞

x

f(y)
dy

y2
,

U9f = f +
1

2

∫ x

0

(
15x2

y3
− 3

y

)
f(y) dy,

U10f = f +
1

2

∫ ∞

x

(
15y2

x3
− 3

x

)
f(y) dy.

4.7. Application of the Buschman–Erdélyi transmutations in works of
V.Katrakhov. V.Katrakhov found a new approach for boundary value problems
for elliptic equations with strong singularities of infinite order. For example, for
the Poisson equation he studied problems with solutions of arbitrary growth. At
singular point he proposed the new kind of boundary condition: K–trace. His
results are based on the constant usage of Buschman–Erdélyi transmutations of the
first kind for definition of norms, solution estimates and correctness proofs [56]–[57].

Moreover in joint papers with I.Kipriyanov he introduced and studied new
classes of pseudodifferential operators based on transmutational technics [58]. These
results were paraphrased in reorganized manner also in [4].
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