
REVERSES OF JENSEN�S INTEGRAL INEQUALITY AND
APPLICATIONS: A SURVEY OF RECENT RESULTS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. Several new reverses of the celebrated Jensen�s inequality for con-
vex functions and Lebesgue integral on measurable spaces are surveyed. Appli-
cations for weighted discrete means, to Hölder inequality, Cauchy-Bunyakovsky-
Schwarz inequality and for f -divergence measures in information theory are
also given. Finally, applications for functions of selfadjoint operators in Hilbert
spaces with some examples of interest are also provided.

1. Introduction

Let (
;A; �) be a measurable space consisting of a set 
; a �-algebra A of parts
of 
 and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w : 
! R, with w (x) � 0 for �-a.e. (almost every)

x 2 
; consider the Lebesgue space Lw (
; �) := ff : 
 ! R; f is �-measurable
and

R


w (x) jf (x)j d� (x) <1g: For simplicity of notation we write everywhere in

the sequel
R


wd� instead of

R


w (x) d� (x) : We also assume that

R


wd� = 1:

An useful result that is used to provide simpler upper bounds for the di¤erence
in Jensen�s inequality is the Gruss�inequality. We recall now some facts related to
this famous result.
If f; g : 
 ! R are �-measurable functions and f; g; fg 2 Lw (
; �) ; then we

may consider the µCeby�ev functional

(1.1) Tw (f; g) :=

Z



wfgd��
Z



wfd�

Z



wgd�:

The following result is known in the literature as the Grüss inequality

(1.2) jTw (f; g)j �
1

4
(�� 
) (�� �) ;

provided

(1.3) �1 < 
 � f (x) � � <1; �1 < � � g (x) � � <1
for � -a.e. a. x 2 
: The constant 14 is sharp in the sense that it cannot be replaced
by a smaller quantity.
Note that if 
 = f1; : : : ; ng and � is the discrete measure on 
; then we obtain

the discrete Grüss inequality

(1.4)

�����
nX
i=1

wixiyi �
nX
i=1

wixi �
nX
i=1

wiyi

����� � 1

4
(�� 
) (�� �) ;
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2 S.S. DRAGOMIR

provided 
 � xi � �, � � yi � � for each i 2 f1; : : : ; ng and wi � 0 with
Wn :=

Pn
i=1 wi = 1:

With the above assumptions, if f 2 Lw (
; �) then we may de�ne

(1.5) Dw (f) := Dw;1 (f) :=

Z



w

����f � Z



wfd�

���� d�:
In 2002, Cerone & Dragomir [7] obtained the following re�nement of the Grüss

inequality (1.2):

Theorem 1 (Cerone & Dragomir, 2002 [7]). Let w; f; g : 
! R be �-measurable
functions with w � 0 �-a.e. (almost everywhere) on 
 and

R


wd� = 1: If f; g;

fg 2 Lw (
; �) and there exists the constants �; � such that

(1.6) �1 < � � g (x) � � <1 for �-a.e. x 2 
;

then we have the inequality

(1.7) jTw (f; g)j �
1

2
(�� �)Dw (f) :

The constant 12 is sharp in the sense that it cannot be replaced by a smaller quantity.

Remark 1. The inequality (1.7) was obtained for the particular case 
 = [a; b] and
the uniform weight w (t) = 1; t 2 [a; b] by X. L. Cheng and J. Sun in [6]. However,
in that paper the authors did not prove the sharpness of the constant 12 :

For f 2 Lp;w (
;A; �) :=
�
f : 
! R;

R


w jf jp d� <1

	
; p � 1 we may also

de�ne

(1.8) Dw;p (f) :=

�Z



w

����f � Z



wfd�

����p d��
1
p

=





f � Z



wfd�







;p

where k�k
;p is the usual p-norm on Lp;w (
;A; �) ; namely,

khk
;p :=
�Z




w jhjp d�
� 1

p

; p � 1:

Using Hölder�s inequality we get

(1.9) Dw;1 (f) � Dw;p (f) for p � 1; f 2 Lp;w (
;A; �) ;

and, in particular for p = 2

(1.10) Dw;1 (f) � Dw;2 (f) :=
"Z




wf2d��
�Z




wfd�

�2# 1
2

;

if f 2 L2;w (
;A; �) :
For f 2 L1 (
;A; �) :=

n
f : 
! R; kfk
;1 := essupx2
 jf (x)j <1

o
we also

have

(1.11) Dw;p (f) � Dw;1 (f) :=




f � Z




wfd�







;1

:

The following corollary may be useful in practice.
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Corollary 1. With the assumptions of Theorem 1, we have

jTw (f; g)j �
1

2
(�� �)Dw (f)(1.12)

� 1

2
(�� �)Dw;p (f) if f 2 Lp (
;A; �) ; 1 < p <1;

� 1

2
(�� �)Dw;1 (f) if f 2 L1 (
;A; �) :

Remark 2. The inequalities in (1.12) are in order of increasing coarseness. If
we assume that �1 < 
 � f (x) � � < 1 for �-a.e. x 2 
; then by the Grüss
inequality for g = f we have for p = 2

(1.13)

"Z



wf2d��
�Z




wfd�

�2# 1
2

� 1

2
(�� 
) :

By (1.12), we deduce the following sequence of inequalities

jTw (f; g)j �
1

2
(�� �)

Z



w

����f � Z



wfd�

���� d�(1.14)

� 1

2
(�� �)

"Z



wf2d��
�Z




wfd�

�2# 1
2

� 1

4
(�� �) (�� 
)

for f; g : 
 ! R; �-measurable functions and so that �1 < 
 � f (x) < � < 1;
�1 < � � g (x) � � < 1 for �-a.e. x 2 
: Thus, the inequality (1.14) is a
re�nement of Grüss�inequality (1.2).

In order to provide a reverse of the celebrated Jensen�s integral inequality for
convex functions, S. S. Dragomir obtained in 2002 [14] the following result:

Theorem 2 (Dragomir, 2002 [14]). Let � : [m;M ] � R! R be a di¤erentiable
convex function on (m;M) and f : 
! [m;M ] so that ��f; f; �0 �f; (�0 � f) f 2
Lw (
; �) ; where w � 0 �-a.e. on 
 with

R


wd� = 1: Then we have the inequality:

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.15)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�

� 1

2
[�0 (M)� �0 (m)]

Z



w

����f � Z



wfd�

���� d�:
For a generalization of the �rst inequality when di¤erentiability is not assumed

and the derivative �0 is replaced with a selection ' from the subdi¤erential @�, see
the paper [42] by C. P. Niculescu.
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Remark 3. If � (
) <1 and � � f; f; �0 � f; (�0 � f) f 2 L (
; �) ; then we have
the inequality:

0 � 1

� (
)

Z



(� � f) d�� �
�

1

� (
)

Z



fd�

�
(1.16)

� 1

� (
)

Z



(�0 � f) fd�� 1

� (
)

Z



(�0 � f) d� 1

� (
)

Z



fd�

� 1

2
[�0 (M)� �0 (m)] 1

� (
)

Z



����f � 1

� (
)

Z



fd�

���� d�:
Remark 4. On making use of (1.15) and (1.14), one can state the following string
of reverse inequalities for the Jensen�s di¤erence

0 �
Z



w (� � f) d�� �
�Z




wfd�

�
(1.17)

�
Z



w (�0 � f) fd��
Z



w (�0 � f) d�
Z



wfd�

� 1

2
[�0 (M)� �0 (m)]

Z



w

����f � Z



wfd�

���� d�
� 1

2
[�0 (M)� �0 (m)]

"Z



wf2d��
�Z




wfd�

�2# 1
2

� 1

4
[�0 (M)� �0 (m)] (M �m) :

We notice that the inequality between the �rst, second and last term from (1.17) was
proved in the general case of positive linear functionals in 2001 by S. S. Dragomir
in [13].

The discrete case is as follows. Let �a = (a1; : : : ; an) ; �b = (b1; : : : ; bn) ; �p =
(p1; : : : ; pn) be n-tuples of real numbers with pi � 0 (i 2 f1; : : : ; ng) and

Pn
i=1 pi =

1: If b � bi � B; i 2 f1; : : : ; ng ; then one has the inequality

�����
nX
i=1

piaibi �
nX
i=1

piai

nX
i=1

pibi

����� � 1

2
(B � b)

nX
i=1

pi

������ai �
nX
j=1

pjaj

������(1.18)

� 1

2
(B � b)

24 nX
i=1

pi

������ai �
nX
j=1

pjaj

������
p35

1
p

� 1

2
(B � b) max

i=1;n

������ai �
nX
j=1

pjaj

������ ;
where 1 < p <1: The constant 12 is sharp in the �rst inequality.
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If more information about the vector �a = (a1; : : : ; an) is available, namely, if
there exists the constants a and A such that a � ai � A; i 2 f1; : : : ; ng ; then�����

nX
i=1

piaibi �
nX
i=1

piai

nX
i=1

pibi

����� � 1

2
(B � b)

nX
i=1

pi

������ai �
nX
j=1

pjaj

������(1.19)

� 1

2
(B � b)

264 nX
i=1

pi

������ai �
nX
j=1

pjaj

������
2
375

1
2

� 1

4
(B � b) (A� a) ;

with the constants 1
2 and

1
4 best possible.

Corollary 2. Let � : [m;M ] ! R be a di¤erentiable convex function on (m;M) :
If xi 2 [m;M ] and wi � 0 (i = 1; : : : ; n) with Wn :=

Pn
i=1 wi = 1; then one has

the reverse of Jensen�s weighted discrete inequality:

0 �
nX
i=1

wi� (xi)� �
 

nX
i=1

wixi

!
(1.20)

�
nX
i=1

wi�
0 (xi)xi �

nX
i=1

wi�
0 (xi)

nX
i=1

wixi

� 1

2
[�0 (M)� �0 (m)]

nX
i=1

wi

������xi �
nX
j=1

wjxj

������ :
Remark 5. We notice that the inequality between the �rst and second term in
(1.20) was proved in 1994 by Dragomir & Ionescu, see [26].
On utilizing (1.20) and (1.19) we can state the string of inequalities

0 �
nX
i=1

wi� (xi)� �
 

nX
i=1

wixi

!
(1.21)

�
nX
i=1

wi�
0 (xi)xi �

nX
i=1

wi�
0 (xi)

nX
i=1

wixi

� 1

2
[�0 (M)� �0 (m)]

nX
i=1

wi

������xi �
nX
j=1

wjxj

������
� 1

2
[�0 (M)� �0 (m)]

24 nX
i=1

wix
2
i �

 
nX
i=1

wixi

!2351=2

� 1

4
[�0 (M)� �0 (m)] (M �m) :

We notice that the inequality between the �rst, second and last term in (1.21) was
proved in 1999 by S. S. Dragomir in [12].

In this paper we survey several new reverses of the celebrated Jensen�s inequal-
ity for convex functions and Lebesgue integral on measurable spaces. Applications
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for weighted discrete means, to Hölder inequality, Cauchy-Bunyakovsky-Schwarz
inequality and for f -divergence measures in information theory are also given. Fi-
nally, applications for functions of selfadjoint operators in Hilbert spaces with some
examples of interest are also provided.

2. A Refinement and a Divided-Difference Reverse

2.1. General Results. Following Roberts and Varberg [46, p. 5 ], we recall that
if f : I ! R is a convex function, then for any x0 2 �I (the interior of the interval
I) the limits

f 0� (x0) := lim
x!x0�

f (x)� f (x0)
x� x0

and f 0+ (x0) := lim
x!x0+

f (x)� f (x0)
x� x0

exists and f 0� (x0) � f 0+ (x0) : The functions f 0� and f 0+ are monotonic nondecreasing
on �I and this property can be extended to the whole interval I (see [46, p. 7 ]).
From the monotonicity of the lateral derivatives f 0� and f 0+ we also have the

gradient inequality

f 0� (x) (x� y) � f (x)� f (y) � f 0+ (y) (x� y)

for any x; y 2 �I:
If I = [a; b] ; then at the end points we also have the inequalities

f (x)� f (a) � f 0+ (a) (x� a)

for any x 2 (a; b] and

f (y)� f (b) � f 0� (b) (y � b)

for any y 2 [a; b):
For a real function g : [m;M ] ! R and two distinct points �; � 2 [m;M ] we

recall that the divided di¤erence of g in these points is de�ned by

[�; �; g] :=
g (�)� g (�)
� � � :

In what follows, we assume that w : 
 ! R, with w (x) � 0 for �-a.e. x 2 
; is a
�-measurable function with

R


wd� = 1:

Theorem 3 (Dragomir, 2011 [20]). Let � : I ! R be a continuous convex function
on the interval of real numbers I and m; M 2 R; m < M with [m;M ] � �I, �I the
interior of I: If f : 
! R; is �-measurable, satisfying the bounds

(2.1) �1 < m � f (x) �M <1 for �-a.e. x 2 


and such that f; � � f 2 Lw (
; �) ; then by denoting

f
;w :=

Z



wfd� 2 [m;M ]
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and assuming that f
;w 6= m; M; we have����Z



��� (f)� � �f
;w��� sgn �f � f
;w�wd�����(2.2)

�
Z



(� � f)wd�� �
�
f
;w

�
� 1

2

��
f
;w;M ; �

�
�
�
m; f
;w; �

��
Dw (f)

� 1

2

��
f
;w;M ; �

�
�
�
m; f
;w; �

��
Dw;2 (f)

� 1

4

��
f
;w;M ; �

�
�
�
m; f
;w; �

��
(M �m) ;

where sgn is the sign function, i.e. sgn (x) = x
jxj for x 6= 0 and sgn (0) = 0: The

constant 12 in the second inequality from (2.2) is best possible.

Proof. We recall that if � : I ! R is a continuous convex function on the interval
of real numbers I and � 2 I then the divided di¤erence function �� : I n f�g ! R,

�� (t) := [�; t; �] :=
� (t)� � (�)

t� �

is monotonic nondecreasing on I n f�g :
For f as considered in the statement of the theorem we can assume that that

it is not constant �-almost every where, since for that case the inequality (2.2) is
trivially satis�ed.
For f
;w 2 (m;M), we consider now the function de�ned �-almost everywhere

on 
 by

�f
;w (x) :=
� (f (x))� �

�
f
;w

�
f (x)� f
;w

:

We will show that �f
;w and h := f � f
;w are synchronous �-a.e. on 
:
Let x; y 2 
 with f (x) ; f (y) 6= f
;w: Assume that f (x) � f (y) ; then

(2.3) �f
;w (x) =
� (f (x))� �

�
f
;w

�
f (x)� f
;w

�
� (f (y))� �

�
f
;w

�
f (y)� f
;w

= �f
;w (y)

and

(2.4) h (x) � h (y) ;

which shows that

(2.5)
h
�f
;w (x)� �f
;w (y)

i
[h (x)� h (y)] � 0:

If f (x) < f (y) ; then the inequalities (2.3) and (2.4) reverse but the inequality (2.5)
still holds true.
This show that for �-a.e. x; y 2 
 we have (2.5) and the claim is proven as

stated.
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Utilising the continuity property of the modulus we have���h����f
;w (x)���� ����f
;w (y)���i [h (x)� h (y)]���
�
���h�f
;w (x)� �f
;w (y)i [h (x)� h (y)]���

=
h
�f
;w (x)� �f
;w (y)

i
[h (x)� h (y)]

for �-a.e. x; y 2 
:
Multiplying with w (x) ; w (y) � 0 and integrating over � (x) and � (y) we have����Z




Z



h����f
;w (x)���� ����f
;w (y)���i(2.6)

� [h (x)� h (y)]w (x)w (y) d� (x) d� (y)j

�
Z



Z



h
�f
;w (x)� �f
;w (y)

i
� [h (x)� h (y)]w (x)w (y) d� (x) d� (y) :

A simple calculation shows that

1

2

Z



Z



h����f
;w (x)���� ����f
;w (y)���i(2.7)

� [h (x)� h (y)]w (x)w (y) d� (x) d� (y)

=

Z



����f
;w (x)���h (x)w (x) d� (x)
�
Z



����f
;w (x)���w (x) d� (x)Z



w (x)h (x) d� (x)

=

Z



������ (f (x))� �
�
f
;w

�
f (x)� f
;w

����� �f (x)� f
;w�w (x) d� (x)
=

Z



��� (f (x))� � �f
;w��� sgn �f (x)� f
;w�w (x) d� (x)
and

1

2

Z



Z



h
�f
;w (x)� �f
;w (y)

i
(2.8)

� [h (x)� h (y)]w (x)w (y) d� (x) d� (y)

=

Z



�f
;w (x)h (x)w (x) d� (x)

�
Z



�f
;w (x)w (x) d� (x)

Z



h (x)w (x) d� (x)

=

Z



� (f (x))� �
�
f
;w

�
f (x)� f
;w

�
f (x)� f
;w

�
w (x) d� (x)

=

Z



�
� (f (x))� �

�
f
;w

��
w (x) d� (x)

=

Z



w (� � f) d�� �
�
f
;w

�
:
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On making use of the identities (2.7) and (2.8) we obtain from (2.6) the �rst in-
equality in (2.2).
Now, since f satis�es the condition (2.1) then we have that

�
m; f
;w; �

�
=
�
�
f
;w

�
� � (m)

f
;w �m
� �f
;w (x)(2.9)

�
� (M)� �

�
f
;w

�
M � f
;w

=
�
f
;w;M ; �

�
for �-a.e. x 2 
:
Applying now the Grüss�type inequality (1.7) and taking into account the second

part of the equality in (2.7) we have thatZ



w (� � f) d�� �
�
f
;w

�
� 1

2

��
f
;w;M ; �

�
�
�
m; f
;w; �

�� Z



w
��f � f
;w�� d�

which proves the second inequality in (2.2).
The other two bounds are obvious from the comments in the introduction.
It is obvious that from (2.2) we get the following reverse of the �rst Hermite-

Hadamard inequality for the convex function � : [a; b]! R

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
(2.10)

� 1

2

��
a+ b

2
; b; �

�
�
�
a;
a+ b

2
;�

��
Dw (e)

where e (t) = t; t 2 [a; b] :
Since a simple calculation shows that

1

2

��
a+ b

2
; b; �

�
�
�
a;
a+ b

2
;�

��
=

2

b� a

�
� (a) + � (b)

2
� �

�
a+ b

2

��
and

Dw (e) =
1

b� a

Z b

a

����t� a+ b2
���� dt = 1

4
(b� a) ;

and we get from (2.10) that

0 � 1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
(2.11)

� 1

2

�
� (a) + � (b)

2
� �

�
a+ b

2

��
:

To prove the sharpness of the constant 12 in the second inequality from (2.2) we
need now only to show that the equality case in (2.11) is realized.
If we take, for instance � (t) =

��t� a+b
2

�� ; t 2 [a; b] ; then we observe that � is
convex and we get in both sides of (2.11) the same quantity 1

4 (b� a) : �
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Corollary 3. With the assumptions in Theorem 3 and if the lateral derivatives
�0+ (m) and �

0
� (M) are �nite, then we have the inequalities

0 �
Z



(� � f)wd�� �
�
f
;w

�
(2.12)

� 1

2

��
f
;w;M ; �

�
�
�
m; f
;w; �

��
Dw (f)

� 1

2

�
�0� (M)� �0+ (m)

�
Dw (f)

� 1

2

�
�0� (M)� �0+ (m)

�
Dw;2 (f)

� 1

4

�
�0� (M)� �0+ (m)

�
(M �m) :

The constant 12 in the second and third inequality from (2.12) is best possible.

Proof. We need to prove only the third inequality.
By the convexity of � we have the gradient inequalities

� (M)� �
�
f
;w

�
M � f
;w

� �0� (M)

and
�
�
f
;w

�
� � (m)

f
;w �m
� �0+ (m) :

These imply that�
f
;w;M ; �

�
�
�
m; f
;w; �

�
� �0� (M)� �0+ (m)

and the proof is concluded.
We observe that from (2.12) we get the following reverse of the Hermite-Hadamard

inequality for the convex function � : [a; b] ! R having �nite lateral derivative
�0+ (a) and �

0
� (b)

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
(2.13)

� 1

2

�
� (a) + � (b)

2
� �

�
a+ b

2

��
� 1

8

�
�0� (b)� �0+ (a)

�
(b� a) :

We observe that the convex function � (t) =
��t� a+b

2

�� has �nite lateral derivatives
�0� (b) = 1 and �

0
+ (a) = �1

and replacing this function in (2.13) we get in all terms the same quantity 1
4 (b� a) :

This proves that the constant 1
2 in the second and third inequality from (2.12)

is best possible. �

Remark 6. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m; M 2 R; m < M with [m;M ] � �I, �I the interior of I:
Let �a = (a1; : : : ; an) ; �p = (p1; : : : ; pn) be n-tuples of real numbers with pi � 0
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(i 2 f1; : : : ; ng) and
Pn

i=1 pi = 1: If m � ai �M; i 2 f1; : : : ; ng ; with
Pn

i=1 piai 6=
m; M; then������

nX
i=1

pi

"
j� (ai)j �

������
 

nX
i=1

piai

!�����
#
sgn

������ai �
nX
j=1

pjaj

������
������(2.14)

�
nX
i=1

pi� (ai)� �
 

nX
i=1

piai

!

� 1

2

 "
nX
i=1

piai;M ; �

#
�
"
m;

nX
i=1

piai; �

#!
nX
i=1

pi

������ai �
nX
j=1

pjaj

������ :
If the lateral derivatives �0+ (m) and �

0
� (M) are �nite, then we also have the

inequalities

0 �
nX
i=1

pi� (ai)� �
 

nX
i=1

piai

!
(2.15)

� 1

2

 "
nX
i=1

piai;M ; �

#
�
"
m;

nX
i=1

piai; �

#!
nX
i=1

pi

������ai �
nX
j=1

pjaj

������
� 1

2

�
�0� (M)� �0+ (m)

� nX
i=1

pi

������ai �
nX
j=1

pjaj

������ :
Remark 7. De�ne the weighted arithmetic mean of the positive n-tuple x =
(x1; :::; xn) with the nonnegative weights w = (w1; :::; wn) by

An (w; x) :=
1

Wn

nX
i=1

wixi

where Wn :=
Pn

i=1 wi > 0 and the weighted geometric mean of the same n-tuple,
by

Gn (w; x) :=

 
nY
i=1

xwii

!1=Wn

:

It is well know that the following arithmetic mean-geometric mean inequality holds

An (w; x) � Gn (w; x) :
Applying the inequality (2.15) for the convex function � (t) = � ln t; t > 0 we have
the following reverse of the arithmetic mean-geometric mean inequality

1 � An (w; x)

Gn (w; x)
(2.16)

�

264
�
An(w;x)

m

�An(w;x)�m

�
M

An(w;x)

�M�An(w;x)

375
1
2An(w;jx�An(w;x)j)

� exp
�
1

2

M �m
mM

An (w; jx�An (w; x)j)
�
;

provided that 0 < m � xi �M <1 for i 2 f1; :::; ng :
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2.2. Applications for the Hölder Inequality. It is well known that if f 2
Lp (
; �) ; p > 1; where the Lebesgue space Lp (
; �) is de�ned by

Lp (
; �) := ff : 
! R; f is �-measurable and
Z



jf (x)jp d� (x) <1g

and g 2 Lq (
; �) with 1
p +

1
q = 1 then fg 2 L (
; �) := L1 (
; �) and the Hölder

inequality holds true

Z



jfgj d� �
�Z




jf jp d�
�1=p�Z




jgjp d�
�1=q

:

Assume that p > 1: If h : 
! R is �-measurable, satis�es the bounds

�1 < m � jh (x)j �M <1 for �-a.e. x 2 


and is such that h; jhjp 2 Lw (
; �) ; for a �-measurable function w : 
! R, with
w (x) � 0 for � -a.e. x 2 
 and

R


wd� > 0; then from (2.2) we have����Z




���jhjp � jhjp
;w��� sgn hjhj � jhj
;wiwd�����(2.17)

�
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
� 1

2

�h
jhj
;w;M ; (�)

p
i
�
h
m; jhj
;w; (�)

p
i�
~Dw (jhj)

� 1

2

�h
jhj
;w;M ; (�)

p
i
�
h
m; jhj
;w; (�)

p
i�
~Dw;2 (jhj)

� 1

4

�h
jhj
;w;M ; (�)

p
i
�
h
m; jhj
;w; (�)

p
i�
(M �m) ;

where jhj
;w :=
R


jhjwd�R


wd�

2 [m;M ] and

~Dw (jhj) :=
1R



wd�

Z



w

����jhj �
R


jhjwd�R


wd�

���� d�
while

~Dw;2 (jhj) =
"R



w jhj2 d�R


wd�

�
�R



jhjwd�R


wd�

�2# 1
2

:

The following result related to the Hölder inequality holds:

Proposition 1 (Dragomir, 2011 [20]). If f 2 Lp (
; �), g 2 Lq (
; �) with p > 1;
1
p +

1
q = 1 and there exists the constants 
; � > 0 and such that


 � jf j
jgjq�1

� � �-a.e on 
;
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then we have�����
Z



����� jf jpjgjq �
�R



jfgj d�R



jgjq d�

�p����� sgn
"
jf j
jgjq�1

�
R


jfgj d�R



jgjq d�

#
jgjq d�

�����(2.18)

�
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
� 1

2

��R


jfgj d�R



jgjq d� ;�; (�)

p

�
�
�

;

R


jfgj d�R



jgjq d� ; (�)

p

��
~Djgjq

 
jf j
jgjq�1

!

� 1

2

��R


jfgj d�R



jgjq d� ;�; (�)

p

�
�
�

;

R


jfgj d�R



jgjq d� ; (�)

p

��
~Djgjq;2

 
jf j
jgjq�1

!

� 1

4

��R


jfgj d�R



jgjq d� ;�; (�)

p

�
�
�

;

R


jfgj d�R



jgjq d� ; (�)

p

��
(�� 
) ;

where

~Djgjq

 
jf j
jgjq�1

!
=

1R


jgjq d�

Z



jgjq
����� jf j
jgjq�1

�
R


jfgj d�R



jgjq d�

����� d�
and

~Djgjq;2

 
jf j
jgjq�1

!
=

"
1R



jgjq d�

Z



jf j2

jgjq�2
d��

�R


jfgj d�R



jgjq d�

�2# 1
2

:

Proof. The inequalities (2.19) follow from (2.17) by choosing

h =
jf j
jgjq�1

and w = jgjq :

The details are omitted. �

Remark 8. We observe that for p = q = 2 we have from the �rst inequality in
(2.18) the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality������

Z



������ jf j
2

jgj2
�
 R



jfgj d�R



jgj2 d�

!2������ sgn
"
jf j
jgj �

R


jfgj d�R



jgj2 d�

#
jgj2 d�

������(2.19)

�
R


jf j2 d�R



jgj2 d�

�
 R



jfgj d�R



jgj2 d�

!2

� 1

2
(�� 
) 1R



jgj2 d�

Z



jgj2
����� jf jjgj �

R


jfgj d�R



jgj2 d�

����� d�
� 1

2
(�� 
)

24 1R


jgj2 d�

Z



jf j2 d��
 R



jfgj d�R



jgj2 d�

!235 1
2

� 1

4
(�� 
)2 ;

provided that f; g 2 L2 (
; �), and there exists the constants 
; � > 0 such that


 � jf j
jgj � � �-a.e on 
:
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2.3. Applications for f-Divergence. One of the important issues in many ap-
plications of Probability Theory is �nding an appropriate measure of distance (or
di¤erence or discrimination ) between two probability distributions. A number of
divergence measures for this purpose have been proposed and extensively studied
by Je¤reys [32], Kullback and Leibler [37], Rényi [45], Havrda and Charvat [29],
Kapur [35], Sharma and Mittal [48], Burbea and Rao [4], Rao [44], Lin [38], Csiszár
[9], Ali and Silvey [1], Vajda [55], Shioya and Da-te [49] and others (see for example
[40] and the references therein).
These measures have been applied in a variety of �elds such as: anthropology [44],

genetics [40], �nance, economics, and political science [47], [53], [54], biology [43],
the analysis of contingency tables [28], approximation of probability distributions
[8], [36], signal processing [33], [34] and pattern recognition [3], [5]. A number of
these measures of distance are speci�c cases of Csiszár f -divergence and so further
exploration of this concept will have a �ow on e¤ect to other measures of distance
and to areas in which they are applied.
Assume that a set 
 and the �-�nite measure � are given. Consider the set of all

probability densities on � to be P :=
�
pjp : 
! R, p (x) � 0;

R


p (x) d� (x) = 1

	
.

Csiszár f -divergence is de�ned as follows [10]

(2.20) If (p; q) :=

Z



p (x) f

�
q (x)

p (x)

�
d� (x) ; p; q 2 P;

where f is convex on (0;1). It is assumed that f (u) is zero and strictly convex
at u = 1. By appropriately de�ning this convex function, various divergences are
derived.
The Kullback-Leibler divergence [37] is well known among the information diver-

gences. It is de�ned as:

(2.21) DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

where ln is to base e.
In Information Theory and Statistics, various divergences are applied in addition

to the Kullback-Leibler divergence. These are the: variation distance Dv, Hellinger
distance DH [30], �2-divergence D�2 , �-divergence D�, Bhattacharyya distance DB
[2], Harmonic distance DHa, Je¤rey�s distance DJ [32], triangular discrimination
D� [52], etc... They are de�ned as follows:

(2.22) Dv (p; q) :=

Z



jp (x)� q (x)j d� (x) ; p; q 2 P;

(2.23) DH (p; q) :=

Z



���pp (x)�pq (x)��� d� (x) ; p; q 2 P;
(2.24) D�2 (p; q) :=

Z



p (x)

"�
q (x)

p (x)

�2
� 1
#
d� (x) ; p; q 2 P;

(2.25) D� (p; q) :=
4

1� �2

�
1�

Z



[p (x)]
1��
2 [q (x)]

1+�
2 d� (x)

�
; p; q 2 P;

(2.26) DB (p; q) :=

Z



p
p (x) q (x)d� (x) ; p; q 2 P;
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(2.27) DHa (p; q) :=

Z



2p (x) q (x)

p (x) + q (x)
d� (x) ; p; q 2 P;

(2.28) DJ (p; q) :=

Z



[p (x)� q (x)] ln
�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

(2.29) D� (p; q) :=

Z



[p (x)� q (x)]2

p (x) + q (x)
d� (x) ; p; q 2 P:

For other divergence measures, see the paper [35] by Kapur or the book on line [51]
by Taneja.
Most of the above distances (2.21)-(2.29), are particular instances of Csiszár f -

divergence. There are also many others which are not in this class (see for example
[51]). For the basic properties of Csiszár f -divergence see [10], [11] and [55].
Before we apply the results obtained in the previous section we observe that, by

employing the inequalities from (1.17) we can state the following theorem:

Proposition 2 (Dragomir, 2011 [20]). Let f : (0;1) ! R be a convex function
with the property that f (1) = 0: Assume that p; q 2 P and there exists the constants
0 < r < 1 < R <1 such that

(2.30) r � q (x)

p (x)
� R for �-a.e. x 2 
:

Then we have

0 � If (p; q) �
1

2

�
f 0� (R)� f 0+ (r)

�
Dv (p; q)(2.31)

� 1

2

�
f 0� (R)� f 0+ (r)

� �
D�2 (p; q)

�1=2
� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

Proof. From (1.17) we haveZ



p (x) f

�
q (x)

p (x)

�
d� (x)� f

�Z



q (x) d� (x)

�
(2.32)

� 1

2

�
f 0� (R)� f 0+ (r)

�
�
Z



p (x)

����q (x)p (x)
�
Z



q (y) d� (y)

���� d� (x)
� 1

2

�
f 0� (R)� f 0+ (r)

�
�
"Z




p (x)

�
q (x)

p (x)

�2
d��

�Z



q (x) d�

�2# 1
2

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
;

and since Z



p (x)

����q (x)p (x)
�
Z



q (y) d� (y)

���� d� (x) = Dv (p; q)
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and Z



p (x)

�
q (x)

p (x)

�2
d��

�Z



q (x) d�

�2
= D�2 (p; q) ;

then we get from (2.32) the desired result (2.31). �

Remark 9. The inequality

(2.33) If (p; q) �
1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
was obtained for the discrete divergence measures in 2000 by S. S. Dragomir, see
[15].

Proposition 3 (Dragomir, 2011 [20]). With the assumptions in Proposition 2 we
have ��Ijf j(sgn(�)�1) (p; q)�� � If (p; q)(2.34)

� 1

2
([1; R; f ]� [r; 1; f ])Dv (p; q)

� 1

2
([1; R; f ]� [r; 1; f ])

�
D�2 (p; q)

�1=2
� 1

4
([1; R; f ]� [r; 1; f ]) (R� r) ;

where Ijf j(sgn(�)�1) (p; q) is the generalized f-divergence for the non-necessarily con-
vex function jf j (sgn (�)� 1) and is de�ned by

(2.35) Ijf j(sgn(�)�1) (p; q) :=

Z



����f �q (x)p (x)

����� sgn �q (x)p (x)
� 1
�
p (x) d�:

Proof. From the inequality (2.2) we have����Z



����f �q (x)p (x)

����� sgn �q (x)p (x)
� 1
�
p (x) d�:

����(2.36)

�
Z



p (x) f

�
q (x)

p (x)

�
d� (x)� f

�Z



q (x) d� (x)

�
� 1

2
([1; R; f ]� [r; 1; f ])

�
Z



p (x)

����q (x)p (x)
�
Z



q (y) d� (y)

���� d� (x)
� 1

2
([1; R; f ]� [r; 1; f ])

�
"Z




p (x)

�
q (x)

p (x)

�2
d��

�Z



q (x) d�

�2# 1
2

� 1

4
([1; R; f ]� [r; 1; f ]) (R� r) ;

from where we get the desired result (2.34). �

The above results can be utilized to obtain various inequalities for the divergence
measures in Information Theory that are particular instances of f -divergence.
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Consider the Kullback-Leibler divergence

DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

which is an f -divergence for the convex function f : (0;1)! R, f (t) = � ln t:
If p; q 2 P such that there exists the constants 0 < r < 1 < R <1 with

(2.37) r � q (x)

p (x)
� R for �-a.e. x 2 
;

then we get from (2.31) that

DKL (p; q) �
R� r
2rR

Dv (p; q)(2.38)

� R� r
2rR

�
D�2 (p; q)

�1=2 � (R� r)2

4rR

and from (2.34) that

DKL (p; q) �
1

2
Dv (p; q) ln

�
1

RR�1r1�r

�
(2.39)

� 1

2

�
D�2 (p; q)

�1=2
ln

�
1

RR�1r1�r

�
� 1

4
(R� r) ln

�
1

RR�1r1�r

�
:

The interested reader can obtain other similar results by considering f -divergence
measures generated by other convex functions such as the Je¤rey�s distance DJ or
the triangular discrimination D�. The details are omitted.

3. Reverse Inequalities in Terms of First Derivative

3.1. General Results. The following reverse of the Jensen�s inequality holds:

Theorem 4 (Dragomir, 2011 [19]). Let � : I ! R be a continuous convex function
on the interval of real numbers I and m; M 2 R, m < M with [m;M ] � �I, where
�I is the interior of I: If f : 
! R is �-measurable, satis�es the bounds

�1 < m � f (x) �M <1 for �-a.e. x 2 


and such that f; � � f 2 Lw (
; �) ; then

0 �
Z



w (x) � (f (x)) d� (x)� �
�
�f
;w

�
(3.1)

�
�
M � �f
;w

� �
�f
;w �m

� �0� (M)� �0+ (m)
M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �f
;w :=
R


w (x) f (x) d� (x) 2 [m;M ] ;�0� is the left and �0+ is the right

derivative of the convex function �:
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Proof. By the convexity of � we have thatZ



w (x) � (f (x)) d� (x)� �
�
�f
;w

�
(3.2)

=

Z



w (x) �

�
m (M � f (x)) +M (f (x)�m)

M �m

�
d� (x)

� �
�Z




w (x)

�
m (M � f (x)) +M (f (x)�m)

M �m

�
d� (x)

�
�
Z



(M � f (x))� (m) + (f (x)�m) � (M)
M �m w (x) d� (x)

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!

=

�
M � �f
;w

�
� (m) +

�
�f
;w �m

�
� (M)

M �m

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!
:= B:

Then, by the convexity of � we have the gradient inequality

� (t)� � (M) � �0� (M) (t�M)

for any t 2 [m;M): If we multiply this inequality with t�m � 0; we deduce

(3.3) (t�m) � (t)� (t�m) � (M) � �0� (M) (t�M) (t�m) ; t 2 [m;M ] :

Similarly, using the other gradient inequality

� (t)� � (m) � �0+ (m) (t�m)

for any t 2 (m;M ]; we also get

(3.4) (M � t) � (t)� (M � t) � (m) � �0+ (m) (t�m) (M � t) ; t 2 [m;M ] :

Adding (3.3) to (3.4) and dividing by M �m; we deduce

� (t)� (t�m)� (M) + (M � t) � (m)
M �m � (t�M) (t�m)

M �m
�
�0� (M)� �0+ (m)

�
;

for any t 2 (m;M) :
By denoting

�� (t;m;M) :=
(t�m) � (M) + (M � t)� (m)

M �m � � (t) ; t 2 [m;M ]

we then get the following inequality of interest

0 � �� (t;m;M) �
(M � t) (t�m)

M �m
�
�0� (M)� �0+ (m)

�
(3.5)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
for any t 2 (m;M) :
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Now, since with the above notations we have B = ��
�
�f
;w;m;M

�
, then by

(3.5) we have

B �
�
M � �f
;w

� �
�f
;w �m

�
M �m

�
�0� (M)� �0+ (m)

�
� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

and the proof is completed. �
Corollary 4. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m; M 2 R, m < M with [m;M ] � �I: If xi 2 I and pi � 0 for
i 2 f1; :::; ng with

Pn
i=1 pi = 1, then we have the inequality

0 �
nX
i=1

pi� (xi)� � (�xp)(3.6)

� (M � �xp) (�xp �m)
�0� (M)� �0+ (m)

M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �xp :=
Pn

i=1 pixi 2 I:
Remark 10. Consider the positive n-tuple x = (x1; :::; xn) with the nonnegative
weights w = (w1; :::; wn) where Wn :=

Pn
i=1 wi > 0: Applying the inequality (3.6)

for the convex function � (t) = � ln t; t > 0 we have

1 � An (w; x)

Gn (w; x)
� exp

�
1

Mm
(M �An (w; x)) (An (w; x)�m)

�
(3.7)

� exp
"
1

4

(M �m)2

mM

#
;

provided that 0 < m � xi �M <1 for i 2 f1; :::; ng :
For the Lebesgue measurable function g : [�; �]! R we introduce the Lebesgue

p-norms de�ned as

kgk[�;�];p :=
 Z �

�

jg (t)jp dt
!1=p

if g 2 Lp [�; �] ;

for p � 1 and
kgk[�;�];1 := essup

t2[�;�]
jg (t)j if g 2 L1 [�; �] ;

for p =1:
The following result also holds:

Theorem 5 (Dragomir, 2011 [19]). With the assumptions in Theorem 4, we have
the inequalities

0 �
Z



w (x) � (f (x)) d� (x)� �
�
�f
;w

�
(3.8)

�
�
M � �f
;w

� R �f
;w
m

j�0 (t)j dt+
�
�f
;w �m

� RM
�f
;w

j�0 (t)j dt
M �m

:= ��
�
�f
;w;m;M

�
;
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where the integral in the second term of the inequality is taken in the Lebesgue sense.
We also have the bounds:

��
�
�f
;w;m;M

�
(3.9)

�

8>>><>>>:
�
1
2 +

j �f
;w�m+M
2 j

M�m

� RM
m
j�0 (t)j dt;

h
1
2

RM
m
j�0 (t)j dt+ 1

2

���RM�f
;w j�0 (t)j dt� R �f
;wm
j�0 (t)j dt

���i
and

��
�
�f
;w;m;M

�
(3.10)

�
�
�f
;w �m

� �
M � �f
;w

�
M �m

h
k�0k[ �f
;w;M];1 + k�0k[m; �f
;w];1

i
� 1

2
(M �m)

k�0k[ �f
;w;M];1 + k�0k[m; �f
;w];1
2

� 1

2
(M �m) k�0k[m;M ];1

and

��
�
�f
;w;m;M

�
� 1

M �m

h�
�f
;w �m

� �
M � �f
;w

�1=q k�0k[ �f
;w;M];p(3.11)

+
�
M � �f
;w

� �
�f
;w �m

�1=q k�0k[m; �f
;w];pi
� 1

M �m
��
�f
;w �m

�q �
M � �f
;w

�
+
�
M � �f
;w

�q � �f
;w �m��1=q k�0k[m;M ];p

where p > 1; 1p +
1
q = 1:

Proof. Observe that, with the above notations we have

�� (t;m;M) =
(t�m) � (M) + (M � t)� (m)

M �m � � (t)(3.12)

=
(t�m) � (M) + (M � t)� (m)� (M �m) � (t)

M �m

=
(t�m) � (M) + (M � t)� (m)� (M � t+ t�m) � (t)

M �m

=
(t�m) [� (M)� � (t)]� (M � t) [� (t)� � (m)]

M �m
for any t 2 [m;M ] :
Taking the modulus on (3.12) and noticing that �� (t;m;M) � 0 for any t 2

[m;M ] ; we have that

�� (t;m;M) �
(t�m) j� (M)� � (t)j+ (M � t) j� (t)� � (m)j

M �m(3.13)

=
(t�m)

���RMt �0 (s) ds
���+ (M � t)

���R tm�0 (s) ds���
M �m

�
(t�m)

RM
t
j�0 (s)j ds+ (M � t)

R t
m
j�0 (s)j ds

M �m
for any t 2 [m;M ] :
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Finally, if we write the inequality (3.13) for t = �f
;w 2 [m;M ] and utilize the
inequality (3.2), we deduce the desired result (3.8).
Now, we observe that

(t�m)
RM
t
j�0 (s)j ds+ (M � t)

R t
m
j�0 (s)j ds

M �m(3.14)

�

8><>:
max ft�m;M � tg

RM
m
j�0 (t)j dt

max
nRM

t
j�0 (s)j ds;

R t
m
j�0 (s)j ds

o
(M �m)

=

8><>:
�
1
2 (M �m) +

��t� m+M
2

��� RM
m
j�0 (t)j dth

1
2

RM
m
j�0 (s)j ds+ 1

2

���RMt j�0 (s)j ds�
R t
m
j�0 (s)j ds

���i (M �m)

for any t 2 [m;M ] : This proves the inequality (3.9).
By the Hölder�s inequality we have

Z M

t

j�0 (s)j ds �

8><>:
(M � t) k�0k[t;M ];1

(M � t)1=q k�0k[t;M ];p if p > 1; 1p +
1
q = 1

and

Z t

m

j�0 (s)j ds �

8><>:
(t�m) k�0k[m;t];1

(t�m)1=q k�0k[m;t];p if p > 1; 1p +
1
q = 1

which give that

(t�m)
RM
t
j�0 (s)j ds+ (M � t)

R t
m
j�0 (s)j ds

M �m(3.15)

�
(t�m) (M � t) k�0k[t;M ];1 + (M � t) (t�m) k�0k[m;t];1

M �m

=
(t�m) (M � t)

M �m

h
k�0k[t;M ];1 + k�0k[m;t];1

i
� 1

2
(M �m)

k�0k[t;M ];1 + k�0k[m;t];1
2

� 1

2
(M �m)max

n
k�0k[t;M ];1 ; k�

0k[m;t];1
o
=
1

2
(M �m) k�0k[m;M ];1
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and

(t�m)
RM
t
j�0 (s)j ds+ (M � t)

R t
m
j�0 (s)j ds

M �m(3.16)

�
(t�m) (M � t)1=q k�0k[t;M ];p + (M � t) (t�m)1=q k�0k[m;t];p

M �m

� 1

M �m

h�
(t�m) (M � t)1=q

�q
+
�
(M � t) (t�m)1=q

�qi1=q
�
h
k�0kp[t;M ];p + k�

0kp[m;t];p
i1=p

=
1

M �m [(t�m)q (M � t) + (M � t)q (t�m)]1=q k�0k[m;M ];p

for any t 2 [m;M ] :
These prove the desired inequalities (3.10) and (3.11). �

The discrete case is as follows:

Corollary 5. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m; M 2 R, m < M with [m;M ] � �I, �I is the interior of I: If
xi 2 I and pi � 0 for i 2 f1; :::; ng with

Pn
i=1 pi = 1, then we have the inequality

0 �
nX
i=1

pi� (xi)� � (�xp)(3.17)

�
(M � �xp)

R �xp
m
j�0 (t)j dt+ (�xp �m)

RM
�xp
j�0 (t)j dt

M �m
:= �� (�xp;m;M) ;

where �� (�xp;m;M) satis�es the bounds

�� (�xp;m;M)(3.18)

�

8>>><>>>:
�
1
2 +

j�xp�m+M
2 j

M�m

� RM
m
j�0 (t)j dt;

h
1
2

RM
m
j�0 (t)j dt+ 1

2

���RM�xp j�0 (t)j dt� R �xpm j�0 (t)j dt
���i

and

�� (�xp;m;M)(3.19)

� (�xp �m) (M � �xp)
M �m

h
k�0k[�xp;M ];1 + k�0k[m;�xp];1

i
� 1

2
(M �m)

k�0k[�xp;M ];1 + k�0k[m;�xp];1
2

� 1

2
(M �m) k�0k[m;M ];1
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and

�� (�xp;m;M) �
1

M �m

h
(�xp �m) (M � �xp)1=q k�0k[�xp;M ];p(3.20)

+(M � �xp) (�xp �m)1=q k�0k[m;�xp];p
i

� 1

M �m [(�xp �m)q (M � �xp)

+ (M � �xp)q (�xp �m)]
1=q k�0k[m;M ];p :

Remark 11. Under the assumptions of Remark 10 , on applying the inequality
(3.17) for the convex function � (t) = � ln t; we have the following reverse of the
arithmetic mean-geometric mean inequality

(3.21) 1 � An (w; x)

Gn (w; x)
�
�
An (w; x)

m

�M�An(w;x)� M

An (w; x)

�An(w;x)�m
:

3.2. Applications for the Hölder Inequality. Assume that p > 1: If h : 
! R
is �-measurable, satis�es the bounds

�1 < m � jh (x)j �M <1 for �-a.e. x 2 

and is such that h; jhjp 2 Lw (
; �) ; for a �-measurable function w : 
! R, with
w (x) � 0 for �-a.e. x 2 
 and

R


wd� > 0; then from (3.1) we have

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
(3.22)

� pM
p�1 �mp�1

M �m

�
M � jhj
;w

��
jhj
;w �m

�
� 1

4
p (M �m)

�
Mp�1 �mp�1� ;

where jhj
;w :=
R


jhjwd�R


wd�

2 [m;M ] :

Proposition 4 (Dragomir, 2011 [19]). If f 2 Lp (
; �), g 2 Lq (
; �) with p > 1;
1
p +

1
q = 1 and there exists the constants 
; � > 0 and such that


 � jf j
jgjq�1

� � �-a.e on 


then we have

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(3.23)

� p�
p�1 � 
p�1
�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
� 1

4
p (�� 
)

�
�p�1 � 
p�1

�
:

Proof. The inequalities (3.23) follow from (3.22) by choosing

h =
jf j
jgjq�1

and w = jgjq :

The details are omitted. �



24 S.S. DRAGOMIR

Remark 12. We observe that for p = q = 2 we have from the �rst inequality in
(3.23) the following reverse of the Cauchy-Bunyakovsky-Schwarz inequality

0 �
Z



jgj2 d�
Z



jf j2 d��
�Z




jfgj d�
�2

(3.24)

�
 
��

R


jfgj d�R



jgj2 d�

! R


jfgj d�R



jgj2 d�

� 

!�Z




jgj2 d�
�2

� 1

4
(�� 
)2

�Z



jgj2 d�
�2
;

provided that f; g 2 L2 (
; �) and there exists the constants 
; � > 0 such that


 � jf j
jgj � � �-a.e on 
:

Corollary 6. With the assumptions of Proposition 4 we have the following additive
reverses of the Hölder inequality:

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�

(3.25)

� p1=p
�
�p�1 � 
p�1
�� 


� 1
p
�
��

R


jfgj d�R



jgjq d�

� 1
p
�R



jfgj d�R



jgjq d� � 


� 1
p
Z



jgjq d�

� 1

41=p
p1=p (�� 
)1=p

�
�p�1 � 
p�1

�1=p Z



jgjq d�

where p > 1 and 1
p +

1
q = 1:

Proof. By multiplying in (3.23) with
�R


jgjq d�

�p
we haveZ




jf jp d�
�Z




jgjq d�
�p�1

�
�Z




jfgj d�
�p

� p�
p�1 � 
p�1
�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


��Z



jgjq d�
�p

� 1

4
p (�� 
)

�
�p�1 � 
p�1

��Z



jgjq d�
�p
;

which is equivalent withZ



jf jp d�
�Z




jgjq d�
�p�1

(3.26)

�
�Z




jfgj d�
�p
+ p

�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
�
�Z




jgjq d�
�p
�p�1 � 
p�1
�� 


�
�Z




jfgj d�
�p
+
1

4
p (�� 
)

�
�p�1 � 
p�1

��Z



jgjq d�
�p
:
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Taking the power 1=p with p > 1 and employing the following elementary inequality
that state that for p > 1 and �; � > 0;

(�+ �)
1=p � �1=p + �1=p

we have from the �rst part of (3.26) thatZ



jf jp d�
�Z




jgjq d�
�1� 1

p

(3.27)

�
Z



jfgj d�

+

�
p

�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


��Z



jgjq d�
�p
�p�1 � 
p�1
�� 


�1=p
:

Since 1 � 1
p =

1
q ; we get from (3.27) the �rst inequality in (3.25). The rest is

obvious. �

If h : 
! R is �-measurable, satis�es the bounds

�1 < m � jh (x)j �M <1 for �-a.e. x 2 


and is such that h; jhjp 2 Lw (
; �) ; for a �-measurable function w : 
! R, with
w (x) � 0 for �-a.e. x 2 
 and

R


wd� > 0; then from Theorem 5 we have amongst

other the following inequality

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
(3.28)

� (Mp �mp)

�
1

2
+

1

M �m

����
R


jhjwd�R


wd�

� m+M
2

����� :
From this inequality we can state that:

Proposition 5 (Dragomir, 2011 [19]). With the assumptions of Proposition 4 we
have

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(3.29)

� (�p � 
p)
�
1

2
+

1

�� 


����
R


jfgj d�R



jgjq d� �


 + �

2

����� :
Finally, the following additive reverse of the Hölder inequality can be stated as

well:

Corollary 7. With the assumptions of Proposition 4 we have�Z



jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(3.30)

� (�p � 
p)1=p
�
1

2
+

1

�� 


����
R


jfgj d�R



jgjq d� �


 + �

2

�����1=p Z



jgjq d�:
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Remark 13. We observe that for p = q = 2 we have from the �rst inequality in
(3.29) the following reverse of the Cauchy-Bunyakovsky-Schwarz inequalityZ




jgj2 d�
Z



jf j2 d��
�Z




jfgj d�
�2

(3.31)

�
�
�2 � 
2

� "1
2
+

1

�� 


�����
R


jfgj d�R



jgj2 d�

� 
 + �
2

�����
#�Z




jgj2 d�
�2

provided that f; g 2 L2 (
; �) and there exists the constants 
; � > 0 such that


 � jf j
jgj � � �-a.e on 
:

One can easily observe that the bound provided by (3.31) is not as good as the one
given by (3.24). The details are omitted.

3.3. Applications for f-Divergence. The following result holds:

Proposition 6 (Dragomir, 2011 [19]). Let f : (0;1) ! R be a convex function
with the property that f (1) = 0: Assume that p; q 2 P and there exists the constants
0 < r < 1 < R <1 such that

(3.32) r � q (x)

p (x)
� R for �-a.e. x 2 
:

Then we have the inequalities

0 � If (p; q) � (R� 1) (1� r)
f 0� (R)� f 0+ (r)

R� r(3.33)

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

Proof. Utilising Theorem 4 we can write thatZ



p (x) f

�
q (x)

p (x)

�
d� (x)� f

�Z



q (x) d� (x)

�
(3.34)

�
�
R�

Z



q (x) d� (x)

��Z



q (x) d� (x)� r
�
f 0� (R)� f 0+ (r)

R� r

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
;

for p; q 2 P satisfying (3.32) and since f
�R


q (x) d� (x)

�
= f (1) = 0 we get from

(3.34) the desired result (3.33). �

By the use of Theorem 5 we can also state the following result:

Proposition 7 (Dragomir, 2011 [19]). With the assumptions in Proposition 6, we
have the inequalities

(3.35) 0 � If (p; q) � Bf (r;R)

where

(3.36) Bf (r;R) :=
(R� 1)

R 1
r
jf 0 (t)j dt+ (1� r)

R R
1
jf 0 (t)j dt

R� r :
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Moreover, we have the following bounds for Bf (r;R) ;

Bf (r;R)(3.37)

�

8>>><>>>:
�
1
2 +

j1� r+R
2 j

R�r

� R R
r
jf 0 (t)j dt;

h
1
2

R R
r
jf 0 (t)j dt+ 1

2

���R R1 jf 0 (t)j dt� R 1r jf 0 (t)j dt���i
and

Bf (r;R)(3.38)

� (1� r) (R� 1)
R� r

h
kf 0k[1;R];1 + kf 0k[r;1];1

i
� 1

2
(R� r)

kf 0k[1;R];1 + kf 0k[r;1];1
2

� 1

2
(R� r) kf 0k[r;R];1

and

Bf (r;R)(3.39)

� 1

R� r

h
(1� r) (R� 1)1=q kf 0k[1;R];p + (R� 1) (1� r)

1=q kf 0k[r;1];p
i

� 1

R� r [(1� r)
q
(R� 1) + (R� 1)q (1� r)]1=q kf 0k[r;R];p

where p > 1; 1p +
1
q = 1:

The above results can be utilized to obtain various inequalities for the divergence
measures in information theory that are particular instances of f -divergences.
Consider, for example, the Kullback-Leibler divergence measure

DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

which is an f -divergence for the convex function f : (0;1)! R, f (t) = � ln t:
If p; q 2 P such that there exists the constants 0 < r < 1 < R <1 with

(3.40) r � q (x)

p (x)
� R for �-a.e. x 2 
;

then we get from (3.33) that

(3.41) DKL (p; q) �
(R� 1) (1� r)

rR

and from (3.35) that

DKL (p; q) � ln
�
R1�r

rR�1

� 1
R�r

:

The interested reader can obtain similar results for other divergence measures
as listed above. However, the details are omitted.
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4. More Reverse Inequalities

4.1. General Results. The following reverse of the Jensen�s inequality that pro-
vides a re�nement and an alternative for the inequality in Theorem 4 holds:

Theorem 6 (Dragomir, 2011 [18]). Let � : I ! R be a continuous convex function
on the interval of real numbers I and m; M 2 R, m < M with [m;M ] � �I, �I is the
interior of I: If f : 
! R is �-measurable, satis�es the bounds

�1 < m � f (x) �M <1 for �-a.e. x 2 


and such that f; � � f 2 Lw (
; �) ; where w � 0 �-a.e. on 
 with
R


wd� = 1,

then

0 �
Z



w (� � f) d�� �
�
�f
;w

�
(4.1)

�
�
M � �f
;w

� �
�f
;w �m

�
M �m sup

t2(m;M)

	� (t;m;M)

�
�
M � �f
;w

� �
�f
;w �m

� �0� (M)� �0+ (m)
M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �f
;w :=
R


w (x) f (x) d� (x) 2 [m;M ] and 	� (�;m;M) : (m;M) ! R is

de�ned by

	� (t;m;M) =
� (M)� � (t)

M � t � � (t)� � (m)
t�m :

We also have the inequality

0 �
Z



w (� � f) d�� �
�
�f
;w

�
� 1

4
(M �m)	�

�
�f
;w;m;M

�
(4.2)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

provided that �f
;w 2 (m;M) :
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Proof. By the convexity of � we have that

Z



w (x) � (f (x)) d� (x)� �
�
�f
;w

�
(4.3)

=

Z



w (x) �

�
m (M � f (x)) +M (f (x)�m)

M �m

�
d� (x)

� �
�Z




w (x)

�
m (M � f (x)) +M (f (x)�m)

M �m

�
d� (x)

�
�
Z



(M � f (x))� (m) + (f (x)�m) � (M)
M �m w (x) d� (x)

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!

=

�
M � �f
;w

�
� (m) +

�
�f
;w �m

�
� (M)

M �m

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!
:= B:

By denoting

�� (t;m;M) :=
(t�m) � (M) + (M � t)� (m)

M �m � � (t) ; t 2 [m;M ]

we have

�� (t;m;M) =
(t�m)� (M) + (M � t) � (m)� (M �m) � (t)

M �m(4.4)

=
(t�m)� (M) + (M � t) � (m)� (M � t+ t�m) � (t)

M �m

=
(t�m) [� (M)� � (t)]� (M � t) [� (t)� � (m)]

M �m

=
(M � t) (t�m)

M �m 	� (t;m;M)

for any t 2 (m;M) :
Therefore we have the equality

(4.5) B =

�
M � �f
;w

� �
�f
;w �m

�
M �m 	�

�
�f
;w;m;M

�
provided that �f
;w 2 (m;M) :
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For �f
;w = m or �f
;w = M the inequality (4.1) is obvious. If �f
;w 2 (m;M),
then

	�
�
�f
;w;m;M

�
� sup

t2(m;M)

	� (t;m;M)

= sup
t2(m;M)

�
� (M)� � (t)

M � t � � (t)� � (m)
t�m

�
� sup

t2(m;M)

�
� (M)� � (t)

M � t

�
+ sup
t2(m;M)

�
�� (t)� � (m)

t�m

�
= sup

t2(m;M)

�
� (M)� � (t)

M � t

�
� inf
t2(m;M)

�
� (t)� � (m)

t�m

�
= �0� (M)� �0+ (m) ;

which by (4.3) and (4.5) produces the desired result (4.1).
Since, obviously �

M � �f
;w
� �
�f
;w �m

�
M �m � 1

4
(M �m) ;

then by (4.3) and (4.5) we deduce the �rst inequality (4.2). The second part is
clear. �

Corollary 8. Let � : I ! R be a continuous convex function on the interval of
real numbers I and m; M 2 R, m < M with [m;M ] � �I. If xi 2 [m;M ] and pi � 0
for i 2 f1; :::; ng with

Pn
i=1 pi = 1, then we have the inequalities

0 �
nX
i=1

pi� (xi)� � (�xp)(4.6)

� (M � �xp) (�xp �m)
M �m sup

t2(m;M)

	� (t;m;M)

� (M � �xp) (�xp �m)
�0� (M)� �0+ (m)

M �m

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

and

0 �
nX
i=1

pi� (xi)� � (�xp) �
1

4
(M �m)	� (�xp;m;M)(4.7)

� 1

4
(M �m)

�
�0� (M)� �0+ (m)

�
;

where �xp :=
Pn

i=1 pixi 2 (m;M) :

Remark 14. Consider the positive n-tuple x = (x1; :::; xn) with the nonnegative
weights w = (w1; :::; wn) whereWn :=

Pn
i=1 wi > 0: Applying the inequality between

the �rst and third term in (4.6) for the convex function � (t) = � ln t; t > 0 we

e5011831
Typewritten Text
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have

1 � An (w; x)

Gn (w; x)
� exp

�
1

Mm
(M �An (w; x)) (An (w; x)�m)

�
(4.8)

� exp
"
1

4

(M �m)2

mM

#
;

provided that 0 < m � xi �M <1 for i 2 f1; :::; ng :
Also, if we apply the inequality (4.7) for the same function � we get that

1 � An (w; x)

Gn (w; x)
(4.9)

�
"�

M

An (w; x)

�M�An(w;x)� m

An (w; x)

�An(w;x)�m
#� 1

4 (M�m)

� exp
"
1

4

(M �m)2

mM

#
:

The following result also holds:

Theorem 7 (Dragomir, 2011 [18]). With the assumptions of Theorem 6, we have
the inequalities

0 �
Z



w (� � f) d� (x)� �
�
�f
;w

�
(4.10)

� 2max
�
M � �f
;w
M �m ;

�f
;w �m
M �m

��
� (m) + � (M)

2
� �

�
m+M

2

��
� 1

2
max

�
M � �f
;w; �f
;w �m

	 �
�0� (M)� �0+ (m)

�
:

Proof. First of all, we recall the following result obtained by the author in [16] that
provides a re�nement and a reverse for the weighted Jensen�s discrete inequality:

n min
i2f1;:::;ng

fpig
"
1

n

nX
i=1

� (xi)� �
 
1

n

nX
i=1

xi

!#
(4.11)

� 1

Pn

nX
i=1

pi� (xi)� �
 
1

Pn

nX
i=1

pixi

!

n max
i2f1;:::;ng

fpig
"
1

n

nX
i=1

� (xi)� �
 
1

n

nX
i=1

xi

!#
;

where � : C ! R is a convex function de�ned on the convex subset C of the linear
space X; fxigi2f1;:::;ng � C are vectors and fpigi2f1;:::;ng are nonnegative numbers
with Pn :=

Pn
i=1 pi > 0:

For n = 2 we deduce from (4.11) that

2min ft; 1� tg
�
� (x) + � (y)

2
� �

�
x+ y

2

��
(4.12)

� t� (x) + (1� t)� (y)� � (tx+ (1� t) y)

� 2max ft; 1� tg
�
� (x) + � (y)

2
� �

�
x+ y

2

��
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for any x; y 2 C and t 2 [0; 1] :
If we use the second inequality in (4.12) for the convex function � : I ! R and

m; M 2 R, m < M with [m;M ] � �I; we have for t = M� �f
;w
M�m that�

M � �f
;w
�
� (m) +

�
�f
;w �m

�
� (M)

M �m(4.13)

� �
 
m
�
M � �f
;w

�
+M

�
�f
;w �m

�
M �m

!

� 2max
�
M � �f
;w
M �m ;

�f
;w �m
M �m

�
�
�
� (m) + � (M)

2
� �

�
m+M

2

��
:

Utilizing the inequality (4.3) and (4.13) we deduce the �rst inequality in (4.10).
Since

�(m)+�(M)
2 � �

�
m+M
2

�
M �m

=
1

4

"
� (M)� �

�
m+M
2

�
M � m+M

2

�
�
�
m+M
2

�
� � (m)

m+M
2 �m

#
and, by the gradient inequality, we have that

� (M)� �
�
m+M
2

�
M � m+M

2

� �0� (M)

and
�
�
m+M
2

�
� � (m)

m+M
2 �m

� �0+ (m) ;

then we get

(4.14)
�(m)+�(M)

2 � �
�
m+M
2

�
M �m � 1

4

�
�0� (M)� �0+ (m)

�
:

On making use of (4.13) and (4.14) we deduce the last part of (4.10). �

Corollary 9. With the assumptions in Corollary 8, we have the inequalities

0 �
nX
i=1

pi� (xi)� � (�xp)(4.15)

� 2max
�
M � �xp
M �m ;

�xp �m
M �m

��
� (m) + � (M)

2
� �

�
m+M

2

��
� 1

2
max fM � �xp; �xp �mg

�
�0� (M)� �0+ (m)

�
:

Remark 15. Since, obviously,

M � �f
;w
M �m ;

�f
;w �m
M �m � 1
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then we obtain from the �rst inequality in (4.10) the simpler, however coarser in-
equality

0 �
Z



w (� � f) d� (x)� �
�
�f
;w

�
(4.16)

� 2
�
� (m) + � (M)

2
� �

�
m+M

2

��
:

We notice that the discrete version of this result, namely

(4.17) 0 �
nX
i=1

pi� (xi)� � (�xp) � 2
�
� (m) + � (M)

2
� �

�
m+M

2

��
was obtained in 2008 by S. Simíc in [50].

Remark 16. With the assumptions in Remark 14 we have the following reverse of
the arithmetic mean-geometric mean inequality

(4.18) 1 � An (w; x)

Gn (w; x)
�
�
A (m;M)

G (m;M)

�2maxfM�An(w;x)
M�m ;

An(w;x)�m
M�m g

;

where A (m;M) is the arithmetic mean while G (m;M) is the geometric mean of
the positive numbers m and M .

4.2. Applications for the Hölder Inequality. Assume that p > 1: If h : 
! R
is �-measurable, satis�es the bounds

0 < m � jh (x)j �M <1 for �-a.e. x 2 

and is such that h; jhjp 2 Lw (
; �) ; for a ��measurable function w : 
! R, with
w (x) � 0 for �-a.e. x 2 
 and

R


wd� > 0; then from (4.1) we have

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
(4.19)

�

�
M � jhj
;w

��
jhj
;w �m

�
M �m Bp (m;M)

� pM
p�1 �mp�1

M �m

�
M � jhj
;w

��
jhj
;w �m

�
� 1

4
p (M �m)

�
Mp�1 �mp�1� ;

where jhj
;w :=
R


jhjwd�R


wd�

2 [m;M ] and 	p (�;m;M) : (m;M)! R is de�ned by

	p (t;m;M) =
Mp � tp
M � t � t

p �mp

t�m
while

(4.20) Bp (m;M) := sup
t2(m;M)

	p (t;m;M) :

From (4.2) we also have the inequality

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
� 1

4
(M �m)	p

�
jhj
;w;m;M

�
(4.21)

� 1

4
p (M �m)

�
Mp�1 �mp�1� :
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Proposition 8 (Dragomir, 2011 [18]). If f 2 Lp (
; �), g 2 Lq (
; �) with p >
1; 1p +

1
q = 1 and there exists the constants 
; � > 0 and such that


 � jf j
jgjq�1

� � �-a.e on 
;

then we have

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(4.22)

� Bp (
;�)

�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
� p�

p�1 � 
p�1
�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
� 1

4
p (�� 
)

�
�p�1 � 
p�1

�
;

and

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(4.23)

� 1

4
(�� 
)	p

�R


jfgj d�R



jgjq d� ; 
;�

�
� 1

4
p (�� 
)

�
�p�1 � 
p�1

�
;

where Bp (�; �) and 	p (�; �; �) are de�ned above.

Proof. The inequalities (4.22) and (4.23) follow from (4.19) and (4.21) by choosing

h =
jf j
jgjq�1

and w = jgjq :

The details are omitted. �

Remark 17. We observe that for p = q = 2 we have 	2 (t; 
;�) = ��
 = B2 (
;�)
and then from the �rst inequality in (4.22) we get the following reverse of the
Cauchy-Bunyakovsky-Schwarz inequality:Z




jgj2 d�
Z



jf j2 d��
�Z




jfgj d�
�2

(4.24)

�
 
��

R


jfgj d�R



jgj2 d�

! R


jfgj d�R



jgj2 d�

� 

!�Z




jgj2 d�
�2

provided that f; g 2 L2 (
; �), and there exists the constants 
; � > 0 such that


 � jf j
jgj � � �-a.e on 
:
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Corollary 10. With the assumptions of Proposition 8 we have the following addi-
tive reverses of the Hölder inequality

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(4.25)

�
�
Bp (
;�)

�� 


�1=p�
��

R


jfgj d�R



jgjq d�

�1=p�R


jfgj d�R



jgjq d� � 


�1=p
�
Z



jgjq d�

� p1=p
�
�p�1 � 
p�1
�� 


�1=p�
��

R


jfgj d�R



jgjq d�

�1=p�R


jfgj d�R



jgjq d� � 


�1=p
�
Z



jgjq d�

� 1

41=p
p1=p (�� 
)1=p

�
�p�1 � 
p�1

�1=p Z



jgjq d�

and

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(4.26)

� 1

41=p
(�� 
)1=p	1=pp

�R


jfgj d�R



jgjq d� ;m;M

�Z



jgjq d�

� 1

41=p
p1=p (�� 
)1=p

�
�p�1 � 
p�1

�1=p Z



jgjq d�

where p > 1 and 1
p +

1
q = 1:

Proof. By multiplying in (4.22) with
�R


jgjq d�

�p
we have

Z



jf jp d�
�Z




jgjq d�
�p�1

�
�Z




jfgj d�
�p

� Bp (
;�)

�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


��Z



jgjq d�
�p

� p�
p�1 � 
p�1
�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


��Z



jgjq d�
�p

� 1

4
p (�� 
)

�
�p�1 � 
p�1

��Z



jgjq d�
�p
;
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which is equivalent withZ



jf jp d�
�Z




jgjq d�
�p�1

(4.27)

�
�Z




jfgj d�
�p
+
Bp (
;�)

�� 


�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
�
�Z




jgjq d�
�p

�
�Z




jfgj d�
�p
+ p

�
��

R


jfgj d�R



jgjq d�

��R


jfgj d�R



jgjq d� � 


�
�
�Z




jgjq d�
�p
�p�1 � 
p�1
�� 


�
�Z




jfgj d�
�p
+
1

4
p (�� 
)

�
�p�1 � 
p�1

��Z



jgjq d�
�p
:

Taking the power 1=p with p > 1 and employing the following elementary inequality
that state that for p > 1 and �; � > 0;

(�+ �)
1=p � �1=p + �1=p

we have from the �rst part of (4.27) that�Z



jf jp
�1=p

d�

�Z



jgjq d�
�1� 1

p

(4.28)

�
Z



jfgj d�+
�
Bp (
;�)

�� 


�1=p�
��

R


jfgj d�R



jgjq d�

�1=p�R


jfgj d�R



jgjq d� � 


�1=p
�
Z



jgjq d�

and since 1 � 1
p =

1
q we get from (4.28) the �rst inequality in (4.25). The rest is

obvious.
The inequality (4.26) can be proved in a similar manner, however the details are

omitted. �

If h : 
! R is �-measurable, satis�es the bounds

0 < m � jh (x)j �M <1 for �-a.e. x 2 

and is such that h; jhjp 2 Lw (
; �) ; for a �-measurable function w : 
! R, with
w (x) � 0 for �-a.e. x 2 
 and

R


wd� > 0; then from (4.10) we also have the

inequality

0 �
R


jhjp wd�R


wd�

�
�R



jhjwd�R


wd�

�p
(4.29)

� 2
�
mp +Mp

2
�
�
m+M

2

�p�
max

(
M � jhj
;w
M �m ;

jhj
;w �m
M �m

)

� 1

2
p
�
Mp�1 �mp�1�maxnM � jhj
;w; jhj
;w �m

o
:

where, as above, jhj
;w :=
R


jhjwd�R


wd�

2 [m;M ].
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From the inequality (4.29) we can state:

Proposition 9 (Dragomir, 2011 [18]). With the assumptions of Proposition 8 we
have

0 �
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
(4.30)

� 2 �

p+�p

2 �
�

+�
2

�p
�� 
 max

�
��

R


jfgj d�R



jgjq d� ;

R


jfgj d�R



jgjq d� � 


�
� 1

2
p
�
�p�1 � 
p�1

�
max

�
��

R


jfgj d�R



jgjq d� ;

R


jfgj d�R



jgjq d� � 


�
:

Finally, the following additive reverse of the Hölder inequality can be stated as
well:

Corollary 11. With the assumptions of Proposition 8 we have

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�(4.31)

� 21=p �

0@ 
p+�p

2 �
�

+�
2

�p
�� 


1A1=p

�max
(�

��
R


jfgj d�R



jgjq d�

�1=p
;

�R


jfgj d�R



jgjq d� � 


�1=p)Z



jgjq d�

� 1

21=p
p1=pmax

(�
��

R


jfgj d�R



jgjq d�

�1=p
;

�R


jfgj d�R



jgjq d� � 


�1=p)

�
�
�p�1 � 
p�1

�1=p Z



jgjq d�:

Remark 18. As a simpler, however coarser inequality we have the following result:

0 �
�Z




jf jp d�
�1=p�Z




jgjq d�
�1=q

�
Z



jfgj d�

� 21=p �
�

p + �p

2
�
�

 + �

2

�p�1=p Z



jgjq d�;

where f and g are as above.

4.3. Applications for f-Divergence. The following result holds:

Proposition 10 (Dragomir, 2011 [18]). Let f : (0;1) ! R be a convex function
with the property that f (1) = 0: Assume that p; q 2 P and there exists the constants
0 < r < 1 < R <1 such that

(4.32) r � q (x)

p (x)
� R for �-a.e. x 2 
:
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Then we have the inequalities

If (p; q) �
(R� 1) (1� r)

R� r sup
t2(r;R)

	f (t; r;R)(4.33)

� (R� 1) (1� r)
f 0� (R)� f 0+ (r)

R� r

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
;

and 	f (�; r;R) : (r;R)! R is de�ned by

	f (t; r;R) =
f (R)� f (t)

R� t � f (t)� f (r)
t� r :

We also have the inequality

If (p; q) �
1

4
(R� r) f (R) (1� r) + f (r) (R� 1)

(R� 1) (1� r)(4.34)

� 1

4
(R� r)

�
f 0� (R)� f 0+ (r)

�
:

The proof follows by Theorem 6 by choosing w (x) = p (x) ; f (x) = q(x)
p(x) ; m = r

and M = R and performing the required calculations. The details are omitted.
Utilising the same approach and Theorem 7 we can also state that:

Proposition 11 (Dragomir, 2011 [18]). With the assumptions of Proposition 10
we have

If (p; q) � 2max
�
R� 1
R� r ;

1� r
R� r

��
f (r) + f (R)

2
� f

�
r +R

2

��
(4.35)

� 1

2
max fR� 1; 1� rg

�
f 0� (R)� f 0+ (r)

�
:

The above results can be utilized to obtain various inequalities for the divergence
measures in Information Theory that are particular instances of f -divergence.
Consider the Kullback-Leibler divergence

DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

which is an f -divergence for the convex function f : (0;1)! R, f (t) = � ln t:
If p; q 2 P such that there exists the constants 0 < r < 1 < R <1 with

(4.36) r � q (x)

p (x)
� R for �-a.e. x 2 
:

then we get from (4.33) that

(4.37) DKL (p; q) �
(R� 1) (1� r)

rR
;

from (4.34) that

DKL (p; q) �
1

4
(R� r) ln

h
R�

1
R�1 r�

1
1�r

i
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and from (4.35) that

DKL (p; q) � 2max
�
R� 1
R� r ;

1� r
R� r

�
ln

�
A (r;R)

G (r;R)

�
(4.38)

� 1

2
max fR� 1; 1� rg

�
R� r
rR

�
;

where A (r;R) is the arithmetic mean and G (r;R) is the geometric mean of the
positive numbers r and R:

5. Superadditivity and Monotonicity Properties

5.1. General Results. For a �-measurable function w : 
 ! R, with w (x) � 0
for � -a.e. x 2 
 and

R


wd� > 0 we consider the functional

(5.1) J (w; �; f) :=

Z



w (� � f) d�� �
�R



wfd�R


wd�

�Z



wd� � 0;

where � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f; � � f 2 Lw (
; �) :

Theorem 8 (Dragomir, 2011 [21]). Let wi : 
 ! R, with wi (x) � 0 for �-a.e.
x 2 
 and

R


wid� > 0; i 2 f1; 2g : If � : I ! R is a continuous convex function

on the interval of real numbers I; f : 
 ! R is �-measurable and such that f;
� � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

(5.2) J (w1 + w2; �; f) � J (w1; �; f) + J (w2; �; f) � 0

i.e., J is a superadditive functional of weights.
Moreover, if w2 � w1 � 0 �-a.e. on 
; then

(5.3) J (w2; �; f) � J (w1; �; f) � 0;

i.e., J is a monotonic nondecreasing functional of weights.
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Proof. Utilising the convexity property of � we have successively

J (w1 + w2; �; f)(5.4)

=

Z



(w1 + w2) (� � f) d�� �
�R



(w1 + w2) fd�R


(w1 + w2) d�

�Z



(w1 + w2) d�

=

Z



w1 (� � f) d�+
Z



w2 (� � f) d�

� �

0@R
 w1d� �
R


w1fd�R



w1d�

+
R


w2d� �

R


w2fd�R



w2d�R



(w1 + w2) d�

1AZ



(w1 + w2) d�

�
Z



w1 (� � f) d�+
Z



w2 (� � f) d�

�
� R



w1d�R



(w1 + w2) d�

�

�R


w1fd�R


w1d�

�
+

R


w2d�R



(w1 + w2) d�

�

�R


w2fd�R


w2d�

��
�
Z



(w1 + w2) d�

=

Z



w1 (� � f) d�� �
�R



w1fd�R


w1d�

�Z



w1d�

+

Z



w2 (� � f) d�� �
�R



w2fd�R


w2d�

�Z



w2d�

= J (w1; �; f) + J (w2; �; f)

which proves the superadditivity property.
Now, if w2 � w1 � 0; then on applying the superadditivity property we have
J (w2; �; f) = J (w1 + (w2 � w1) ; �; f) � J (w1; �; f) + J (w2 � w1; �; f)

� J (w1; �; f)
since by the Jensen�s inequality for the positive weights we have J (w2 � w1; �; f) �
0: �

The above theorem has a simple however interesting consequence that provides
both a re�nement and a reverse for the Jensen�s integral inequality:

Corollary 12. Let wi : 
 ! R, with wi (x) � 0 for �-a.e. x 2 
,
R


wid� > 0;

i 2 f1; 2g and there exists the nonnegative constants 
; � such that

(5.5) 0 � 
 � w2
w1

� � <1 �-a.e. on 
:

If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f; � � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

0 � 

�Z




w1 (� � f) d�� �
�R



w1fd�R


w1d�

�Z



w1d�

�
(5.6)

�
Z



w2 (� � f) d�� �
�R



w2fd�R


w2d�

�Z



w2d�

� �
�Z




w1 (� � f) d�� �
�R



w1fd�R


w1d�

�Z



w1d�

�
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or, equivalently,

0 � 

R


w1d�R



w2d�

�R


w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

��
(5.7)

�
R


w2 (� � f) d�R


w2d�

� �
�R



w2fd�R


w2d�

�
� �

R


w1d�R



w2d�

�R


w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

��
:

Proof. From (5.5) we have 
w1 � w2 � �w1 < 1 �-a.e. on 
 and by the
monotonicity property (5.3) we get

(5.8) J (�w1; �; f) � J (w2; �; f) � J (
w1; �; f) :
Since the the functional is positive homogeneous, namely J (�w; �; f) = �J (w; �; f),
then we get from (5.8) the desired result (5.6). �

Remark 19. Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for
�-a.e. x 2 
,

R


wd� > 0 and w is essentially bounded, i.e. essinfx2
 w (x) and

essupx2
 w (x) are �nite. If � : I ! R is a continuous convex function on the
interval of real numbers I; f : 
 ! R is �-measurable and such that f; � � f 2
Lw (
; �) \ L (
; �) ; then

0 � essinfx2
 w (x)
1

�(
)

R


wd�

�R


(� � f) d�
� (
)

� �
�R



fd�

� (
)

��
(5.9)

�
R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� essupx2
 w (x)

1
�(
)

R


wd�

�R


(� � f) d�
� (
)

� �
�R



fd�

� (
)

��
:

This result can be used to provide the following result related to the Hermite-
Hadamard inequality for convex functions that states that

1

b� a

Z b

a

� (t) dt � �
�
a+ b

2

�
for any convex function � : [a; b]! R.
Indeed , if w : [a; b]! [0;1) is Lebesgue integrable, then we have

0 �
essinfx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

"
1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�#
(5.10)

�
R b
a
w (t) � (t) dtR b
a
w (t) dt

� �
 R



w (t) tdtR b

a
w (t) dt

!

�
essupx2[a;b] w (x)

1
b�a

R b
a
w (t) dt

"
1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�#
:

Now we consider another functional depending on the weights

K (w; �; f) :=
J (w; �; f)R



wd�

=

R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�
� 0
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and the composite functional

L (w; �; f) :=

�Z



wd�

�
ln [K (w; �; f) + 1] � 0;

where � : I ! R is a continuous convex function on the interval of real numbers I
and f : 
! R is �-measurable and such that f; � � f 2 Lw (
; �) :

Theorem 9 (Dragomir, 2011 [21]). With the assumptions of Theorem 8, L is a
superadditive and monotonic nondecreasing functional of weights.

Proof. Let wi : 
! R, with wi (x) � 0 for �-a.e. x 2 
 and
R


wid� > 0; i 2 f1; 2g

such that f; � � f 2 Lw1 (
; �) \ Lw2 (
; �) :
Utilising the superadditivity property of J we have

L (w1 + w2; �; f)(5.11)

=

�Z



(w1 + w2) d�

�
ln [K (w1 + w2; �; f) + 1]

=

�Z



(w1 + w2) d�

�
ln

�
J (w1 + w2; �; f)R


(w1 + w2) d�

+ 1

�
�
�Z




(w1 + w2) d�

�
ln

�
J (w1; �; f) + J (w2; �; f)R



(w1 + w2) d�

+ 1

�
=

�Z



(w1 + w2) d�

�

� ln

24R
 w1d� � J(w1;�;f)R


w1d�

+
R


w2d� � J(w2;�;f)R



w2d�R



(w1 + w2) d�

+ 1

35
=

�Z



(w1 + w2) d�

�

� ln

24R
 w1d� �
�
J(w1;�;f)R


w1d�

+ 1
�
+
R


w2d� �

�
J(w2;�;f)R


w2d�

+ 1
�

R


(w1 + w2) d�

35
:= A:

By the weighted arithmetic mean - geometric mean inequality we haveR


w1d� �

�
J(w1;�;f)R


w1d�

+ 1
�
+
R


w2d� �

�
J(w2;�;f)R


w2d�

+ 1
�

R


(w1 + w2) d�

�
�
J (w1; �; f)R



w1d�

+ 1

� R

 w1d�R


(w1+w2)d�
�
J (w2; �; f)R



w2d�

+ 1

� R

 w2d�R


(w1+w2)d�

;

therefore, by taking the logarithm and utilizing the de�nition of the functional K;
we get the inequality

A �
�Z




w1d�

�
ln (K (w1; �; f) + 1) +

�Z



w2d�

�
ln (K (w2; �; f) + 1)(5.12)

= L (w1; �; f) + L (w2; �; f) :

Utilising (5.11) and (5.12) we deduce the superadditivity of the functional L as a
function of weights.
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Since L (w; �; f) � 0 for any weight w and it is superadditive, by employing a
similar argument to the one in the proof of Theorem 8 we conclude that it is also
monotonic nondecreasing as a function of weights. �

The following result provides another re�nement and reverse of the Jensen in-
equality:

Corollary 13. Let wi : 
 ! R with wi (x) � 0 for �-a.e. x 2 
,
R


wid� > 0;

i 2 f1; 2g and there exists the nonnegative constants 
; � such that

0 � 
 � w2
w1

� � <1 �-a.e. on 
:

If � : I ! R is a continuous convex function on the interval of real numbers I;
f : 
! R is �-measurable and such that f; � � f 2 Lw1 (
; �) \ Lw2 (
; �) ; then

0 �
�R



w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

�
+ 1

�
 (R
 w1d�)
(
R

 w2d�)

� 1(5.13)

�
R


w2 (� � f) d�R


w2d�

� �
�R



w2fd�R


w2d�

�

�
�R



w1 (� � f) d�R


w1d�

� �
�R



w1fd�R


w1d�

�
+ 1

��(R
 w1d�)
(
R

 w2d�)

� 1:

Proof. Since L is monotonic nondecreasing and positive homogeneous as a function
of weights, we have


L (w1; �; f) � L (w2; �; f) � �L (w1; �; f) ;

namely

[K (w1; �; f) + 1]

(
R


w1d�) � [K (w2; �; f) + 1](

R


w2d�)

� [K (w1; �; f) + 1]�(
R


w1d�) ;

which provides that

[K (w1; �; f) + 1]


(
R

 w1d�)

(
R

 w2d�) � 1 � K (w2; �; f)

� [K (w1; �; f) + 1]
�
(
R

 w1d�)

(
R

 w2d�) � 1:

�

Remark 20. Assume that � (
) < 1 and let w : 
 ! R, with w (x) � 0 for
�-a.e. x 2 
,

R


wd� > 0 and w is essentially bounded, i.e. essinfx2
 w (x) and

essupx2
 w (x) are �nite. If � : I ! R is a continuous convex function on the
interval of real numbers I; f : 
 ! R is �-measurable and such that f; � � f 2
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Lw (
; �) \ L (
; �) ; then

0 �
�R



(� � f) d�
� (
)

� �
�R



fd�

� (
)

�
+ 1

� ess infx2
 w(x)

1
�(
) (

R

 wd�)

� 1(5.14)

�
R


w (� � f) d�R


wd�

� �
�R



wfd�R


wd�

�

�
�R



(� � f) d�
� (
)

� �
�R



fd�

� (
)

�
+ 1

� ess supx2
 w(x)

1
�(
) (

R

 wd�)

� 1:

In particular, if w : [a; b] ! [0;1) is Lebesgue integrable, then we have the fol-
lowing result related to the Hermite-Hadamard inequality for the convex function
� : [a; b]! R

0 �
"

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
+ 1

# essinfx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1(5.15)

�
R b
a
w (t) � (t) dtR b
a
w (t) dt

� �
 R



w (t) tdtR b

a
w (t) dt

!

�
"

1

b� a

Z b

a

� (t) dt� �
�
a+ b

2

�
+ 1

# essupx2[a;b] w(x)
1

b�a
R b
a w(t)dt

� 1:

5.2. Applications for the Hölder Inequality. Assume that p > 1: If h : 
! R
is �-measurable, � (
) <1; jhj ; jhjp 2 Lw (
; �)\L (
; �) ; then by (5.9) we have
the bounds

0 � essinfx2
 w (x)
1

�(
)

R


wd�

�
1

� (
)

Z



jhjp d��
�

1

� (
)

Z



jhj d�
�p�

(5.16)

� 1R


wd�

Z



w jhjp d��
�

1R


wd�

Z



w jhj d�
�p

� essupx2
 w (x)
1

�(
)

R


wd�

�
1

� (
)

Z



jhjp d��
�

1

� (
)

Z



jhj d�
�p�

:

Proposition 12 (Dragomir, 2011 [21]). If f 2 Lp (
; �), g 2 Lq (
; �) with p > 1;
1
p +

1
q = 1; � (
) <1 and there exists the constants �; � > 0 and such that

(5.17) � � jgj � � �-a.e on 
;

then we have

0 � �q

1
�(
)

R


jgjq d�

"
1

� (
)

Z



jf jp

jgjq d��
 

1

� (
)

Z



jf j
jgjq�1

d�

!p#
(5.18)

�
R


jf jp d�R



jgjq d� �

�R


jfgj d�R



jgjq d�

�p
� �q

1
�(
)

R


jgjq d�

"
1

� (
)

Z



jf jp

jgjq d��
 

1

� (
)

Z



jf j
jgjq�1

d�

!p#
:
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Proof. The inequalities (5.18) follows from (5.16) by choosing

h =
jf j
jgjq�1

and w = jgjq :

The details are omitted. �

Remark 21. We observe that for p = q = 2 we have from (5.18) the following
reverse of the Cauchy-Bunyakovsky-Schwarz inequality

0 � �2� (
)
"

1

� (
)

Z



����fg
����2 d�� � 1

� (
)

Z



����fg
���� d��2

#Z



jgj2 d�(5.19)

�
Z



jgj2 d�
Z



jf j2 d��
�Z




jfgj d�
�2

� �2� (
)
"

1

� (
)

Z



����fg
����2 d�� � 1

� (
)

Z



����fg
���� d��2

#Z



jgj2 d�;

provided that f; g 2 L2 (
; �) and g satis�es the bounds (5.17).

Similar results can be stated by utilizing the inequality (5.13), however the details
are not presented here.

5.3. Applications for f-Divergence Measures. The following result holds:

Proposition 13 (Dragomir, 2011 [21]). Let f : (0;1) ! R be a convex function
with the property that f (1) = 0: Assume that p; q 2 P and there exists the constants
0 < s < 1 < S <1 such that

(5.20) s � p (x)

q (x)
� S for �-a.e. x 2 
:

Then we have the inequalities

s
h
If( 1� )

(q; p)� f
�
D�2 (p; q) + 1

�i
(5.21)

� If (p; q)

� S
h
If( 1� )

(q; p)� f
�
D�2 (p; q) + 1

�i
:

Proof. If we use the inequality (5.6) we get

s

�Z



qf

�
q

p

�
d�� f

�Z



q2

p
d�

��
(5.22)

�
Z



pf

�
q

p

�
d�

� S
�Z




qf

�
q

p

�
d�� f

�Z



q2

p
d�

��
:

Since Z



q2

p
d� = D�2 (p; q) + 1

and Z



qf

�
q

p

�
d� = If( 1� )

(q; p) ;

then from (5.22) we deduce the desired result (5.21). �
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Consider the Kullback-Leibler divergence

DKL (p; q) :=

Z



p (x) ln

�
p (x)

q (x)

�
d� (x) ; p; q 2 P;

which is an f -divergence for the convex function f : (0;1)! R, f (t) = � ln t:
If p; q 2 P such that there exists the constants 0 < s < 1 < S <1 with

(5.23) s � p (x)

q (x)
� S for �-a.e. x 2 
::

then we get from (5.21) that

s
�
ln
�
D�2 (p; q) + 1

�
�DKL (q; p)

�
(5.24)

� DKL (p; q)
� S

�
ln
�
D�2 (p; q) + 1

�
�DKL (q; p)

�
:

Similar results for f -divergence measures can be stated by utilizing the inequality
(5.13), however the details are not presented here.

6. Inequalities for Selfadjoint Operators

6.1. Preliminary Facts. The above integral inequalities can be used to obtain
various reverses of Jensen�s inequality for convex functions of selfadjoint operators
on complex Hilbert spaces. In order to state these results, we need the following
preparations.
Let A be a selfadjoint operator on the complex Hilbert space (H; h:; :i) with the

spectrum Sp (A) included in the interval [m;M ] for some real numbers m < M and
let fE�g� be its spectral family. Then for any continuous function f : [m;M ]! R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral (see for instance [31, p. 257]):

(6.1) hf (A)x; yi =
Z M

m�0
f (�) d hE�x; yi ;

and

(6.2) kf (A)xk2 =
Z M

m�0
jf (�)j2 d kE�xk2 ;

for any x; y 2 H:
The function gx;y (�) := hE�x; yi is of bounded variation on the interval [m;M ]

and gx;y (m� 0) = 0 while gx;y (M) = hx; yi for any x; y 2 H: It is also well known
that gx (�) := hE�x; xi is monotonic nondecreasing and right continuous on [m;M ]
for any x 2 H.
The following result that provides an operator version for the Jensen inequality:

Theorem 10 (Mond-Peµcaríc, 1993, [41]). Let A be a selfadjoint operator on the
Hilbert space H and assume that Sp (A) � [m;M ] for some scalars m;M with
m < M: If � is a convex function on [m;M ] ; then

(MP) � (hAx; xi) � h� (A)x; xi
for each x 2 H with kxk = 1:

As a special case of Theorem 10 we have the following Hölder-McCarthy inequal-
ity:
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Theorem 11 (Hölder-McCarthy, 1967, [39]). Let A be a selfadjoint positive oper-
ator on a Hilbert space H. Then for all x 2 H with kxk = 1;
(i) hArx; xi � hAx; xir for all r > 1;
(ii) hArx; xi � hAx; xir for all 0 < r < 1;
(iii) If A is invertible, then hArx; xi � hAx; xir for all r < 0:

The following reverse for the (MP) inequality that generalizes the scalar Lah-
Ribaríc inequality for convex functions is well known, see for instance [27, p. 57]:

Theorem 12. Let A be a selfadjoint operator on the Hilbert space H and assume
that Sp (A) � [m;M ] for some scalars m;M with m < M: If � is a convex function
on [m;M ] ; then

(LR) h� (A)x; xi � M � hAx; xi
M �m � (m) +

hAx; xi �m
M �m � (M)

for each x 2 H with kxk = 1:

In [24] we obtained the following weighted version of (MP) and (LR).

Theorem 13 (Dragomir, 2014 [24]). Let A be a selfadjoint operator on the Hilbert
space H and assume that Sp (A) � [m;M ] for some scalars m;M with m < M:
If � : [k;K] � R! R is a continuous convex function on the interval [k;K] ;
w : [m;M ]! [0;1) is continuous on [m;M ] ; f : [m;M ] � R! R is a continuous
function on the interval [m;M ] and with the property that

(6.3) k � f (t) � K for any t 2 [m;M ] ;

then

�

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.4)

� hw (A) (� � f) (A)x; xi
hw (A)x; xi

�

�
K � hw(A)f(A)x;xi

hw(A)x;xi

�
� (k) +

�
hw(A)f(A)x;xi
hw(A)x;xi � k

�
� (K)

K � k ;

for any x 2 H with hw (A)x; xi 6= 0:

For various particular instances of (6.4) that are of interest being related to
Hölder-McCarthy�s inequalities mentioned above, see [24].
For classical and recent result concerning inequalities for continuos functions of

selfadjoint operators, see the recent monographs, [27], [22] and [23].

6.2. Reverses for Functions of Operators. We have the following results:

Theorem 14 (Dragomir, 2015 [25]). Let A be a selfadjoint operator on the Hilbert
space H such that Sp (A) � [k;K] for some scalars k; K with k < K: Assume
that � : [k;K] � R! R is a continuous convex function on the interval [k;K] ;
w : [k;K] ! [0;1) is continuous on [k;K] ; f : [k;K] � R ! R is a continuous
function on the interval [k;K] and satis�es the property (6.3)
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(i) If � is continuously di¤erentiable on (k;K) ; then we have

0 � hw (A) (� � f) (A)x; xi
hw (A)x; xi � �

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.5)

� h(�0 � f) (A) f (A)w (A)x; xi
hw (A)x; xi

� h(�
0 � f) (A)w (A)x; xi
hw (A)x; xi

hf (A)w (A)x; xi
hw (A)x; xi

� 1

2

�
�0� (K)� �0+ (k)

� D���f (A)� hf(A)w(A)x;xi
hw(A)x;xi 1H

���x; xE
hw (A)x; xi

� 1

2

�
�0� (K)� �0+ (k)

� "
f2 (A)w (A)x; x�
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�2# 1
2

� 1

4

�
�0� (K)� �0+ (k)

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:
(ii) If we consider the function 	� (�; k;K) : (k;K)! R de�ned by

	� (t; k;K) =
� (K)� � (t)

K � t � � (t)� � (k)
t� k ;

then

0 � hw (A) (� � f) (A)x; xi
hw (A)x; xi � �

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.6)

�

�
K � hw(A)f(A)x;xi

hw(A)x;xi

��
hw(A)f(A)x;xi
hw(A)x;xi � k

�
K � k sup

t2(k;K)
	� (t; k;K)

�
�
K � hw (A) f (A)x; xihw (A)x; xi

��
hw (A) f (A)x; xi
hw (A)x; xi � k

�
�0� (K)� �0+ (k)

K � k

� 1

4

�
�0� (K)� �0+ (k)

�
(K � k)

and

0 � hw (A) (� � f) (A)x; xi
hw (A)x; xi � �

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.7)

� 1

4
(K � k)	�

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�
� 1

4

�
�0� (K)� �0+ (k)

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:
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(iii) We have the inequalities

0 � hw (A) (� � f) (A)x; xi
hw (A)x; xi � �

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.8)

� 2max

8<:K � hw(A)f(A)x;xi
hw(A)x;xi

K � k ;

hw(A)f(A)x;xi
hw(A)x;xi � k
K � k

9=;
�
�
� (k) + � (K)

2
� �

�
k +K

2

��

and

0 � hw (A) (� � f) (A)x; xi
hw (A)x; xi � �

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.9)

� 2
�
� (k) + � (K)

2
� �

�
k +K

2

��

for any x 2 H with hw (A)x; xi 6= 0:
(iv) We also have the inequalities

0 � hw (A) (� � f) (A)x; xi
hw (A)x; xi � �

�
hw (A) f (A)x; xi
hw (A)x; xi

�
(6.10)

� 1

2
	�

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

� D���f (A)� hf(A)w(A)x;xi
hw(A)x;xi 1H

���x; xE
hw (A)x; xi

� 1

2
	�

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�

�
"

f2 (A)w (A)x; x

�
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�2# 1
2

� 1

4
	�

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:

Proof. (i) Let fE�g� be the spectral family of the operator A: Let " > 0 and write
the inequality (1.17) on the interval [k � ";K] and for the monotonic nondecreasing
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function g (t) = hEtx; xi ; x 2 H with hw (A)x; xi 6= 0; to get

0 �
RK
k�" (� � f) (t)w (t) d hEtx; xiRK

k�" w (t) d hEtx; xi
� �

 RK
k�" f (t)w (t) d hEtx; xiRK
k�" w (t) d hEtx; xi

!
(6.11)

�
RK
k�" (�

0 � f) (t) f (t)w (t) d hEtx; xiRK
k�" w (t) d hEtx; xi

�
RK
k�" (�

0 � f) (t)w (t) d hEtx; xiRK
k�" w (t) d hEtx; xi

RK
k�" f (t)w (t) d hEtx; xiRK
k�" w (t) d hEtx; xi

� 1

2

�
�0� (K)� �0+ (k)

�RK
k�" w (t) d hEtx; xi

�
Z K

k�"

�����f (t)�
RK
k�" f (s)w (s) d hEsx; xiRK

k�" w (s) d hEsx; xi

�����w (t) d hEtx; xi
� 1

2

�
�0� (K)� �0+ (k)

�
�

24RKk�" f2 (t)w (t) d hEtx; xiRK
k�" w (s) d hEsx; xi

�
 RK

k�" f (s)w (s) d hEsx; xiRK
k�" w (s) d hEsx; xi

!235
1
2

� 1

4

�
�0� (K)� �0+ (k)

�
(K � k) :

Letting "! 0+ and using the spectral representation theorem summarized in (6.1)
we get the required inequality (6.5).
(ii) Follows by the �rst part of Theorem 6 , (iii) follows by Theorem 7 while (iv)

follows by the second part of Theorem 6. The details are omitted. �

We have the following generalization and reverse for the Hölder-McCarthy
inequality:

Corollary 14 (Dragomir, 2015 [25]). Let A be a selfadjoint operator on the Hilbert
space H such that Sp (A) � [k;K] for some scalars k; K with k < K: Assume that
w : [k;K] ! [0;1) is continuous on [k;K] ; f : [k;K] � R ! R is a continuous
function on the interval [k;K] and satis�es the property (6.3) with k > 0: Assume
also that p 2 (�1; 0) [ (1;1) :
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(i) We have

0 � hw (A) fp (A)x; xi
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�p
(6.12)

� p
"
hfp (A)w (A)x; xi
hw (A)x; xi �



fp�1 (A)w (A)x; x

�
hw (A)x; xi

hf (A)w (A)x; xi
hw (A)x; xi

#

� 1

2
p
�
Kp�1 � kp�1

� D���f (A)� hf(A)w(A)x;xi
hw(A)x;xi 1H

���x; xE
hw (A)x; xi

� 1

2
p
�
Kp�1 � kp�1

� "
f2 (A)w (A)x; x�
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�2# 1
2

� 1

4
p
�
Kp�1 � kp�1

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:
(ii) If we consider the function 	p (�; k;K) : (k;K)! R de�ned by

	p (t; k;K) =
Kp � tp
K � t � t

p � kp
t� k ;

then

0 � hw (A) fp (A)x; xi
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�p
(6.13)

�

�
K � hw(A)f(A)x;xi

hw(A)x;xi

��
hw(A)f(A)x;xi
hw(A)x;xi � k

�
K � k sup

t2(k;K)
	p (t; k;K)

� pK
p�1 � kp�1
K � k

�
K � hw (A) f (A)x; xihw (A)x; xi

��
hw (A) f (A)x; xi
hw (A)x; xi � k

�
� 1

4
p
�
Kp�1 � kp�1

�
(K � k)

and

0 � hw (A) fp (A)x; xi
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�p
(6.14)

� 1

4
(K � k)	p

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�
� 1

4
p
�
Kp�1 � kp�1

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:
(iii) We have the inequalities

0 � hw (A) fp (A)x; xi
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�p
(6.15)

� 2max

8<:K � hw(A)f(A)x;xi
hw(A)x;xi

K � k ;

hw(A)f(A)x;xi
hw(A)x;xi � k
K � k

9=;
�
�
kp +Kp

2
�
�
k +K

2

�p�
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and

0 � hw (A) fp (A)x; xi
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�p
(6.16)

� 2
�
kp +Kp

2
�
�
k +K

2

�p�
for any x 2 H with hw (A)x; xi 6= 0:
(iv) We also have the inequalities

0 � hw (A) fp (A)x; xi
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�p
(6.17)

� 1

2
	p

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

� D���f (A)� hf(A)w(A)x;xi
hw(A)x;xi 1H

���x; xE
hw (A)x; xi

� 1

2
	p

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�

�
"

f2 (A)w (A)x; x

�
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�2# 1
2

� 1

4
	p

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:

If p 2 (0; 1) ; then by taking � (t) = �tp we can get similar inequalities. However
the details are omitted.
If we take � (t) = � ln t; t > 0 in Theorem 14 then we get the following logarith-

mic inequalities:

Corollary 15 (Dragomir, 2015 [25]). Let A be a selfadjoint operator on the Hilbert
space H such that Sp (A) � [k;K] for some scalars k; K with k < K: Assume that
w : [k;K] ! [0;1) is continuous on [k;K] ; f : [k;K] � R ! R is a continuous
function on the interval [k;K] and satis�es the property (6.3) with k > 0:
(i) We have

0 � ln
�
hw (A) f (A)x; xi
hw (A)x; xi

�
� hw (A) ln f (A)x; xihw (A)x; xi(6.18)

�


f�1 (A)w (A)x; x

�
hw (A)x; xi

hf (A)w (A)x; xi
hw (A)x; xi � 1

� 1

2

K � k
kK

D���f (A)� hf(A)w(A)x;xi
hw(A)x;xi 1H

���x; xE
hw (A)x; xi

� 1

2

K � k
kK

"

f2 (A)w (A)x; x

�
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�2# 1
2

� 1

4

(K � k)2

kK

for any x 2 H with hw (A)x; xi 6= 0;
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(ii) If we consider the function 	� ln (�; k;K) : (k;K)! R de�ned by

	� ln (t; k;K) =
ln t� ln k
t� k � lnK � ln t

K � t ;

then

0 � ln
�
hw (A) f (A)x; xi
hw (A)x; xi

�
� hw (A) ln f (A)x; xihw (A)x; xi(6.19)

�

�
K � hw(A)f(A)x;xi

hw(A)x;xi

��
hw(A)f(A)x;xi
hw(A)x;xi � k

�
K � k sup

t2(k;K)
	� ln (t; k;K)

� 1

Kk

�
K � hw (A) f (A)x; xihw (A)x; xi

��
hw (A) f (A)x; xi
hw (A)x; xi � k

�
� 1

4

(K � k)2

kK

and

0 � ln
�
hw (A) f (A)x; xi
hw (A)x; xi

�
� hw (A) ln f (A)x; xihw (A)x; xi(6.20)

� 1

4
(K � k)	� ln

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�
� 1

4

(K � k)2

kK

for any x 2 H with hw (A)x; xi 6= 0:
(iii) We have the inequalities

0 � ln
�
hw (A) f (A)x; xi
hw (A)x; xi

�
� hw (A) ln f (A)x; xihw (A)x; xi(6.21)

� 2max

8<:K � hw(A)f(A)x;xi
hw(A)x;xi

K � k ;

hw(A)f(A)x;xi
hw(A)x;xi � k
K � k

9=; ln
�
k +K

2
p
kK

�
and

(6.22) 0 � ln
�
hw (A) f (A)x; xi
hw (A)x; xi

�
� hw (A) ln f (A)x; xihw (A)x; xi � ln

�
k +K

2
p
kK

�2
for any x 2 H with hw (A)x; xi 6= 0:
(iv) We also have the inequalities

0 � ln
�
hw (A) f (A)x; xi
hw (A)x; xi

�
� hw (A) ln f (A)x; xihw (A)x; xi(6.23)

� 1

2
	� ln

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

� D���f (A)� hf(A)w(A)x;xi
hw(A)x;xi 1H

���x; xE
hw (A)x; xi

� 1

2
	� ln

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�

�
"

f2 (A)w (A)x; x

�
hw (A)x; xi �

�
hw (A) f (A)x; xi
hw (A)x; xi

�2# 1
2

� 1

4
	� ln

�
hw (A) f (A)x; xi
hw (A)x; xi ; k;K

�
(K � k)

for any x 2 H with hw (A)x; xi 6= 0:
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6.3. Some Examples. If we choose w(t) = 1 and f(t) = t with t 2 [k;K] � [0;1)
then we get from Corollary 14 that

0 � hApx; xi � hAx; xip � p
�
hApx; xi �



Ap�1x; x

�
hAx; xi

�
(6.24)

� 1

2
p
�
Kp�1 � kp�1

�
hjA� hAx; xi 1H jx; xi

� 1

2
p
�
Kp�1 � kp�1

� h

A2x; x

�
� hAx; xi2

i 1
2

� 1

4
p
�
Kp�1 � kp�1

�
(K � k) ;

0 � hApx; xi � hAx; xip(6.25)

� (K � hAx; xi) (hAx; xi � k)
K � k sup

t2(k;K)
	p (t; k;K)

� pK
p�1 � kp�1
K � k (K � hAx; xi) (hAx; xi � k)

� 1

4
p
�
Kp�1 � kp�1

�
(K � k) ;

0 � hApx; xi � hAx; xip � 1

4
(K � k)	p (hAx; xi ; k;K)(6.26)

� 1

4
p
�
Kp�1 � kp�1

�
(K � k) ;

0 � hApx; xi � hAx; xip(6.27)

� 2max
�
K � hAx; xi
K � k ;

hAx; xi � k
K � k

��
kp +Kp

2
�
�
k +K

2

�p�
;

(6.28) 0 � hApx; xi � hAx; xip � 2
�
kp +Kp

2
�
�
k +K

2

�p�
and

0 � hApx; xi � hAx; xip � 1

2
	p (hAx; xi ; k;K) hjA� hAx; xi 1H jx; xi(6.29)

� 1

2
	p (hAx; xi ; k;K)

h

A2x; x

�
� hAx; xi2

i 1
2

� 1

4
	p (hAx; xi ; k;K) (K � k)

for any x 2 H; kxk = 1:
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If we choose w(t) = tq; q 6= 0 and f(t) = t with t 2 [k;K] � [0;1) then we get
from Corollary 14 that

0 � hAp+qx; xi
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!p
(6.30)

� p
"
hAp+qx; xi
hAqx; xi �



Ap+q�1x; x

�
hAqx; xi



Aq+1x; x

�
hAqx; xi

#

� 1

2
p
�
Kp�1 � kp�1

�
�����A� hAq+1x;xi

hAqx;xi 1H

����x; x�
hAqx; xi

� 1

2
p
�
Kp�1 � kp�1

�24
Aq+2x; x�
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!235 1
2

� 1

4
p
�
Kp�1 � kp�1

�
(K � k) ;

0 � hAp+qx; xi
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!p
(6.31)

�

�
K � hA

q+1x;xi
hAqx;xi

��
hAq+1x;xi
hAqx;xi � k

�
K � k sup

t2(k;K)
	p (t; k;K)

� pK
p�1 � kp�1
K � k

 
K �



Aq+1x; x

�
hAqx; xi

! 

Aq+1x; x

�
hAqx; xi � k

!

� 1

4
p
�
Kp�1 � kp�1

�
(K � k) ;

0 � hAp+qx; xi
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!p
� 1

4
(K � k)	p

 

Aq+1x; x

�
hAqx; xi ; k;K

!
(6.32)

� 1

4
p
�
Kp�1 � kp�1

�
(K � k) ;

0 � hAp+qx; xi
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!p
(6.33)

� 2max

8<:K � hA
q+1x;xi
hAqx;xi

K � k ;

hAq+1x;xi
hAqx;xi � k
K � k

9=;
�
kp +Kp

2
�
�
k +K

2

�p�
;

(6.34) 0 � hAp+qx; xi
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!p
� 2

�
kp +Kp

2
�
�
k +K

2

�p�
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and

0 � hAp+qx; xi
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!p
(6.35)

� 1

2
	p

 

Aq+1x; x

�
hAqx; xi ; k;K

! �����A� hAq+1x;xi
hAqx;xi 1H

����x; x�
hAqx; xi

� 1

2
	p

 

Aq+1x; x

�
hAqx; xi ; k;K

!24
Aq+2x; x�
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!235 1
2

� 1

4
	p

 

Aq+1x; x

�
hAqx; xi ; k;K

!
(K � k)

for any x 2 H n f0g :
If we choose w(t) = 1 and f(t) = t with t 2 [k;K] � [0;1) then we get from

Corollary 15 that

0 � ln hAx; xi � hlnAx; xi �


A�1x; x

�
hAx; xi � 1(6.36)

� 1

2

K � k
kK

hjA� hAx; xi 1H jx; xi

� 1

2

K � k
kK

h

A2x; x

�
� hAx; xi2

i 1
2 � 1

4

(K � k)2

kK
;

0 � ln hAx; xi � hlnAx; xi(6.37)

� (K � hAx; xi) (hAx; xi � k)
K � k sup

t2(k;K)
	� ln (t; k;K)

� 1

Kk
(K � hAx; xi) (hAx; xi � k) � 1

4

(K � k)2

kK
;

0 � ln hAx; xi � hlnAx; xi � 1

4
(K � k)	� ln (hAx; xi ; k;K)(6.38)

� 1

4

(K � k)2

kK
;

0 � ln hAx; xi � hlnAx; xi(6.39)

� 2max
�
K � hAx; xi
K � k ;

hAx; xi � k
K � k

�
ln

�
k +K

2
p
kK

�
;

(6.40) 0 � ln hAx; xi � hlnAx; xi � ln
�
k +K

2
p
kK

�2
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and

0 � ln hAx; xi � hlnAx; xi(6.41)

� 1

2
	� ln (hAx; xi ; k;K) hjf (A)� hAx; xi 1H jx; xi

� 1

2
	� ln (hAx; xi ; k;K)

h

A2x; x

�
� hAx; xi2

i 1
2

� 1

4
	� ln (hAx; xi ; k;K) (K � k)

for any x 2 H with kxk = 1:
If we choose w(t) = tq; q 6= 0 and f(t) = t with t 2 [k;K] � [0;1) then we get

from Corollary 15 that

0 � ln
 

Aq+1x; x

�
hAqx; xi

!
� hA

q lnAx; xi
hAqx; xi(6.42)

�


Aq�1x; x

�
hAqx; xi



Aq+1x; x

�
hAqx; xi � 1 � 1

2

K � k
kK

�����A� hAq+1x;xi
hAqx;xi 1H

����x; x�
hAqx; xi

� 1

2

K � k
kK

24
Aq+2x; x�
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!235 1
2

� 1

4

(K � k)2

kK
;

0 � ln
 

Aq+1x; x

�
hAqx; xi

!
� hA

q lnAx; xi
hAqx; xi(6.43)

�

�
K � hA

q+1x;xi
hAqx;xi

��
hAq+1x;xi
hAqx;xi � k

�
K � k sup

t2(k;K)
	� ln (t; k;K)

� 1

Kk

 
K �



Aq+1x; x

�
hAqx; xi

! 

Aq+1x; x

�
hAqx; xi � k

!
� 1

4

(K � k)2

kK
;

0 � ln
 

Aq+1x; x

�
hAqx; xi

!
� hA

q lnAx; xi
hAqx; xi(6.44)

� 1

4
(K � k)	� ln

 

Aq+1x; x

�
hAqx; xi ; k;K

!
� 1

4

(K � k)2

kK
;

0 � ln
 

Aq+1x; x

�
hAqx; xi

!
� hA

q lnAx; xi
hAqx; xi(6.45)

� 2max

8<:K � hA
q+1x;xi
hAqx;xi

K � k ;

hAq+1x;xi
hAqx;xi � k
K � k

9=; ln
�
k +K

2
p
kK

�
;

(6.46) 0 � ln
 

Aq+1x; x

�
hAqx; xi

!
� hA

q lnAx; xi
hAqx; xi � ln

�
k +K

2
p
kK

�2
;
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and

0 � ln
 

Aq+1x; x

�
hAqx; xi

!
� hA

q lnAx; xi
hAqx; xi(6.47)

� 1

2
	� ln

 

Aq+1x; x

�
hAqx; xi ; k;K

! �����A� hAq+1x;xi
hAqx;xi 1H

����x; x�
hAqx; xi

� 1

2
	� ln

 

Aq+1x; x

�
hAqx; xi ; k;K

!24
Aq+2x; x�
hAqx; xi �

 

Aq+1x; x

�
hAqx; xi

!235 1
2

� 1

4
	� ln

 

Aq+1x; x

�
hAqx; xi ; k;K

!
(K � k)

for any x 2 H n f0g.
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