AN AVERAGING INTEGRAL TRANSFORM AND ITS PROPERTIES

S. S. DRAGOMIR^{1,2}

ABSTRACT. For a Lebesgue integrable function $f : [a, b] \to \mathbb{C}$ we define the averaging transform $S_f : [a, b] \to \mathbb{R}$ by

$$S_{f}\left(x\right) := \begin{cases} \frac{1}{a+b-2x} \int_{x}^{a+b-x} f\left(t\right) dt \text{ if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ \\ f\left(\frac{a+b}{2}\right) \text{ if } x = \frac{a+b}{2}. \end{cases}$$

In this paper we investigate several properties of the transform S_f concerning differentiability, monotonicity and convexity. Midpoint and trapezoid type inequalities for the transform S_f and its integral mean $\frac{1}{b-a} \int_a^b S_f(x) dx$ are obtained. Applications for some integral means of interest are also provided.

1. INTRODUCTION

For a Lebesgue integrable function $f : [a, b] \to \mathbb{C}$ we define the averaging transform $S_f : [a, b] \to \mathbb{R}$ by

(1.1)
$$S_f(x) := \begin{cases} \frac{1}{a+b-2x} \int_x^{a+b-x} f(t) dt \text{ if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ f\left(\frac{a+b}{2}\right) \text{ if } x = \frac{a+b}{2}. \end{cases}$$

If we denote $F(x) := \int_{a}^{x} f(t) dt$ then

$$S_{f}(x) = \frac{F(a+b-x) - F(x)}{a+b-2x}$$

for $x \in [a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b]$. Since a point a *continuity* for f in (a, b) is a point a *differentiability* for F, hence if we assume that f is continuous in $\frac{a+b}{2}$, then by L'Hospital's rule we have $\lim_{x\to \frac{a+b}{2}} S_f(x) = f(\frac{a+b}{2})$, which shows that S_f is also continuous in $\frac{a+b}{2}$.

We observe also that $S_f(a+b-x) = S_f(x)$ for any $x \in [a,b]$, namely S_f is symmetrical in the interval [a,b].

The following inequality is well known in literature as the *Hermite-Hadamard* inequality for the convex function $h : [a, b] \to \mathbb{R}$

(HH)
$$h\left(\frac{\alpha+\beta}{2}\right) \le \frac{1}{\beta-\alpha} \int_{\alpha}^{\beta} h(s) \, ds \le \frac{h(\alpha)+h(\beta)}{2}$$

for any $\alpha, \beta \in [a, b]$ with $\alpha \neq \beta$. For a large collection of inequalities related to this result see [11], [9] and the references therein.

¹⁹⁹¹ Mathematics Subject Classification. 26D15; 26D10.

Key words and phrases. Lebesgue integral, Integral mean, Convex functions, Hermite-Hadamard inequality, Midpoint and trapezoid inequalities, Special means.

So, if $f : [a, b] \to \mathbb{R}$ is a convex function on [a, b], then by the (HH) inequality we have the following inequality for the transform S_f

(1.2)
$$f\left(\frac{a+b}{2}\right) \le S_f(x) \le \frac{f(a+b-x)+f(x)}{2}$$

for any $x \in [a, b]$.

If we take the integral mean $\frac{1}{b-a}\int_a^b$ in (1.2) we also have

(1.3)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

that provides a refinement of the second inequality in the (HH) inequality.

If we consider Bullen's inequality [11, p. 2] for the convex function $h : [a, b] \to \mathbb{R}$ that shows that the middle term in (HH) is closer to the left term than to the right term, namely

(B)
$$0 \le \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds - h\left(\frac{\alpha + \beta}{2}\right) \le \frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds$$

for any $\alpha, \beta \in [a, b]$ with $\alpha \neq \beta$, then we obtain that

(1.4)
$$0 \le S_f(x) - f\left(\frac{a+b}{2}\right) \le \frac{f(a+b-x) + f(x)}{2} - S_f(x)$$

for any $x \in [a, b]$. Moreover, if we take the integral mean in (1.4), then we get

(1.5)
$$0 \leq \frac{1}{b-a} \int_{a}^{b} S_{f}(x) dx - f\left(\frac{a+b}{2}\right)$$
$$\leq \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{b-a} \int_{a}^{b} S_{f}(x) dx$$

Some natural examples for S_f are provided by integral means. Let us recall the following means :

(1) The logarithmic mean:

$$L = L(a, b) := \begin{cases} a & \text{if } a = b \\ \\ \frac{b-a}{\ln b - \ln a} & \text{if } a \neq b \end{cases} a, \ b > 0;$$

(2) The *identric mean*:

$$I := I(a, b) = \begin{cases} a & \text{if } a = b \\ \\ \frac{1}{e} \left(\frac{b^b}{a^a}\right)^{\frac{1}{b-a}} & a, b > 0; \\ & \text{if } a \neq b \end{cases}$$

(3) The *p*-logarithmic mean:

$$L_{p} = L_{p}(a, b) := \begin{cases} \left[\frac{b^{p+1} - a^{p+1}}{(p+1)(b-a)}\right]^{\frac{1}{p}} & \text{if } a \neq b; \\ a & \text{if } a = b \end{cases}$$

where $p \in \mathbf{R} \setminus \{-1, 0\}$ and a, b > 0.

It is well known that L_p is monotonic nondecreasing over $p \in \mathbf{R}$ with $L_{-1} := L$ and $L_0 := I$.

In particular, we have the inequalities

(1.6)
$$H \le G \le L \le I \le A,$$

where the *arithmetic mean* is

$$A = A(a, b) := \frac{a+b}{2}, \qquad a, \ b \ge 0;$$

the geometric mean is

$$G = G(a, b) := \sqrt{ab}, \qquad a, \ b \ge 0;$$

and the *harmonic mean* is

$$H = H(a, b) := \frac{2}{\frac{1}{a} + \frac{1}{b}}, \qquad a, \ b > 0.$$

If we consider the function $f_{-1}: [a,b] \subset (0,\infty) \to \mathbb{R}, f_{-1}(t) = \frac{1}{t}$, then

$$S_{f_{-1}}(x) := \begin{cases} \frac{1}{a+b-2x} \int_{x}^{a+b-x} \frac{1}{t} dt \text{ if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ \left(\frac{a+b}{2}\right)^{-1} \text{ if } x = \frac{a+b}{2}, \\ = \begin{cases} L^{-1} \left(a+b-x, x\right) \text{ if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ A^{-1} \left(a, b\right) \text{ if } x = \frac{a+b}{2}. \end{cases}$$

For the function $f_0: [a,b] \subset (0,\infty) \to \mathbb{R}, f_{-0}(t) = \ln t$, we have

$$S_{f_0}(x) := \begin{cases} \frac{1}{a+b-2x} \int_x^{a+b-x} \ln t dt \text{ if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ \ln\left(\frac{a+b}{2}\right) \text{ if } x = \frac{a+b}{2}, \\ = \begin{cases} \ln I\left(a+b-x,x\right) \text{ if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ \ln\left(A\left(a, b\right)\right) \text{ if } x = \frac{a+b}{2}. \end{cases}$$

Also, for the function $f_p : [a, b] \subset (0, \infty) \to \mathbb{R}$, $f_{-0}(t) = t^p$, where $p \neq 0, -1$ we have

$$S_{f_p}(x) := \begin{cases} \frac{1}{a+b-2x} \int_x^{a+b-x} t^p dt \text{ if } x \in [a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b], \\ \left(\frac{a+b}{2}\right)^p \text{ if } x = \frac{a+b}{2} \\ = \begin{cases} L_p^p (a+b-x, x) \text{ if } x \in [a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b], \\ A^p (a, b) \text{ if } x = \frac{a+b}{2}. \end{cases}$$

Motivated by the above facts, we investigate in the following several properties of the transform S_f concerning differentiability, monotonicity and convexity. Midpoint and trapezoid type inequalities for the transform S_f and its integral mean $\frac{1}{b-a} \int_a^b S_f(x) dx$ are obtained. Applications for some integral means of interest are also provided.

S. S. DRAGOMIR^{1,2}

2. General Results

The following result concerning the differentiability of the transform S_f holds.

Theorem 1. Assume that $f : [a, b] \to \mathbb{C}$ is continuous on [a, b], then S_f is differentiable on $\left(a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right)$ and

(2.1)
$$S'_{f}(x) = \frac{2}{a+b-2x} \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2} \right]$$

for any $x \in (a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b)$. If f has finite lateral derivatives $f'_+(\frac{a+b}{2})$ and $f'_-(\frac{a+b}{2})$, then S_f has lateral derivatives in $\frac{a+b}{2}$ and

(2.2)
$$S'_{f+}\left(\frac{a+b}{2}\right) = \frac{1}{2}\left[f'_+\left(\frac{a+b}{2}\right) - f'_-\left(\frac{a+b}{2}\right)\right] = -S'_{f-}\left(\frac{a+b}{2}\right)$$

Moreover, if f is differentiable in $\frac{a+b}{2}$ then S_f is differentiable in $\frac{a+b}{2}$ and $S'_f\left(\frac{a+b}{2}\right) = C_f$ 0.

Proof. By the continuity of f on [a, b] we have that S_f is differentiable on $(a, \frac{a+b}{2}) \cup$ $\left(\frac{a+b}{2},b\right)$ and

$$\begin{split} S'_f(x) &= \frac{F\left(a+b-x\right) - F\left(x\right)}{a+b-2x} \\ &= \frac{\left(F'\left(a+b-x\right) - F'\left(x\right)\right)\left(a+b-2x\right) + 2\left(F\left(a+b-x\right) - F\left(x\right)\right)\right)}{\left(a+b-2x\right)^2} \\ &= \frac{\left(-f\left(a+b-x\right) - f\left(x\right)\right)\left(a+b-2x\right) + 2\left(F\left(a+b-x\right) - F\left(x\right)\right)}{\left(a+b-2x\right)^2} \\ &= \frac{2\left(F\left(a+b-x\right) - F\left(x\right)\right)}{\left(a+b-2x\right)^2} - \frac{f\left(a+b-x\right) + f\left(x\right)}{a+b-2x} \\ &= \frac{2}{a+b-2x} \left[\frac{F\left(a+b-x\right) - F\left(x\right)}{a+b-2x} - \frac{f\left(a+b-x\right) + f\left(x\right)}{2}\right] \end{split}$$

for any $x \in (a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b)$, which proves the equality (2.1). From (2.1) for $x > \frac{a+b}{2}$ we have

(2.3)
$$S'_{f}(x) = 2\left[\frac{S_{f}(x) - f\left(\frac{a+b}{2}\right)}{a+b-2x} - \frac{f(a+b-x) - f\left(\frac{a+b}{2}\right) + f(x) - f\left(\frac{a+b}{2}\right)}{2(a+b-2x)}\right].$$

By the continuity of S'_f on $\left(\frac{a+b}{2}, b\right)$ and Lagrange's mean value theorem we have

$$\lim_{x \to \frac{a+b}{2}+} \frac{S_f(x) - f\left(\frac{a+b}{2}\right)}{a+b-2x} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2}+} \frac{S_f(x) - f\left(\frac{a+b}{2}\right)}{x-\frac{a+b}{2}} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2}+} S'_f(x).$$

4

Also

$$\lim_{x \to \frac{a+b}{2}+} \frac{f\left(a+b-x\right) - f\left(\frac{a+b}{2}\right)}{a+b-2x} = \frac{1}{2} \lim_{x \to \frac{a+b}{2}+} \frac{f\left(\frac{a+b}{2} + \frac{a+b}{2} - x\right) - f\left(\frac{a+b}{2}\right)}{\frac{a+b}{2} - x}$$
$$= \frac{1}{2} \lim_{h \to 0+} \frac{f\left(\frac{a+b}{2} - h\right) - f\left(\frac{a+b}{2}\right)}{-h}$$
$$= \frac{1}{2} \lim_{s \to 0-} \frac{f\left(\frac{a+b}{2} + s\right) - f\left(\frac{a+b}{2}\right)}{s} = \frac{1}{2} f_{-}'\left(\frac{a+b}{2}\right)$$

and

$$\lim_{x \to \frac{a+b}{2}+} \frac{f(x) - f\left(\frac{a+b}{2}\right)}{a+b-2x} = \frac{1}{2} \lim_{x \to \frac{a+b}{2}+} \frac{f(x) - f\left(\frac{a+b}{2}\right)}{\frac{a+b}{2}-x}$$
$$= -\frac{1}{2} \lim_{x \to \frac{a+b}{2}+} \frac{f(x) - f\left(\frac{a+b}{2}\right)}{x-\frac{a+b}{2}} = -\frac{1}{2} f'_{+} \left(\frac{a+b}{2}\right).$$

Denote $\ell_r := \lim_{x \to \frac{a+b}{2}+} S'_f(x)$. Then by taking the limit over $x \to \frac{a+b}{2}+$ in the equality (2.3) we get

$$\ell_r = 2\left[-\frac{1}{2}\ell_r - \frac{1}{2}f'_{-}\left(\frac{a+b}{2}\right) + \frac{1}{2}f'_{+}\left(\frac{a+b}{2}\right)\right]$$

namely

$$2\ell_r = f'_+\left(\frac{a+b}{2}\right) - f'_-\left(\frac{a+b}{2}\right),$$

which implies that

$$\ell_r = \frac{1}{2} \left[f'_+ \left(\frac{a+b}{2} \right) - f'_- \left(\frac{a+b}{2} \right) \right].$$

From (2.1) for $x < \frac{a+b}{2}$ we have (2.4) $S'_f(x)$

2.4)
$$S'_f(x)$$

= $2\left[\frac{S_f(x) - f\left(\frac{a+b}{2}\right)}{a+b-2x} - \frac{f(a+b-x) - f\left(\frac{a+b}{2}\right) + f(x) - f\left(\frac{a+b}{2}\right)}{2(a+b-2x)}\right].$

By the continuity of S'_f on $\left(a, \frac{a+b}{2}\right)$ and Lagrange's mean value theorem we have

$$\lim_{x \to \frac{a+b}{2} - \frac{a+b}{2} - \frac{b}{a+b-2x} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} - \frac{b}{2} - \frac{b}{a+b-2x} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} - \frac{b}{2} - \frac{b}{a+b-2x} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} - \frac{b}{2} - \frac{b}{2} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} - \frac{b}{2} = -\frac{1}{2}\lim_{x \to \frac{a+b}{2} = -\frac{1}{2}\lim_{x \to \frac{$$

Also

$$\lim_{x \to \frac{a+b}{2} -} \frac{f\left(a+b-x\right) - f\left(\frac{a+b}{2}\right)}{a+b-2x} = \frac{1}{2} \lim_{x \to \frac{a+b}{2} -} \frac{f\left(\frac{a+b}{2} + \frac{a+b}{2} - x\right) - f\left(\frac{a+b}{2}\right)}{\frac{a+b}{2} - x}$$
$$= \frac{1}{2} \lim_{h \to 0+} \frac{f\left(\frac{a+b}{2} + h\right) - f\left(\frac{a+b}{2}\right)}{h} = \frac{1}{2} f'_{+} \left(\frac{a+b}{2}\right)$$

and

6

$$\lim_{x \to \frac{a+b}{2} - \frac{b}{2}} \frac{f(x) - f\left(\frac{a+b}{2}\right)}{a+b-2x} = \frac{1}{2} \lim_{x \to \frac{a+b}{2} - \frac{a+b}{2}} \frac{f(x) - f\left(\frac{a+b}{2}\right)}{\frac{a+b}{2} - x}$$
$$= -\frac{1}{2} \lim_{x \to \frac{a+b}{2} - \frac{a+b}{2}} \frac{f(x) - f\left(\frac{a+b}{2}\right)}{x-\frac{a+b}{2}} = -\frac{1}{2} f_{-}'\left(\frac{a+b}{2}\right).$$

Denote $\ell_s := \lim_{x \to \frac{a+b}{2}} S'_f(x)$. Then by taking the limit over $x \to \frac{a+b}{2}$ in the equality (2.4) we get

$$\ell_s = 2\left[-\frac{1}{2}\ell_s - \frac{1}{2}f'_+\left(\frac{a+b}{2}\right) + \frac{1}{2}f'_-\left(\frac{a+b}{2}\right)\right]$$

namely

$$2\ell_r = f'_-\left(\frac{a+b}{2}\right) - f'_+\left(\frac{a+b}{2}\right),$$

which implies

$$\ell_r = \frac{1}{2} \left[f'_- \left(\frac{a+b}{2} \right) - f'_+ \left(\frac{a+b}{2} \right) \right].$$

The following corollary is of interest:

Corollary 1. Assume that $f : [a, b] \to \mathbb{R}$ is continuous and convex on [a, b], then S_f is non-increasing on $\left[a, \frac{a+b}{2}\right)$ and non-decreasing on $\left(\frac{a+b}{2}, b\right]$. S_f is differentiable on $\left(a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right)$ and has the lateral derivatives

(2.5)
$$S'_{f+}\left(\frac{a+b}{2}\right) = \frac{1}{2}\left[f'_+\left(\frac{a+b}{2}\right) - f'_-\left(\frac{a+b}{2}\right)\right] = -S'_{f-}\left(\frac{a+b}{2}\right).$$

Moreover, if f is differentiable in $\frac{a+b}{2}$ then S_f is differentiable in $\frac{a+b}{2}$ and $S'_f\left(\frac{a+b}{2}\right) =$ 0.

Proof. We know from Hermite-Hadamard inequality that, if $f : [a, b] \to \mathbb{R}$ is convex on [a, b], then

$$\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f\left(s\right) ds \leq \frac{f\left(\alpha\right) + f\left(\beta\right)}{2}$$

for any $\alpha, \beta \in [a, b]$ with $\alpha \neq \beta$.

Therefore

$$S_{f}(x) - \frac{f(a+b-x) + f(x)}{2} \le 0$$

for any $x \in (a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b)$. Using the equality (2.1) we then get $S'_f(x) \leq 0$ for any $x \in (a, \frac{a+b}{2})$ and $S'_f(x) \geq 0$ for any $x \in (\frac{a+b}{2}, b)$.

We have:

Theorem 2. Assume that $f : [a,b] \to \mathbb{C}$ is continuous on [a,b] and differentiable on (a,b), then S_f is twice differentiable on $\left(a,\frac{a+b}{2}\right) \cup \left(\frac{a+b}{2},b\right)$ and

(2.6)
$$S_{f}''(x) = \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{8}{(a+b-2x)^{2}} + \frac{f'(a+b-x) - f'(x)}{a+b-2x}$$

for any $x \in \left(a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right)$.

Proof. Since f is differentiable on (a, b), then by (2.1) S_f is twice differentiable on $(a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b)$ and

$$\begin{split} S_{f}''(x) &= \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right]' \frac{2}{a+b-2x} \\ &+ \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \left(\frac{2}{a+b-2x}\right)' \\ &= \left[S_{f}'(x) - \frac{f'(x) - f'(a+b-x)}{2}\right] \frac{2}{a+b-2x} \\ &+ \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{4}{(a+b-2x)^{2}} \\ &= \frac{2}{a+b-2x}S_{f}'(x) - \frac{f'(x) - f'(a+b-x)}{a+b-2x} \\ &+ \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{4}{(a+b-2x)^{2}} \\ &= \frac{2}{a+b-2x}\frac{2}{a+b-2x}\left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \\ &- \frac{f'(x) - f'(a+b-x)}{a+b-2x} \\ &+ \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{4}{(a+b-2x)^{2}} \\ &= \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{4}{(a+b-2x)^{2}} \\ &= \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{8}{(a+b-2x)^{2}} \\ &+ \frac{f'(a+b-x) - f'(x)}{a+b-2x} \end{split}$$

for any $x \in \left(a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right)$.

Corollary 2. Assume that $f : [a, b] \to \mathbb{R}$ is continuous convex on [a, b] and differentiable on (a, b), then S_f is convex on [a, b].

Proof. We know that, see [8], if $f : [a, b] \to \mathbb{R}$ is continuous convex on [a, b] and differentiable on (a, b) then for any $\alpha, \beta \in [a, b]$ with $\alpha \neq \beta$ we have

(2.7)
$$0 \leq \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(s) \, ds \leq \frac{1}{8} \left[f'(\beta) - f'(\alpha) \right] (\beta - \alpha) \, .$$

Therefore, for any $x \in (a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b)$ we have

$$0 \le \frac{f(x) + f(a+b-x)}{2} - \frac{1}{a+b-2x} \int_{x}^{a+b-x} f(s) \, ds$$
$$\le \frac{1}{8} \left[f'(a+b-x) - f'(x) \right] (a+b-2x) \, .$$

Since

$$S_{f}''(x) = \left[S_{f}(x) - \frac{f(a+b-x) + f(x)}{2}\right] \frac{8}{(a+b-2x)^{2}} + \frac{f'(a+b-x) - f'(x)}{a+b-2x}$$
$$= \frac{8}{(a+b-2x)^{2}} \times \left[\frac{1}{8}\left[f'(a+b-x) - f'(x)\right](a+b-2x) - \left[\frac{f(a+b-x) + f(x)}{2} - S_{f}(x)\right]\right]$$
$$\geq 0$$

for any $x \in (a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b)$, we conclude that S_f is convex on both intervals $[a, \frac{a+b}{2})$ and $(\frac{a+b}{2}, b]$. Since S_f is continuous on [a, b] and $S'_f(\frac{a+b}{2}) = 0$, it follows that S_f is convex on the whole interval [a, b].

3. MIDPOINT AND TRAPEZOID TYPE INEQUALITIES

We use the following convention for the total variation of a function in the case when b < a,

(3.1)
$$\bigvee_{a}^{b}(f) := -\bigvee_{b}^{a}(f)$$

provided the function f is of bounded variation in the classical sense.

We also consider the Cumulative Variation Function (CVF) $V_f : [a, b] \to [0, \infty)$ defined by

$$V_f(x) = \bigvee_{a}^{x} (f), \ x \in [a, b].$$

It is know that the CVF is monotonic nondecreasing on [a, b] and is continuous in a point $c \in [a, b]$ if and only if the generating function f is continuing in that point. If f is Lipschitzian with the constant L > 0, i.e.

 $|f(t) - f(s)| \le L |t - s|$ for any $t, s \in [a, b]$,

then V_f is also Lipschitzian with the same constant.

We have the following result for functions of bounded variation.

Theorem 3. Let $f : [a, b] \to \mathbb{C}$ be a function of bounded variation on [a, b]. Then

(3.2)
$$\left|S_f(x) - f\left(\frac{a+b}{2}\right)\right| \le \frac{1}{2} \left|\bigvee_x^{a+b-x}(f)\right| \le \frac{1}{2} \bigvee_a^b(f)$$

(3.3)
$$\left|\frac{f(a+b-x)+f(x)}{2} - S_f(x)\right| \le \frac{1}{2} \left|\bigvee_{x}^{a+b-x} (f)\right| \le \frac{1}{2} \bigvee_{a}^{b} (f)$$

for any $x \in [a, b]$.

Proof. We use the following midpoint and trapezoid inequalities for functions of bounded variation $h: [\alpha, \beta] \to \mathbb{C}$ [2] (see also [6])

(3.4)
$$\left|\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds - h\left(\frac{\alpha + \beta}{2}\right)\right| \le \frac{1}{2} \bigvee_{\alpha}^{\beta} (h)$$

and

(3.5)
$$\left|\frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds\right| \leq \frac{1}{2} \bigvee_{\alpha}^{\beta} (h) \, ,$$

where $\bigvee_{\alpha}^{\beta}(h)$ is the total variation of h on the interval $[\alpha, \beta]$. The constant $\frac{1}{2}$ is best possible in (3.4) and (3.5). Let $x \in [a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b]$, then by (3.4), (3.5) and using the convention (3.1)

we have

(3.6)
$$\left|S_f(x) - f\left(\frac{a+b}{2}\right)\right| \le \frac{1}{2} \left|\bigvee_x^{a+b-x}(f)\right|$$

and

(3.7)
$$\left|\frac{f(a+b-x)+f(x)}{2} - S_f(x)\right| \le \frac{1}{2} \left|\bigvee_{x}^{a+b-x} (f)\right|.$$

These inequalities become identities if we take $x = \frac{a+b}{2}$.

We observe that

$$\bigvee_{x}^{a+b-x} (f) = V_{f} (a+b-x) - V_{f} (x)$$

for $x \in [a, \frac{a+b}{2}) \cup (\frac{a+b}{2}, b]$ and since V_f is nondecreasing on [a, b] we have $V_f(a) - V_f(b) \le V_f(a + b - x) - V_f(x) \le V_f(b) - V_f(a),$

namely $\left|\bigvee_{x}^{a+b-x}(f)\right| \leq \bigvee_{a}^{b}(f)$ and the theorem is proved.

Remark 1. Let $f : [a,b] \to \mathbb{C}$ be a function of bounded variation on [a,b]. If we take the integral mean in the inequalities (3.2) and (3.3) and use the property of modulus, we get

$$(3.8) \qquad \left|\frac{1}{b-a}\int_{a}^{b}S_{f}\left(x\right)dx - f\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{2(b-a)}\int_{a}^{b}\left|\bigvee_{x}^{a+b-x}\left(f\right)\right|dx$$
$$\leq \frac{1}{2}\bigvee_{a}^{b}\left(f\right)$$

(3.9)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx \right| \leq \frac{1}{2(b-a)} \int_{a}^{b} \left| \bigvee_{x}^{a+b-x} (f) \right| \, dx$$

 $\leq \frac{1}{2} \bigvee_{a}^{b} (f) \, .$

Corollary 3. Let $f : [a,b] \to \mathbb{C}$ be a function of bounded variation on [a,b] and such that the CVF is Lipschitzian with the constant K > 0, then

(3.10)
$$\left|S_f(x) - f\left(\frac{a+b}{2}\right)\right| \le \frac{1}{2} \left|\bigvee_x^{a+b-x}(f)\right| \le K \left|x - \frac{a+b}{2}\right|$$

and

(3.11)
$$\left| \frac{f(a+b-x)+f(x)}{2} - S_f(x) \right| \le \frac{1}{2} \left| \bigvee_{x}^{a+b-x} (f) \right| \le K \left| x - \frac{a+b}{2} \right|$$

for any $x \in [a, b]$.

Remark 2. Let $f : [a,b] \to \mathbb{C}$ be as in Corollary 3. If we take the integral mean in the inequalities (3.10) and (3.11) and use the property of modulus, then we get

(3.12)
$$\left|\frac{1}{b-a}\int_{a}^{b}S_{f}\left(x\right)dx - f\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{2(b-a)}\int_{a}^{b}\left|\bigvee_{x}^{a+b-x}\left(f\right)\right|dx$$
$$\leq \frac{1}{4}K\left(b-a\right)$$

and

(3.13)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx \right| \leq \frac{1}{2(b-a)} \int_{a}^{b} \left| \bigvee_{x}^{a+b-x} (f) \right| \, dx$$

 $\leq \frac{1}{4} K \left(b-a \right).$

For absolutely continuous functions $h : [\alpha, \beta] \to \mathbb{C}$ we have the following midpoint inequality [12]

(3.14)
$$\left|\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds - h\left(\frac{\alpha + \beta}{2}\right)\right| \le \frac{1}{2} \int_{\alpha}^{\beta} |h'(s)| \, ds$$

and the trapezoid inequality [4]

(3.15)
$$\left|\frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds\right| \le \frac{1}{2} \int_{\alpha}^{\beta} |h'(s)| \, ds$$

The constant $\frac{1}{2}$ is best possible in (3.14) and (3.15).

Then, by a similar argument to the one in Theorem 3 we have from (3.14) and (3.15) the inequalities

(3.16)
$$\left| S_f(x) - f\left(\frac{a+b}{2}\right) \right| \le \frac{1}{2} \left| \int_x^{a+b-x} |f'(s)| \, ds \right| \le \frac{1}{2} \int_a^b |f'(s)| \, ds$$

and

(3.17)
$$\left| \frac{f(a+b-x)+f(x)}{2} - S_f(x) \right| \le \frac{1}{2} \left| \int_x^{a+b-x} |f'(s)| \, ds \right| \le \frac{1}{2} \int_a^b |f'(s)| \, ds$$

for any $x \in [a, b]$.

These imply by integration

(3.18)
$$\left| \frac{1}{b-a} \int_{a}^{b} S_{f}(x) dx - f\left(\frac{a+b}{2}\right) \right|$$
$$\leq \frac{1}{2(b-a)} \int_{a}^{b} \left| \int_{x}^{a+b-x} |f'(s)| ds \right| dx \leq \frac{1}{2} \int_{a}^{b} |f'(s)| ds$$

and

(3.19)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx \right|$$
$$\leq \frac{1}{2(b-a)} \int_{a}^{b} \left| \int_{x}^{a+b-x} |f'(s)| \, ds \right| \, dx \leq \frac{1}{2} \int_{a}^{b} |f'(s)| \, ds$$

If the function $h : [\alpha, \beta] \to \mathbb{C}$ is *Lipschitzian* with the constant L > 0, then we have the midpoint inequality [10] and [3]

(3.20)
$$\left|\frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds - h\left(\frac{\alpha + \beta}{2}\right)\right| \leq \frac{1}{4} L\left(\beta - \alpha\right)$$

and the trapezoid inequality [1] and [13]

(3.21)
$$\left|\frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds\right| \leq \frac{1}{4} L(\beta - \alpha).$$

The constant $\frac{1}{4}$ is best possible in (3.20) and (3.21).

Theorem 4. Let $f : [a,b] \to \mathbb{C}$ be a Lipschitzian function with the constant L > 0 on [a,b]. Then

(3.22)
$$\left|S_f(x) - f\left(\frac{a+b}{2}\right)\right| \le \frac{1}{2}L\left|x - \frac{a+b}{2}\right|$$

and

(3.23)
$$\left| \frac{f(a+b-x) + f(x)}{2} - S_f(x) \right| \le \frac{1}{2}L \left| x - \frac{a+b}{2} \right|$$

for any $x \in [a, b]$.

Moreover, we have the integral inequalities

(3.24)
$$\left|\frac{1}{b-a}\int_{a}^{b}S_{f}\left(x\right)dx - f\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{8}L\left(b-a\right)$$

(3.25)
$$\left|\frac{1}{b-a}\int_{a}^{b}f(x)\,dx - \frac{1}{b-a}\int_{a}^{b}S_{f}(x)\,dx\right| \leq \frac{1}{8}L\left(b-a\right).$$

Proof. If $x \in [a, \frac{a+b}{2}]$, then by (3.20) for $\alpha = x$ and $\beta = a + b - x$ we have

(3.26)
$$\left| \frac{1}{a+b-2x} \int_{x}^{a+b-x} f(t) dt - f\left(\frac{a+b}{2}\right) \right| \le \frac{1}{4}L(a+b-x-x)$$
$$= \frac{1}{2}L\left(\frac{a+b}{2}-x\right)$$
$$= \frac{1}{2}L\left|x - \frac{a+b}{2}\right|$$

and by (3.21) for $\alpha = x$ and $\beta = a + b - x$ we have

(3.27)
$$\left|\frac{h(x) + h(a+b-x)}{2} - \frac{1}{a+b-2x} \int_{x}^{a+b-x} f(t) dt\right| \le \frac{1}{2}L \left|x - \frac{a+b}{2}\right|.$$

We observe that, if $x \in \left(\frac{a+b}{2}, b\right]$ then by taking $\alpha = a + b - x$ and $\beta = x$ in (3.20) and (3.21) we obtain the same inequalities (3.26) and (3.27). Finally, $x = \frac{a+b}{2}$ produces equality in (3.22) and (3.23).

The inequalities (3.24) and (3.25) follow by integrating (3.22) and (3.23) and taking into account that

$$\frac{1}{b-a}\int_{a}^{b}\left|x-\frac{a+b}{2}\right|dx = \frac{1}{4}\left(b-a\right).$$

We observe that if the function $f:[a,b] \to \mathbb{C}$ is absolutely continuous and $f' \in L_\infty\left[a,b\right],$ namely f' is essentially bounded on $\left[a,b\right]$ then f is Lipschitzian with the constant

$$L = \|f'\|_{\infty,[a,b]} := \underset{t \in [a,b]}{\operatorname{essup}} |f'(t)| < \infty$$

and the inequalities in (3.22)-(3.25) may be stated with $\|f'\|_{\infty,[a,b]}$ instead of L. If the function $h: [\alpha, \beta] \to \mathbb{C}$ is absolutely continuous and $h' \in L_p[\alpha, \beta], p > 1$, namely

$$\|h'\|_{p,[\alpha,\beta]} := \left(\int_{\alpha}^{\beta} \left|h'(s)\right|^{p} ds\right)^{1/p} < \infty,$$

then we have the following midpoint and trapezoid inequalities [5]

$$(3.28) \qquad \left|\frac{1}{\beta-\alpha}\int_{\alpha}^{\beta}h\left(s\right)ds - h\left(\frac{\alpha+\beta}{2}\right)\right| \le \frac{1}{2\left(q+1\right)^{1/q}}\left(\beta-\alpha\right)^{1/q}\|h'\|_{p,[\alpha,\beta]}$$

and

(3.29)
$$\left| \frac{h(\alpha) + h(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} h(s) \, ds \right| \leq \frac{1}{2(q+1)^{1/q}} \left(\beta - \alpha\right)^{1/q} \|h'\|_{p,[\alpha,\beta]},$$

where p, q > 1 and $\frac{1}{p} + \frac{1}{q} = 1$. Using these inequalities we have:

Theorem 5. Let $f : [a,b] \to \mathbb{C}$ be an absolutely continuous function on [a,b]. Assume that $f' \in L_p[\alpha,\beta]$, p > 1 and let q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then

(3.30)
$$\left|S_f(x) - f\left(\frac{a+b}{2}\right)\right| \le \frac{1}{2^{1/p} (q+1)^{1/q}} \left|x - \frac{a+b}{2}\right|^{1/q} \|f'\|_{p,[a,b]}$$

and

(3.31)
$$\left| \frac{f(a+b-x)+f(x)}{2} - S_f(x) \right| \le \frac{1}{2^{1/p}(q+1)^{1/q}} \left| x - \frac{a+b}{2} \right|^{1/q} \|f'\|_{p,[a,b]}$$

for any $x \in [a, b]$.

Moreover, we have the integral inequalities

(3.32)
$$\left| \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx - f\left(\frac{a+b}{2}\right) \right| \leq \frac{q}{2\left(q+1\right)^{1/q+1}} \left(b-a\right)^{1/q} \|f'\|_{p,[a,b]}$$

and

(3.33)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx \right|$$
$$\leq \frac{q}{2 \left(q+1\right)^{1/q+1}} \left(b-a\right)^{1/q} \|f'\|_{p,[a,b]}$$

Proof. The proof of (3.30) and (3.31) follow by (3.28) and (3.29) by employing a similar argument to the one from the proof of Theorem 4.

Taking the integral in (3.30) and (3.31) and observing that

$$\frac{1}{b-a} \int_{a}^{b} \left| x - \frac{a+b}{2} \right|^{1/q} dx = \frac{2}{b-a} \int_{\frac{a+b}{2}}^{b} \left(x - \frac{a+b}{2} \right)^{1/q} dx$$
$$= \frac{2}{b-a} \frac{\left(\frac{b-a}{2}\right)^{1/q+1}}{1/q+1} = \frac{q(b-a)^{1/q}}{2^{1/q}(q+1)},$$

we deduce the desired results (3.32) and (3.33).

4. Further Results for Convex Functions

In [7] we established the following reverse of the first inequality in the Hermite-Hadamard result. This can be stated as

(4.1)
$$0 \leq \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(s) \, ds - f\left(\frac{\alpha + \beta}{2}\right) \leq \frac{1}{8} \left[f'(\beta) - f'(\alpha)\right] \left(\beta - \alpha\right),$$

for any $\alpha, \beta \in [a, b]$ with $\alpha \neq \beta$, provided that $f : [a, b] \to \mathbb{R}$ is continuous convex on [a, b] and differentiable on (a, b).

With the same assumptions, we have the following reverse of the second inequality in the Hermite-Hadamard result as well [8]

(4.2)
$$0 \leq \frac{f(\alpha) + f(\beta)}{2} - \frac{1}{\beta - \alpha} \int_{\alpha}^{\beta} f(s) \, ds \leq \frac{1}{8} \left[f'(\beta) - f'(\alpha) \right] (\beta - \alpha) \, ,$$

for any $\alpha, \beta \in [a, b]$ with $\alpha \neq \beta$

Theorem 6. Assume that $f : [a, b] \to \mathbb{R}$ is continuous convex on [a, b] and differentiable on (a, b). Then

(4.3)
$$0 \le S_f(x) - f\left(\frac{a+b}{2}\right) \le \frac{1}{4} \left[f'(x) - f'(a+b-x)\right] \left(x - \frac{a+b}{2}\right)$$

and

$$(4.4) \ \ 0 \le \frac{f(a+b-x)+f(x)}{2} - S_f(x) \le \frac{1}{4} \left[f'(x) - f'(a+b-x) \right] \left(x - \frac{a+b}{2} \right)$$

for any $x \in [a, b]$.

Moreover, we have the integral inequalities

$$(4.5) \quad 0 \le \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx - f\left(\frac{a+b}{2}\right)$$
$$\le \frac{1}{2} \left[\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx\right] \le \frac{1}{16} \left[f'_{-}(b) - f'_{+}(a)\right] (b-a)$$

and

$$(4.6) \quad 0 \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx - \frac{1}{b-a} \int_{a}^{b} S_{f}(x) \, dx$$
$$\le \frac{1}{2} \left[\frac{f(a) + f(b)}{2} - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right] \le \frac{1}{16} \left[f'_{-}(b) - f'_{+}(a) \right] (b-a) \, .$$

Proof. The inequalities (4.3) and (4.4) follow by (4.1) and (4.2) for $\alpha = x$ and $\beta = a + b - x$.

Now, observe that

$$\begin{split} &\int_{a}^{b} \left(x - \frac{a+b}{2} \right) d\left[f\left(x \right) + f\left(a+b-x \right) \right] \\ &= \left[f\left(x \right) + f\left(a+b-x \right) \right] \left(x - \frac{a+b}{2} \right) \Big|_{a}^{b} - \int_{a}^{b} \left[f\left(x \right) + f\left(a+b-x \right) \right] dx \\ &= \left[f\left(b \right) + f\left(a \right) \right] \left(b - \frac{a+b}{2} \right) - \left[f\left(a \right) + f\left(b \right) \right] \left(a - \frac{a+b}{2} \right) \\ &- \int_{a}^{b} \left[f\left(x \right) + f\left(a+b-x \right) \right] dx \\ &= \left[f\left(b \right) + f\left(a \right) \right] \left(b-a \right) - 2 \int_{a}^{b} f\left(x \right) dx, \end{split}$$

then by integrating (4.3) and (4.4) we deduce the second inequalities in (4.5) and (4.6). The last part is obvious by (4.1) and (4.2). \Box

5. Some Examples

If we consider the function $f_{-1}: [a,b] \subset (0,\infty) \to \mathbb{R}, f_{-1}(t) = \frac{1}{t}$, then

$$S_{f_{-1}}(x) := \begin{cases} L^{-1}(a+b-x,x) & \text{if } x \in \left[a, \frac{a+b}{2}\right) \cup \left(\frac{a+b}{2}, b\right], \\ A^{-1}(a,b) & \text{if } x = \frac{a+b}{2}, \end{cases}$$

and by (4.3) and (4.4) we get

(5.1)
$$0 \le L^{-1}(a+b-x,x) - A^{-1}(a,b) \le \frac{1}{(a+b-x)^2 x^2} \left(\frac{a+b}{2}\right) \left(x - \frac{a+b}{2}\right)^2$$

and

(5.2)
$$0 \le \frac{a+b}{2x(a+b-x)} - L^{-1}(a+b-x,x)$$

$$\leq \frac{1}{\left(a+b-x\right)^{2}x^{2}}\left(\frac{a+b}{2}\right)\left(x-\frac{a+b}{2}\right)^{2}$$

for any $x \in [a, b]$.

From (4.5) and (4.6) we also have

(5.3)
$$0 \leq \frac{1}{b-a} \int_{a}^{b} L^{-1} (a+b-x,x) dx - A^{-1} (a,b)$$
$$\leq \frac{1}{2} \left[H^{-1} (a,b) - L^{-1} (a,b) \right] \leq \frac{1}{16} \frac{b+a}{a^{2}b^{2}} (b-a)^{2}$$

and

(5.4)
$$0 \le L^{-1}(a,b) - \frac{1}{b-a} \int_{a}^{b} L^{-1}(a+b-x,x) dx$$
$$\le \frac{1}{2} \left[H^{-1}(a,b) - L^{-1}(a,b) \right] \le \frac{1}{16} \frac{b+a}{a^{2}b^{2}} (b-a)^{2}.$$

For the function
$$f_0: [a,b] \subset (0,\infty) \to \mathbb{R}, f_{-0}(t) = \ln t$$
, we have

$$S_{f_0}(x) = \begin{cases} \ln I\left(a+b-x,x\right) \text{ if } x \in \left[a,\frac{a+b}{2}\right) \cup \left(\frac{a+b}{2},b\right], \\ \ln\left(A\left(a,b\right)\right) \text{ if } x = \frac{a+b}{2}, \end{cases}$$

and by (4.3) and (4.4) for the concave function $f_{-0}(t) = \ln t$ we get

(5.5)
$$0 \le \ln A(a,b) - \ln I(a+b-x,x) \le \frac{1}{2x(a+b-x)} \left(x - \frac{a+b}{2}\right)^2$$

and

(5.6)
$$0 \le \ln I (a + b - x, x) - \ln G (a + b - x, x)$$

$$\leq \frac{1}{2x(a+b-x)} \left(x - \frac{a+b}{2}\right)^2$$

for any $x \in [a, b]$.

From (4.5) and (4.6) we also have

(5.7)
$$0 \le \ln A(a,b) - \frac{1}{b-a} \int_{a}^{b} \ln I(a+b-x,x) dx$$
$$\le \frac{1}{2} \left[\ln I(a,b) - \ln G(a,b) \right] \le \frac{1}{16ab} (b-a)^{2}$$

(5.8)
$$0 \le \ln I(a,b) - \frac{1}{b-a} \int_{a}^{b} \ln I(a+b-x,x) dx$$
$$\le \frac{1}{2} \left[\ln I(a,b) - \ln G(a,b) \right] \le \frac{1}{16ab} (b-a)^{2}.$$

S. S. $DRAGOMIR^{1,2}$

References

- P. Cerone and S. S. Dragomir, Trapezoidal type rules from an inequalities point of view, Handbook of analytic-computational methods in applied mathematics, 65-134, Chapman & Hall/CRC, Boca Raton, FL, 2000. Preprint RGMIA Res. Rep. Coll. 2 (1999), No. 6, Art. 8.
 [Online http://rgmia.org/papers/v2n6/TrapRulesIneqRep.pdf].
- [2] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull. Austral. Math. Soc. 60 (1999), No. 3, 495–508.
- [3] S. S. Dragomir, The Ostrowski's integral inequality for Lipschitzian mappings and applications. Comput. Math. Appl. 38 (1999), no. 11-12, 33-37. Preprint Preprint RGMIA Res. Rep. Coll. 2 (1999), No. 1, Art. 11. [Online http://rgmia.org/papers/v2n1/v2n1-11.pdf].
- [4] S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose derivatives belong to L₁[a, b] and applications in numerical integration. J. Comput. Anal. Appl. 3 (2001), no. 4, 343-360. Preprint RGMIA Res. Rep. Coll. 2 (1999), No. 3, Art. 7. [Online http://rgmia.org/papers/v2n3/in3ams.pdf].
- [5] S. S. Dragomir, A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to L_p[a, b] and applications in numerical integration. J. Math. Anal. Appl. 255 (2001), no. 2, 605–626.
- [6] S. S. Dragomir, On the Ostrowski's integral inequality for mappings with bounded variation and applications, *Math. Ineq. Appl.* 4 (2001), No. 1, 59-66. Preprint *RGMIA Res. Rep. Coll.* 2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf].
- [7] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 31, 8 pp.
- [8] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), No. 3, Article 35, 8 pp.
- [9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Austr. J. Math. Anal. & Appl., 14 (2017), Issue 1, Article 1, pp. 1-287. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
- [10] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard's type for Lipschitzian mappings and their applications, J. Math. Anal. Appl. 245 (2000), 489–501.
- [11] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
- [12] S. S. Dragomir and S. Wang, A new inequality of Ostrowski's type in L_1 -norm and applications to some special means and to some numerical quadrature rules, *Tamkang J. of Math.*, **28** (1997), 239-244.
- [13] M. Matić and J. Pečarić, Note on inequalities of Hadamard's type for Lipschitzian mappings. *Tamkang J. Math.* **32** (2001), no. 2, 127–130.

¹Mathematics, School of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA