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AN AVERAGING INTEGRAL TRANSFORM AND ITS
PROPERTIES

S. S. DRAGOMIR!:2

ABSTRACT. For a Lebesgue integrable function f : [a,b] — C we define the
averaging transform Sy : [a,b] — R by

m%hf;"'b—ac.f(t)dt ifw e [a, GTH’) U (%bb} ’

r(egt) ita ==,
In this paper we investigate several properties of the transform Sy concerning
differentiability, monotonicity and convexity. Midpoint and trapezoid type
inequalities for the transform Sy and its integral mean ﬁ ff Sy (x) dx are
obtained. Applications for some integral means of interest are also provided.

Sy (x) :=

1. INTRODUCTION

For a Lebesgue integrable function f : [a,b] — C we define the averaging trans-
form Sy :[a,b] — R by

at+b—x . a a

L SOdiita e [a ) U (0],
(1.1) Sy (x) :=

f(ef) if o = ofb.
If we denote F (z) := [ f (t) dt then

Fa+b—2x)— F(x)
S =
s (@) a+b—2z

for z € [a7 “T'H’) U (”’erb,b} . Since a point a continuity for f in (a,b) is a point
a differentiability for F, hence if we assume that f is continuous in “—'H’ then by
L’Hospital’s rule we have limxﬂ%b St (z) = f (), which shows that Sf is also
continuous in aT“’.

We observe also that Sy (a+b—x) = Sy (x) for any = € [a,b], namely S is
symmetrical in the interval [a, b] .

The following inequality is well known in literature as the Hermite-Hadamard
inequality for the convex function h : [a,b] — R

- n(252) < _a/ (s < TR

for any «, 8 € [a, b] with o # 8. For a large collection of 1nequaht1es related to this
result see [11], [9] and the references therein.
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So, if f : [a,b] — R is a convex function on [a,b], then by the (HH) inequality
we have the following inequality for the transform Sy

(12) f(a;_b>SSf(x)Sf(a+b_2m)+f($)

for any z € [a,b].
If we take the integral mean ;1 f: in (1.2) we also have

(1.3) f(a—;b>§1a/ab5f(x)dx§b1a/abf(a:)dx

that provides a refinement of the second inequality in the (HH) inequality.

If we consider Bullen’s inequality [11, p. 2] for the convex function A : [a,b] — R
that shows that the middle term in (HH) is closer to the left term than to the right
term, namely

B B
(B) 0< 7(1/ h(s)ds—h(a;6><h(a);h(6)—ﬂ1a/ h(s)ds
for any «, 8 € [a,b] with a # 3, then we obtain that
) oss-f(tg0) < HORERIIE g

for any x € [a,b]. Moreover, if we take the integral mean in (1.4), then we get

(1.5) o<7/ S (x dm—f<a+b)
*b—a/f dx——/ Sy (x

Some natural examples for Sy are provided by integral means. Let us recall the
following means :

(1) The logarithmic mean:

a ifa=5
L =1L(a,b):= b—a ot a, b>0;
Inb—1na “
(2) The identric mean:
a ifa=0>
I:=1(ab)= a, b>0;

(3) The p-logarithmic mean:
1
pptl _ gptl 7%
oria) e

a ifa=0b

where p € R\ {-1,0} and a, b > 0.

L,=1L,(a,b):=
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It is well known that L, is monotonic nondecreasing over p € R with L_; := L
and Lo := 1.
In particular, we have the inequalities

(1.6) H<GLKL<LZI<A,
where the arithmetic mean is
b
A:A(a,b)::a; , a, b>0;

the geometric mean is
GzG(a,b):z\/%, a, b>0;

and the harmonic mean is

2
H:H(a,b)::ﬁ, a,b>0.
a

b
If we consider the function f_; : [a,b] C (0,00) = R, f_1 (t) = %, then

ez T it e € o, ofP) U (252,0],
Sy (@) = X
(440)" it = o5t
LY (a+b—z0)ifze [a, ‘”‘b) U (“ b,b} ,

A~ (a,b) if x = atb,

2
For the function fy : [a,b] C (0,00) = R, f_o (t) = Int, we have

i [T Intdt if @ € [a, “E2) U (2£2,0]

ln(%ﬂ’) if x = ‘%Lb,

Inl(a+b—xz,2) if x € [a, %) U (%52,0],

St (x) =

In(A(a,b)) if z = %£°.
Also, for the function f, : [a,b] C (0,00) — R, f_¢(t) = tP, where p # 0,—1 we
have

i f;+b796 trdt if x € [a, “E0) U (252, 0],

Sfp (m) =
()" if o = 232
Lh(a+b—mx) ifz € [a,aT'H’)U(“T“’,b],

AP (a,b) if z = %EP.

Motivated by the above facts, we investigate in the following several properties
of the transform Sy concerning differentiability, monotonicity and convexity. Mid-
point and trapezoid type inequalities for the transform Sy and its integral mean

= fab Sy (x) dz are obtained. Applications for some integral means of interest are
also provided.
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2. GENERAL RESULTS

The following result concerning the differentiability of the transform Sy holds.

Theorem 1. Assume that f : [a,b] — C is continuous on [a,b], then Sy is differ-
entiable on (a, ‘ITH’) U (“TH’, b) and

2

5700 Llotb= 24 )

2

for any z € (a, a+b) U (‘Hb b).
If f has finite lateral derivatives f+( 5 ) and f" ( ) then Sy has lateral
derivatives in a“’ and

o () C8) £ (5] (45

Moreover, if f is differentiable in “TH’ then Sy is differentiable in ‘%b and S} (‘%b) =
0.

Proof. By the continuity of f on [a, b] we have that Sy is differentiable on (a, “T'H’) U
(32,5) and

, _ F(a+b—2x)— F(x)
St (@) = a+b—2z
_ (F'(a+b—z)—F' (z)(a+b—22)+2(F(a+b—2x)— F(z))
(a+b—2z)°
_(flatb—a)—f(x)(a+b—22)+2(F(at+b—=)— F(x))
(a+b—2z)°
2(Flatb—a2)-F(x) flatb—a)+f(z)

(a+b—22) a+b—2x
B 2 [F(a+bz)F(z)_f(a+bm)+f(a:)}

Ca+b-—22 a+b—2z 2

for any z € (a J) U (%£2,b) , which proves the equality (2.1).

From (2.1) for z > %2 we have

(23) S (x)

=2

a+b—2x 2(a+b—2x)

Sy () = £ (“5°) f(a+b—x)—f(‘12+l’)+f(x)_f(a2+b)].

By the continuity of S} on (‘IT“’, b) and Lagrange’s mean value theorem we have

lim (@) = f(%3°) — 2 lim f(x)—f(2):_, lim S} ().
so2fty  atb—22 2oosry  po e zofty
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Also
— ) — f (et atb 4 atb _ .\ _ f(atb
lim flatb-=2) f(Q):} lim (2+2+bx) f(z)
1 F( o n) (o)
T2 h—0+ _h
:1 lim f(a2b+8)_f(a2+b):1f/_(a+b>
25%07 S 2 2
and
w:, lim x)_f(aTb)
s—otby  a+b—2z 2 g athy “Tb—:n
_ f(m—f("';”’):_ljr<a+b>.
z—atb J?—%er 2 2

Denote £, := 1im$—>%“+ 5% (z) . Then by taking the limit over z — ‘ITH’—i— in the
equality (2.3) we get

1 1, (a+b 1, (a+b
n=zlpe o () <5 (5F))
2, — f1 <a—2|—b)_f, (a—2|—b>7
11, (a+d , [a+b
) (5]

From (2.1) for z < 22 we have

namely

which implies that

(24) S} ()

=2

Sy (@) = £(%52) f<a+b—x>—f<“#)+f<x>—f<“#)]
a+b—2x 2(a+b—2x) '

By the continuity of S} on (a, “TH’) and Lagrange’s mean value theorem we have

S (@) = F(457) _ S (@) = F(%52) _

-~ =2 1 S’
Also
o flatb—a)—f(3%) 1 f(F ) - F ()
lim =— lim
g atb a+b—2x 2y atb ath _ o
2 2 2
b
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and
by @) 1 @ - (45)
o atb a+b— rsatb %*l‘
_ atb
2 g atb_ z— &2 2 2

Denote £5 := lim,  asv 5% (z). Then by taking the limit over z — 2P in the
2
equality (2.4) we get

65_2[ 1, f+<a+b>+;f,_<a—2kb>]

namely

which implies

The following corollary is of interest:

Corollary 1. Assume that f : [a,b] — R is continuous and convez on [a, b] , then S
1§ mon-increasing on [a, “TH’) and non-decreasing on (“TH’,Z)] . Sy is differentiable

on (a, %rb) U (%H’, b) and has the lateral derivatives

oo ()4l () () ()

Moreover, if f is differentiable in “TH’ then Sy is differentiable in “TH’ and S} (“T'H)) =
0.

Proof. We know from Hermite-Hadamard inequality that, if f : [a,b] — R is convex

on [a,b], then
’ f )+ (B)
[ rsas < LOEID

8-«
for any «, 8 € [a,b] with a # .
Therefore
(o) - Lm0+ 1)
foranyxé( ‘H'b) ( 5 b, )
Using the equality (2.1) we then get S (z) < 0 for any z € (a, “E) and S (x) >
0 for anyze(%“’,b). O

‘We have:
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Theorem 2. Assume that f : [a,b] — C is continuous on [a,b] and differentiable

n (a,b), then Sy is twice differentiable on (a “T*b) U (%rb,b) and

" _ x_f(a+b_m)+f(x) 8
26)  S{@= S (@) > PR
flat+b—z)— [ (z)
+ a+b—2x

for any x € (a, ‘%‘b) U (“T'H’,b) .

Proof. Since f is differentiable on (a,b), then by (2.1) Sy is twice differentiable on
(0, 52) U (252,0) and

Spo) = [sy ) - Lerbo @)

2 a+b—2x
[ flatb—a)+ f(z)] 2 /
|9 (@) - 2 ] (a+b2z>
/ (@)= f(at+b—x) 2
:[Sf(x)_ 2 }a+b—2m
+ |y (@ - Hotbz a2 /@) : — -
2 F@=flatb-a)
_a—i—b—Zme(x)_ a+b—2x
e T
_ 2 2 fla+tb—z)+ f(z)
Ca+b—2za+b-—2x [Sf(w)_ 2
@) - f(atb—x)
a+b-—2z
fla+b—z)+ f(z) 4
+[Sf(x)_ 2 }(a+b—2m)2
flatb—z)+ f(2) 8
:{Sf(x)— 5 }(a+b—2x)2
flatb—z)— f'(z)
+ a+b-—2z
for any = € (a,%*b) U (%H’,b). O

Corollary 2. Assume that f : [a,b] — R is continuous convex on [a,b] and differ-
entiable on (a,b), then Sy is convex on [a,b].

Proof. We know that, see [8], if f : [a,b] — R is continuous convex on [a,b] and
differentiable on (a,b) then for any «, 5 € [a, b] with « # 5 we have

f(@)+f (8 1 ,
en o< _a/f <L B) £ @) (8- a).
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) U (“;rb,b) we have

atb
2
J@+flarb—g) 1 e
0= 2 7a+b—2x/x J(s)ds

Therefore, for any = € ( a,

[ff(a+b—2)— f (z)](a+b—2x).

flatb—x)+ f(2) 8 flatb—z) - f'(z)
(a+b—2x)2+ a+b—2z

+b—2a:)

" (atb-20)
{ “(a+b—x)— f()](a+b—2m)—[f(“+b—$)+f(fc)
0

2

-5y (2)

Y

for any x € (a, “T'H’) U (‘”‘b b) , we conclude that Sy is convex on both intervals

la, 45%) and (%§2,b] . Since Sy is continuous on [a,b] and S (252) = 0, it follows

that Sy is convex on the whole interval [a, D] . O

3. MIDPOINT AND TRAPEZOID TYPE INEQUALITIES

We use the following convention for the total variation of a function in the case
when b < a,
b a
(3:1) V==V
a b
provided the function f is of bounded variation in the classical sense.
We also consider the Cumulative Variation Function (CVF) Vy : [a,b] — [0, 00)
defined by

x

Vf(‘r) :\/(f), S [aab}'
a
It is know that the CVF is monotonic nondecreasing on [a, b] and is continuous in
a point ¢ € [a, b] if and only if the generating function f is continuing in that point.
If f is Lipschitzian with the constant L > 0, i.e.

[f () = f ()] < Lt —s| for any ¢, s € [a, D],
then V; is also Lipschitzian with the same constant.
We have the following result for functions of bounded variation.

Theorem 3. Let f : [a,b] — C be a function of bounded variation on [a,b]. Then

atb—x b
(32) 50— (“52)| <3|V 0] =3V
and
. at+b—x b
sy [P s ) <PV ()| <5V )
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for any x € [a,b].

Proof. We use the following midpoint and trapezoid inequalities for functions of
bounded variation h : [o, 8] — C [2] (see also [6])

1 B a+f 1
(3.4) B—QL h(s)ds—h( 5 ) Sﬁ\w/(h)
and

a ’ y
(3.5) . );h(ﬁ)_ﬂia/ hyds| < 5V (h),

where \/5 (h) is the total variation of & on the interval [o, 8]. The constant % is
best possible in (3.4) and (3.5).

Let z € [a, “E2) U (%22, 0], then by (3.4), (3.5) and using the convention (3.1)
we have

at+b—x
(36) si@-1(%50)| <3| V (f)‘
and
. T at+b—zx
(3.7) ‘f((l-i-b 2)+f()—5'f($) S% \/ (f)'

a+b

These inequalities become identities if we take x = “3

We observe that
a+b—x

V () =Vilat+b—2)-Vi(a)

x

for x € [a, ‘%‘b) U (“T*'b, b] and since Vy is nondecreasing on [a, b] we have

Vi(a) = Vi) <Vi(a+b—x)—=Vy(z) <Vp(b) = Vy(a),

b
namely ‘\/;erﬂC (f)‘ <V (f) and the theorem is proved. O

Remark 1. Let f : [a,b] — C be a function of bounded variation on [a,b]. If we
take the integral mean in the inequalities (3.2) and (3.3) and use the property of
modulus, we get

b b |la+b—2x
(3.8) ﬁ/ Sf(:c)d:r—f<a;rb>‘§ 2(b1_a)/ \/ () de
1, I
< 5\!(f)
and
b b b |la+b—2
(3.9) b%/ f(x)dm—ﬁ/ Sy () da sg(bl_a)/ V()] de

IN
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Corollary 3. Let f : [a,b] — C be a function of bounded variation on [a,b] and
such that the CVF is Lipschitzian with the constant K > 0, then

a+b—zx

310 57 (50| < Voo <o 22!
and
(3.11) ‘f(a+b2w)+f(x)sf(x) S;‘”\l’/z(f) <K'za;rb‘

for any z € [a,b].

Remark 2. Let f : [a,b] — C be as in Corollary 3. If we take the integral mean in
the inequalities (3.10) and (3.11) and use the property of modulus, then we get

(3.12) bi@/f&(w)dw—f(“f)‘gQ(bl_a)/ab a+\7(f) da
giK(b—a)
and
(3.13) b_la/abf(x)d:n—b_la/abe(x)dx §2(b1—a)/ab a+\:/x(f) da
giK(b—a).

For absolutely continuous functions h : [, 5] — C we have the following midpoint

inequality [12]
B B
(3.14) ‘Bia/ h(s)ds_h(agﬁ) S%/ W' (s)| ds

and the trapezoid inequality [4]

h(a) +h(B) 1 A
5 _5—04/a h(s)ds

1 [P
(3.15) <3 / |h (s)|ds.
The constant £ is best possible in (3.14) and (3.15).

Then, by a similar argument to the one in Theorem 3 we have from (3.14) and
(3.15) the inequalities

w10 [sew-s (30 <5 [T wora g [ 7ol
and
(3.17) \“‘””‘;)”(x)—sfu) <1 /:+b_zf’<s>|ds s;/abu’(snds

for any x € [a,b].
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These imply by integration

(3.18) ‘bla/absf(x)dx—f<a—2|_b>

<2@£®Abéw“ﬂf@Ms

b a /f dx—i/ Sy (x
<(6@LL[Mﬂ<nwmx [ 17 enas

If the function h : [a, 8] — C is Lipschitzian with the constant L > 0, then we
have the midpoint inequality [10] and [3]

(3.20) ‘ ! /jh(s)ds—h(a—'—ﬂ)‘giL(ﬁ—a)

b
do<g [1f @)las

and

(3.19)

08—« 2

and the trapezoid inequality [1] and [13]

h(a)+h(B) 1 B
5 _5—04/,1 h(s)ds

The constant 1 is best possible in (3.20) and (3.21).

(3.21)

Theorem 4. Let f : [a,b] — C be a Lipschitzian function with the constant L > 0
on [a,b]. Then

a+b 1 a+b
. — < -Llr—
(322) 57— (452)| < 5t e 5
and
— b
(3.23) ‘f(aer x)+f(x)isf(x) SlL‘anr ‘
2 2 2
for any x € [a,b].
Moreover, we have the integral inequalities
a+b 1
. — < -L(b—
(3.24) - /Sf ) dx f( 5 ) <3 (b—a)
and
(3.25) L e | SL(b—a)
. e z)dx 5 a
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Proof. If x € [a, %rb), then by (3.20) for « = z and 8 = a + b — = we have

1 at+b—x a+b
(3.26) m/z f(t)dt—f( - )

a+b
et
and by (3.21) for « =z and f = a + b — z we have
h(z)+h(a+b—1) 1 atb—e 1 a+b
2 — < -L|x— .
(3.27) 2 a+b—2m/ f@dy < shje——

We observe that, if z € (“£2,b] then by taking « = a+b—z and 8 = z in (3.20)

and (3.21) we obtain the same inequalities (3.26) and (3.27).
Finally, z = “—“7 produces equality in (3.22) and (3.23).
The inequahtles (3.24) and (3.25) follow by integrating (3.22) and (3.23) and

taking into account that
1 /b
b—aJ,

We observe that if the function f : [a,b] — C is absolutely continuous and
f' € Ly [a,b], namely f is essentially bounded on [a, b] then f is Lipschitzian with
the constant

a+b

T —

1
‘dx:4(b—a).

O

L= 1f'lloo fay := essup [f ()] < o0

tela,b

and the inequalities in (3.22)-(3.25) may be stated with || f'[|, (,; instead of L.
If the function A : [, 8] — C is absolutely continuous and W e Lyle,B],p>1,

namely
Ié; 1/p
Hh/Hp,[a,ﬁ] = (/a B’ (s)|” ds) < 00,

then we have the following midpoint and trapezoid inequalities [5]

1 B a+ 1 1/q |11/
(3.28) |5—04/a h(s)ds—h( 5 >|§2(q+1)1/q (B =) RN gy
and
h (@) +h(B) I 1 a ypr
(3.29) : _Bfa/a hla)ds| € o (0= ) Wl

wherep,q>1and%+%:l.
Using these inequalities we have:
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Theorem 5. Let f : [a,b] — C be an absolutely continuous function on [a,b].
Assume that f' € Ly o, f], p> 1 and let ¢ > 1 with % + é =1, then

a+b 1 a+b|M1 ,
_ < _
(3:30) ‘Sf @ f< 2 >‘ T 2Ur(g+ 1) T 170,
and
fla+b—2)+ f(2) 1 a+b|
31 — < —
(33 ) ‘ 2 Sf (.T = 21/]) (q+1)1/q x 9 ||f ||p,[a,b]

for any x € [a,b].
Moreover, we have the integral inequalities

1 b a+b
m/a Sf(z)d$f< ;r >
and

1 b 1 b
g 0= )|l oy

> 9 (q + 1)1/q+1

Proof. The proof of (3.30) and (3.31) follow by (3.28) and (3.29) by employing a
similar argument to the one from the proof of Theorem 4.
Taking the integral in (3.30) and (3.31) and observing that

q

3.32 <
( ) 9 (q 4 1)1/(I+1

(b — a)l/q ||f/||p,[a7b]

1 b a+b| 2 b a+b\"?
- dz = - d
bfa/ax 2 v ba/«wb(x 2 ) v
2
—an\1/a+1
2 ()T -
b—a 1/qg+1 24 (g + 1)’
we deduce the desired results (3.32) and (3.33). O

4. FURTHER RESULTS FOR CONVEX FUNCTIONS

In [7] we established the following reverse of the first inequality in the Hermite-
Hadamard result. This can be stated as

(4.1) 0<—/f as— £ (“52) <51 G) - £ @l - ),

for any «, 8 € [a,b] with a # 8, provided that f : [a,b] — R is continuous convex
on [a,b] and differentiable on (a,b).

With the same assumptions, we have the following reverse of the second inequal-
ity in the Hermite-Hadamard result as well [§]

(4.2) ng();f _a/f
for any «, 8 € [a,b] with a # 8

[ (B) = ()] (B =),

1
8
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Theorem 6. Assume that f : [a,b] — R is continuous convex on [a,b] and differ-
entiable on (a,b). Then

4y 05w -7 () {0 @ aro-o) (o- 5
and
) 0 < HEF2ZDEIE gy ) < 117 0) - 1 a0 0] (- 25

for any x € [a,b].
Moreover, we have the integral inequalities

(4.5) 0<7/ S (a dm—f(a;_b>

g;[f( e ] ARCEF A

b—a/ f(z da:f—/ Sy (x)dx

_1[sw
2[ HO L e dx]_w L) - Sy @] ().

Proof. The inequalities (4.3) and (4.4) follow by (4.1) and (4.2) for @« = z and
B=a+b—uzx.
Now, observe that

/ub (+- 52 )alf @+ fla =)

= [f(@)+ f(a+b—)] (x_a;b>

and

(46) 0<

b
—/ [F(2)+ f(atb—a)do

a

a+b

[f(b”f(“”(b > >[f(a)+f(b)]<a“;b)

—/ [f () + f(a+b— )| do

b
~F O+ f@ -0 -2 [ f@)d
then by integrating (4.3) and (4.4) we deduce the second inequalities in (4.5) and
(4.6). The last part is obvious by (4.1) and (4.2). O
5. SOME EXAMPLES

If we consider the function f_; : [a,b] C (0,00) = R, f_1 (t) = 1, then

L' (a+b—=,2) if z € [a, %) U (452,0]
Spa )-:{

— . a+b
A7 (a,b) if z = 42,
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and by (4.3) and (4.4) we get

1 a+b a+b 2
51) 0< L7t a+b—2x,x —A7! a,b) < < )(m— )
and
a+b 1
. L b—
(5:2) 072x(a+b—x) (a+b—z,2)

for any x € [a,b].
From (4.5) and (4.6) we also have

1 b
(5.3) ogb_a/ LY (a+b—z,z)de— A" (a,b)
1 _ _ 1b+a
§§[H (a,b) — L7 (a,b)] gﬁw(b—af
and
1 b
(5.4) OgLil(a,b)fb /Lil(aerfa:,:c)dx
“a ),
1, _ 1b+a
<5 [H 7 ab) - L7 (ah)] < o (- a)”.

-

0 :[a,b] C (0,00) = R, f_q(t) =Int, we have
Inl(a+b—=z,z) ifz e [a,‘%”’)U(%”ﬂb],
Sfo( )=

In(A(a,b)) if z = %2,

and by (4.3) and (4.4) for the concave function f_o (t) = Int we get

For the function

(5.5) 0<InA(a,b)—Inl(a+b—=z,zx)< L (za+b>2
2z (a+b—2x) 2

and

(5.6) 0<Inl(a+b—z,z) —InG(a+b—=z,x)

2
< 1 x_a+b
~2x(a+b—2x) 2

for any z € [a,b].

From (4.5) and (4.6) we also have

1 b
(5.7) OglnA(a,b)—m/ Inl(a+b—x,x)dx
<Ly -ma@y) < —— - a)?
< 5[l nG(a,b)] < e a
and
1 b
(5.8) Oglnl(a,b)—m/ Inl(a+b—z,x)de
< Ilnl(a,b) -G (a,b) < — (b—a)?
< 5[l nG(a,b)] < o a)’.



16 S.S. DRAGOMIRY2

REFERENCES

[1] P. Cerone and S. S. Dragomir, Trapezoidal type rules from an inequalities point of view,
Handbook of analytic-computational methods in applied mathematics, 65-134, Chapman &
Hall/CRC, Boca Raton, FL, 2000. Preprint RGMIA Res. Rep. Coll. 2 (1999), No. 6, Art. 8.
[Online http://rgmia.org/papers/v2n6/TrapRulesIneqRep.pdf].

[2] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull.
Austral. Math. Soc. 60 (1999), No. 3, 495-508.

[3] S. S. Dragomir, The Ostrowski’s integral inequality for Lipschitzian mappings and applica-
tions. Comput. Math. Appl. 38 (1999), no. 11-12, 33-37. Preprint Preprint RGMIA Res. Rep.
Coll. 2 (1999), No. 1, Art. 11. [Online http://rgmia.org/papers/v2nl/v2nl-11.pdf].

[4] S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose deriv-
atives belong to Li[a,b] and applications in numerical integration. J. Comput. Anal. Appl.
3 (2001), no. 4, 343-360. Preprint RGMIA Res. Rep. Coll. 2 (1999), No. 3, Art. 7. [Online
http://rgmia.org/papers/v2n3/in3ams.pdf] .

[5] S. S. Dragomir, A generalization of the Ostrowski integral inequality for mappings whose
derivatives belong to Lp[a, b] and applications in numerical integration. J. Math. Anal. Appl.
255 (2001), no. 2, 605-626.

[6] S. S. Dragomir, On the Ostrowski’s integral inequality for mappings with bounded variation
and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint RGMIA Res. Rep. Coll.
2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2nl/v2nl-7.pdf].

[7] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex
functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure
Appl. Math. 3 (2002), No. 2, Article 31, 8 pp.

[8] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex
functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure
Appl. Math. 3 (2002), No. 3, Article 35, 8 pp.

[9] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent re-
sults, Austr. J. Math. Anal. & Appl., 14 (2017), Issue 1, Article 1, pp. 1-287. [Online
http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].

[10] S. S. Dragomir, Y. J. Cho and S. S. Kim, Inequalities of Hadamard’s type for Lipschitzian
mappings and their applications, J. Math. Anal. Appl. 245 (2000), 489-501.

[11] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard In-
equalities and Applications, RGMIA Monographs, Victoria University, 2000. [Online
http://rgmia.org/monographs/hermite_hadamard.html] .

[12] S. S. Dragomir and S. Wang, A new inequality of Ostrowski’s type in Li-norm and applica-
tions to some special means and to some numerical quadrature rules, Tamkang J. of Math.,
28 (1997), 239-244.

[13] M. Mati¢ and J. Pecari¢, Note on inequalities of Hadamard’s type for Lipschitzian mappings.
Tamkang J. Math. 32 (2001), no. 2, 127-130.

IMATHEMATICS, SCHOOL OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
MELBOURNE CiTty, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL
OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE
BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





