
AN AVERAGING INTEGRAL TRANSFORM AND ITS
PROPERTIES

S. S. DRAGOMIR1;2

Abstract. For a Lebesgue integrable function f : [a; b] ! C we de�ne the
averaging transform Sf : [a; b]! R by

Sf (x) :=

8>><>>:
1

a+b�2x
R a+b�x
x f (t) dt if x 2

h
a; a+b

2

�
[
�
a+b
2
; b
i
;

f
�
a+b
2

�
if x = a+b

2
:

In this paper we investigate several properties of the transform Sf concerning
di¤erentiability, monotonicity and convexity. Midpoint and trapezoid type
inequalities for the transform Sf and its integral mean

1
b�a

R b
a Sf (x) dx are

obtained. Applications for some integral means of interest are also provided.

1. Introduction

For a Lebesgue integrable function f : [a; b] ! C we de�ne the averaging trans-
form Sf : [a; b]! R by

(1.1) Sf (x) :=

8<:
1

a+b�2x
R a+b�x
x

f (t) dt if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;

f
�
a+b
2

�
if x = a+b

2 :

If we denote F (x) :=
R x
a
f (t) dt then

Sf (x) =
F (a+ b� x)� F (x)

a+ b� 2x
for x 2

�
a; a+b2

�
[
�
a+b
2 ; b

�
: Since a point a continuity for f in (a; b) is a point

a di¤erentiability for F; hence if we assume that f is continuous in a+b
2 , then by

L�Hospital�s rule we have limx! a+b
2
Sf (x) = f

�
a+b
2

�
; which shows that Sf is also

continuous in a+b
2 :

We observe also that Sf (a+ b� x) = Sf (x) for any x 2 [a; b] ; namely Sf is
symmetrical in the interval [a; b] :
The following inequality is well known in literature as the Hermite-Hadamard

inequality for the convex function h : [a; b]! R

(HH) h

�
�+ �

2

�
� 1

� � �

Z �

�

h (s) ds � h (�) + h (�)

2

for any �; � 2 [a; b] with � 6= �: For a large collection of inequalities related to this
result see [11], [9] and the references therein.
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So, if f : [a; b] ! R is a convex function on [a; b], then by the (HH) inequality
we have the following inequality for the transform Sf

(1.2) f

�
a+ b

2

�
� Sf (x) �

f (a+ b� x) + f (x)
2

for any x 2 [a; b] :
If we take the integral mean 1

b�a
R b
a
in (1.2) we also have

(1.3) f

�
a+ b

2

�
� 1

b� a

Z b

a

Sf (x) dx �
1

b� a

Z b

a

f (x) dx

that provides a re�nement of the second inequality in the (HH) inequality.
If we consider Bullen�s inequality [11, p. 2] for the convex function h : [a; b]! R

that shows that the middle term in (HH) is closer to the left term than to the right
term, namely

(B) 0 � 1

� � �

Z �

�

h (s) ds� h
�
�+ �

2

�
� h (�) + h (�)

2
� 1

� � �

Z �

�

h (s) ds

for any �; � 2 [a; b] with � 6= �; then we obtain that

(1.4) 0 � Sf (x)� f
�
a+ b

2

�
� f (a+ b� x) + f (x)

2
� Sf (x)

for any x 2 [a; b] : Moreover, if we take the integral mean in (1.4), then we get

0 � 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

�
(1.5)

� 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx:

Some natural examples for Sf are provided by integral means. Let us recall the
following means :

(1) The logarithmic mean:

L = L (a; b) :=

8><>:
a if a = b

b� a
ln b� ln a if a 6= b

a; b > 0;

(2) The identric mean:

I := I (a; b) =

8>><>>:
a if a = b

1

e

�
bb

aa

� 1
b�a

if a 6= b
a; b > 0;

(3) The p-logarithmic mean:

Lp = Lp (a; b) :=

8>><>>:
�
bp+1 � ap+1
(p+ 1) (b� a)

� 1
p

if a 6= b;

a if a = b

where p 2 Rn f�1; 0g and a; b > 0:
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It is well known that Lp is monotonic nondecreasing over p 2 R with L�1 := L
and L0 := I:
In particular, we have the inequalities

(1.6) H � G � L � I � A;

where the arithmetic mean is

A = A (a; b) :=
a+ b

2
; a; b � 0;

the geometric mean is

G = G (a; b) :=
p
ab; a; b � 0;

and the harmonic mean is

H = H (a; b) :=
2

1

a
+
1

b

; a; b > 0:

If we consider the function f�1 : [a; b] � (0;1)! R, f�1 (t) = 1
t ; then

Sf�1 (x) :=

8><>:
1

a+b�2x
R a+b�x
x

1
t dt if x 2

�
a; a+b2

�
[
�
a+b
2 ; b

�
;

�
a+b
2

��1
if x = a+b

2 ;

=

8<: L�1 (a+ b� x; x) if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;

A�1 (a; b) if x = a+b
2 :

For the function f0 : [a; b] � (0;1)! R, f�0 (t) = ln t; we have

Sf0 (x) :=

8<:
1

a+b�2x
R a+b�x
x

ln tdt if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;

ln
�
a+b
2

�
if x = a+b

2 ;

=

8<: ln I (a+ b� x; x) if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;

ln (A (a; b)) if x = a+b
2 :

Also, for the function fp : [a; b] � (0;1) ! R, f�0 (t) = tp; where p 6= 0;�1 we
have

Sfp (x) :=

8<:
1

a+b�2x
R a+b�x
x

tpdt if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;�

a+b
2

�p
if x = a+b

2

=

8<:
Lpp (a+ b� x; x) if x 2

�
a; a+b2

�
[
�
a+b
2 ; b

�
;

Ap (a; b) if x = a+b
2 :

Motivated by the above facts, we investigate in the following several properties
of the transform Sf concerning di¤erentiability, monotonicity and convexity. Mid-
point and trapezoid type inequalities for the transform Sf and its integral mean
1
b�a

R b
a
Sf (x) dx are obtained. Applications for some integral means of interest are

also provided.
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2. General Results

The following result concerning the di¤erentiability of the transform Sf holds.

Theorem 1. Assume that f : [a; b]! C is continuous on [a; b] ; then Sf is di¤er-
entiable on

�
a; a+b2

�
[
�
a+b
2 ; b

�
and

(2.1) S0f (x) =
2

a+ b� 2x

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
for any x 2

�
a; a+b2

�
[
�
a+b
2 ; b

�
:

If f has �nite lateral derivatives f 0+
�
a+b
2

�
and f 0�

�
a+b
2

�
; then Sf has lateral

derivatives in a+b
2 and

(2.2) S0f+

�
a+ b

2

�
=
1

2

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
= �S0f�

�
a+ b

2

�
:

Moreover, if f is di¤erentiable in a+b
2 then Sf is di¤erentiable in a+b

2 and S0f
�
a+b
2

�
=

0:

Proof. By the continuity of f on [a; b] we have that Sf is di¤erentiable on
�
a; a+b2

�
[�

a+b
2 ; b

�
and

S0f (x) =
F (a+ b� x)� F (x)

a+ b� 2x

=
(F 0 (a+ b� x)� F 0 (x)) (a+ b� 2x) + 2 (F (a+ b� x)� F (x))

(a+ b� 2x)2

=
(�f (a+ b� x)� f (x)) (a+ b� 2x) + 2 (F (a+ b� x)� F (x))

(a+ b� 2x)2

=
2 (F (a+ b� x)� F (x))

(a+ b� 2x)2
� f (a+ b� x) + f (x)

a+ b� 2x

=
2

a+ b� 2x

�
F (a+ b� x)� F (x)

a+ b� 2x � f (a+ b� x) + f (x)
2

�
for any x 2

�
a; a+b2

�
[
�
a+b
2 ; b

�
; which proves the equality (2.1).

From (2.1) for x > a+b
2 we have

S0f (x)(2.3)

= 2

"
Sf (x)� f

�
a+b
2

�
a+ b� 2x �

f (a+ b� x)� f
�
a+b
2

�
+ f (x)� f

�
a+b
2

�
2 (a+ b� 2x)

#
:

By the continuity of S0f on
�
a+b
2 ; b

�
and Lagrange�s mean value theorem we have

lim
x! a+b

2 +

Sf (x)� f
�
a+b
2

�
a+ b� 2x = �1

2
lim

x! a+b
2 +

Sf (x)� f
�
a+b
2

�
x� a+b

2

= �1
2

lim
x! a+b

2 +
S0f (x) :
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Also

lim
x! a+b

2 +

f (a+ b� x)� f
�
a+b
2

�
a+ b� 2x =

1

2
lim

x! a+b
2 +

f
�
a+b
2 + a+b

2 � x
�
� f

�
a+b
2

�
a+b
2 � x

=
1

2
lim
h!0+

f
�
a+b
2 � h

�
� f

�
a+b
2

�
�h

=
1

2
lim
s!0�

f
�
a+b
2 + s

�
� f

�
a+b
2

�
s

=
1

2
f 0�

�
a+ b

2

�
and

lim
x! a+b

2 +

f (x)� f
�
a+b
2

�
a+ b� 2x =

1

2
lim

x! a+b
2 +

f (x)� f
�
a+b
2

�
a+b
2 � x

= �1
2

lim
x! a+b

2 +

f (x)� f
�
a+b
2

�
x� a+b

2

= �1
2
f 0+

�
a+ b

2

�
:

Denote `r := limx! a+b
2 + S

0
f (x) : Then by taking the limit over x! a+b

2 + in the
equality (2.3) we get

`r = 2

�
�1
2
`r �

1

2
f 0�

�
a+ b

2

�
+
1

2
f 0+

�
a+ b

2

��
namely

2`r = f
0
+

�
a+ b

2

�
� f 0�

�
a+ b

2

�
;

which implies that

`r =
1

2

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
:

From (2.1) for x < a+b
2 we have

S0f (x)(2.4)

= 2

"
Sf (x)� f

�
a+b
2

�
a+ b� 2x �

f (a+ b� x)� f
�
a+b
2

�
+ f (x)� f

�
a+b
2

�
2 (a+ b� 2x)

#
:

By the continuity of S0f on
�
a; a+b2

�
and Lagrange�s mean value theorem we have

lim
x! a+b

2 �

Sf (x)� f
�
a+b
2

�
a+ b� 2x = �1

2
lim

x! a+b
2 �

Sf (x)� f
�
a+b
2

�
x� a+b

2

= �1
2

lim
x! a+b

2 �
S0f (x) :

Also

lim
x! a+b

2 �

f (a+ b� x)� f
�
a+b
2

�
a+ b� 2x =

1

2
lim

x! a+b
2 �

f
�
a+b
2 + a+b

2 � x
�
� f

�
a+b
2

�
a+b
2 � x

=
1

2
lim
h!0+

f
�
a+b
2 + h

�
� f

�
a+b
2

�
h

=
1

2
f 0+

�
a+ b

2

�



6 S. S. DRAGOMIR1;2

and

lim
x! a+b

2 �

f (x)� f
�
a+b
2

�
a+ b� 2x =

1

2
lim

x! a+b
2 �

f (x)� f
�
a+b
2

�
a+b
2 � x

= �1
2

lim
x! a+b

2 �

f (x)� f
�
a+b
2

�
x� a+b

2

= �1
2
f 0�

�
a+ b

2

�
:

Denote `s := limx! a+b
2 � S

0
f (x) : Then by taking the limit over x ! a+b

2 � in the
equality (2.4) we get

`s = 2

�
�1
2
`s �

1

2
f 0+

�
a+ b

2

�
+
1

2
f 0�

�
a+ b

2

��
namely

2`r = f
0
�

�
a+ b

2

�
� f 0+

�
a+ b

2

�
;

which implies

`r =
1

2

�
f 0�

�
a+ b

2

�
� f 0+

�
a+ b

2

��
:

�

The following corollary is of interest:

Corollary 1. Assume that f : [a; b]! R is continuous and convex on [a; b] ; then Sf
is non-increasing on

�
a; a+b2

�
and non-decreasing on

�
a+b
2 ; b

�
: Sf is di¤erentiable

on
�
a; a+b2

�
[
�
a+b
2 ; b

�
and has the lateral derivatives

(2.5) S0f+

�
a+ b

2

�
=
1

2

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
= �S0f�

�
a+ b

2

�
:

Moreover, if f is di¤erentiable in a+b
2 then Sf is di¤erentiable in a+b

2 and S0f
�
a+b
2

�
=

0:

Proof. We know from Hermite-Hadamard inequality that, if f : [a; b]! R is convex
on [a; b] ; then

1

� � �

Z �

�

f (s) ds � f (�) + f (�)

2

for any �; � 2 [a; b] with � 6= �:
Therefore

Sf (x)�
f (a+ b� x) + f (x)

2
� 0

for any x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
:

Using the equality (2.1) we then get S0f (x) � 0 for any x 2
�
a; a+b2

�
and S0f (x) �

0 for any x 2
�
a+b
2 ; b

�
: �

We have:
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Theorem 2. Assume that f : [a; b] ! C is continuous on [a; b] and di¤erentiable
on (a; b) ; then Sf is twice di¤erentiable on

�
a; a+b2

�
[
�
a+b
2 ; b

�
and

S00f (x) =

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
8

(a+ b� 2x)2
(2.6)

+
f 0 (a+ b� x)� f 0 (x)

a+ b� 2x

for any x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
:

Proof. Since f is di¤erentiable on (a; b) ; then by (2.1) Sf is twice di¤erentiable on�
a; a+b2

�
[
�
a+b
2 ; b

�
and

S00f (x) =

�
Sf (x)�

f (a+ b� x) + f (x)
2

�0
2

a+ b� 2x

+

�
Sf (x)�

f (a+ b� x) + f (x)
2

��
2

a+ b� 2x

�0
=

�
S0f (x)�

f 0 (x)� f 0 (a+ b� x)
2

�
2

a+ b� 2x

+

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
4

(a+ b� 2x)2

=
2

a+ b� 2xS
0
f (x)�

f 0 (x)� f 0 (a+ b� x)
a+ b� 2x

+

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
4

(a+ b� 2x)2

=
2

a+ b� 2x
2

a+ b� 2x

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
� f

0 (x)� f 0 (a+ b� x)
a+ b� 2x

+

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
4

(a+ b� 2x)2

=

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
8

(a+ b� 2x)2

+
f 0 (a+ b� x)� f 0 (x)

a+ b� 2x

for any x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
: �

Corollary 2. Assume that f : [a; b]! R is continuous convex on [a; b] and di¤er-
entiable on (a; b) ; then Sf is convex on [a; b] :

Proof. We know that, see [8], if f : [a; b] ! R is continuous convex on [a; b] and
di¤erentiable on (a; b) then for any �; � 2 [a; b] with � 6= � we have

(2.7) 0 � f (�) + f (�)

2
� 1

� � �

Z �

�

f (s) ds � 1

8
[f 0 (�)� f 0 (�)] (� � �) :
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Therefore, for any x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
we have

0 � f (x) + f (a+ b� x)
2

� 1

a+ b� 2x

Z a+b�x

x

f (s) ds

� 1

8
[f 0 (a+ b� x)� f 0 (x)] (a+ b� 2x) :

Since

S00f (x)

=

�
Sf (x)�

f (a+ b� x) + f (x)
2

�
8

(a+ b� 2x)2
+
f 0 (a+ b� x)� f 0 (x)

a+ b� 2x

=
8

(a+ b� 2x)2

�
�
1

8
[f 0 (a+ b� x)� f 0 (x)] (a+ b� 2x)�

�
f (a+ b� x) + f (x)

2
� Sf (x)

�
� 0

for any x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
; we conclude that Sf is convex on both intervals�

a; a+b2
�
and

�
a+b
2 ; b

�
: Since Sf is continuous on [a; b] and S0f

�
a+b
2

�
= 0; it follows

that Sf is convex on the whole interval [a; b] : �

3. Midpoint and Trapezoid Type Inequalities

We use the following convention for the total variation of a function in the case
when b < a;

(3.1)
b_
a

(f) := �
a_
b

(f)

provided the function f is of bounded variation in the classical sense.
We also consider the Cumulative Variation Function (CVF) Vf : [a; b]! [0;1)

de�ned by

Vf (x) =
x_
a

(f) ; x 2 [a; b] :

It is know that the CVF is monotonic nondecreasing on [a; b] and is continuous in
a point c 2 [a; b] if and only if the generating function f is continuing in that point.
If f is Lipschitzian with the constant L > 0; i.e.

jf (t)� f (s)j � L jt� sj for any t; s 2 [a; b];
then Vf is also Lipschitzian with the same constant.
We have the following result for functions of bounded variation.

Theorem 3. Let f : [a; b]! C be a function of bounded variation on [a; b] : Then

(3.2)

����Sf (x)� f �a+ b2
����� � 1

2

�����
a+b�x_
x

(f)

����� � 1

2

b_
a

(f)

and

(3.3)

����f (a+ b� x) + f (x)2
� Sf (x)

���� � 1

2

�����
a+b�x_
x

(f)

����� � 1

2

b_
a

(f)
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for any x 2 [a; b] :

Proof. We use the following midpoint and trapezoid inequalities for functions of
bounded variation h : [�; �]! C [2] (see also [6])

(3.4)

����� 1

� � �

Z �

�

h (s) ds� h
�
�+ �

2

������ � 1

2

�_
�

(h)

and

(3.5)

�����h (�) + h (�)2
� 1

� � �

Z �

�

h (s) ds

����� � 1

2

�_
�

(h) ;

where
W�
� (h) is the total variation of h on the interval [�; �] : The constant

1
2 is

best possible in (3.4) and (3.5).
Let x 2

�
a; a+b2

�
[
�
a+b
2 ; b

�
; then by (3.4), (3.5) and using the convention (3.1)

we have

(3.6)

����Sf (x)� f �a+ b2
����� � 1

2

�����
a+b�x_
x

(f)

�����
and

(3.7)

����f (a+ b� x) + f (x)2
� Sf (x)

���� � 1

2

�����
a+b�x_
x

(f)

����� :
These inequalities become identities if we take x = a+b

2 :
We observe that

a+b�x_
x

(f) = Vf (a+ b� x)� Vf (x)

for x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
and since Vf is nondecreasing on [a; b] we have

Vf (a)� Vf (b) � Vf (a+ b� x)� Vf (x) � Vf (b)� Vf (a) ;

namely
���Wa+b�xx (f)

��� � bW
a
(f) and the theorem is proved. �

Remark 1. Let f : [a; b] ! C be a function of bounded variation on [a; b] : If we
take the integral mean in the inequalities (3.2) and (3.3) and use the property of
modulus, we get����� 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

������ � 1

2 (b� a)

Z b

a

�����
a+b�x_
x

(f)

����� dx(3.8)

� 1

2

b_
a

(f)

and ����� 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx

����� � 1

2 (b� a)

Z b

a

�����
a+b�x_
x

(f)

����� dx(3.9)

� 1

2

b_
a

(f) :



10 S. S. DRAGOMIR1;2

Corollary 3. Let f : [a; b] ! C be a function of bounded variation on [a; b] and
such that the CVF is Lipschitzian with the constant K > 0; then

(3.10)

����Sf (x)� f �a+ b2
����� � 1

2

�����
a+b�x_
x

(f)

����� � K
����x� a+ b2

����
and

(3.11)

����f (a+ b� x) + f (x)2
� Sf (x)

���� � 1

2

�����
a+b�x_
x

(f)

����� � K
����x� a+ b2

����
for any x 2 [a; b] :

Remark 2. Let f : [a; b]! C be as in Corollary 3. If we take the integral mean in
the inequalities (3.10) and (3.11) and use the property of modulus, then we get����� 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

������ � 1

2 (b� a)

Z b

a

�����
a+b�x_
x

(f)

����� dx(3.12)

� 1

4
K (b� a)

and ����� 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx

����� � 1

2 (b� a)

Z b

a

�����
a+b�x_
x

(f)

����� dx(3.13)

� 1

4
K (b� a) :

For absolutely continuous functions h : [�; �]! C we have the following midpoint
inequality [12]

(3.14)

����� 1

� � �

Z �

�

h (s) ds� h
�
�+ �

2

������ � 1

2

Z �

�

jh0 (s)j ds

and the trapezoid inequality [4]

(3.15)

�����h (�) + h (�)2
� 1

� � �

Z �

�

h (s) ds

����� � 1

2

Z �

�

jh0 (s)j ds:

The constant 12 is best possible in (3.14) and (3.15).
Then, by a similar argument to the one in Theorem 3 we have from (3.14) and

(3.15) the inequalities

(3.16)

����Sf (x)� f �a+ b2
����� � 1

2

�����
Z a+b�x

x

jf 0 (s)j ds
����� � 1

2

Z b

a

jf 0 (s)j ds

and

(3.17)

����f (a+ b� x) + f (x)2
� Sf (x)

���� � 1

2

�����
Z a+b�x

x

jf 0 (s)j ds
����� � 1

2

Z b

a

jf 0 (s)j ds

for any x 2 [a; b] :
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These imply by integration����� 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

������(3.18)

� 1

2 (b� a)

Z b

a

�����
Z a+b�x

x

jf 0 (s)j ds
����� dx � 1

2

Z b

a

jf 0 (s)j ds

and ����� 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx

�����(3.19)

� 1

2 (b� a)

Z b

a

�����
Z a+b�x

x

jf 0 (s)j ds
����� dx � 1

2

Z b

a

jf 0 (s)j ds:

If the function h : [�; �] ! C is Lipschitzian with the constant L > 0, then we
have the midpoint inequality [10] and [3]

(3.20)

����� 1

� � �

Z �

�

h (s) ds� h
�
�+ �

2

������ � 1

4
L (� � �)

and the trapezoid inequality [1] and [13]

(3.21)

�����h (�) + h (�)2
� 1

� � �

Z �

�

h (s) ds

����� � 1

4
L (� � �) :

The constant 14 is best possible in (3.20) and (3.21).

Theorem 4. Let f : [a; b]! C be a Lipschitzian function with the constant L > 0
on [a; b] : Then

(3.22)

����Sf (x)� f �a+ b2
����� � 1

2
L

����x� a+ b2
����

and

(3.23)

����f (a+ b� x) + f (x)2
� Sf (x)

���� � 1

2
L

����x� a+ b2
����

for any x 2 [a; b] :
Moreover, we have the integral inequalities

(3.24)

����� 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

������ � 1

8
L (b� a)

and

(3.25)

����� 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx

����� � 1

8
L (b� a) :
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Proof. If x 2
�
a; a+b2

�
, then by (3.20) for � = x and � = a+ b� x we have����� 1

a+ b� 2x

Z a+b�x

x

f (t) dt� f
�
a+ b

2

������ � 1

4
L (a+ b� x� x)(3.26)

=
1

2
L

�
a+ b

2
� x
�

=
1

2
L

����x� a+ b2
����

and by (3.21) for � = x and � = a+ b� x we have

(3.27)

�����h (x) + h (a+ b� x)2
� 1

a+ b� 2x

Z a+b�x

x

f (t) dt

����� � 1

2
L

����x� a+ b2
���� :

We observe that, if x 2
�
a+b
2 ; b

�
then by taking � = a+ b� x and � = x in (3.20)

and (3.21) we obtain the same inequalities (3.26) and (3.27).
Finally, x = a+b

2 produces equality in (3.22) and (3.23).
The inequalities (3.24) and (3.25) follow by integrating (3.22) and (3.23) and

taking into account that

1

b� a

Z b

a

����x� a+ b2
���� dx = 1

4
(b� a) :

�

We observe that if the function f : [a; b] ! C is absolutely continuous and
f 0 2 L1 [a; b] ; namely f 0 is essentially bounded on [a; b] then f is Lipschitzian with
the constant

L = kf 0k1;[a;b] := essup
t2[a;b]

jf 0 (t)j <1

and the inequalities in (3.22)-(3.25) may be stated with kf 0k1;[a;b] instead of L:
If the function h : [�; �]! C is absolutely continuous and h0 2 Lp [�; �] ; p > 1;

namely

kh0kp;[�;�] :=
 Z �

�

jh0 (s)jp ds
!1=p

<1;

then we have the following midpoint and trapezoid inequalities [5]

(3.28)

����� 1

� � �

Z �

�

h (s) ds� h
�
�+ �

2

������ � 1

2 (q + 1)
1=q

(� � �)1=q kh0kp;[�;�]

and

(3.29)

�����h (�) + h (�)2
� 1

� � �

Z �

�

h (s) ds

����� � 1

2 (q + 1)
1=q

(� � �)1=q kh0kp;[�;�] ;

where p; q > 1 and 1
p +

1
q = 1:

Using these inequalities we have:
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Theorem 5. Let f : [a; b] ! C be an absolutely continuous function on [a; b] :
Assume that f 0 2 Lp [�; �] ; p > 1 and let q > 1 with 1

p +
1
q = 1; then

(3.30)

����Sf (x)� f �a+ b2
����� � 1

21=p (q + 1)
1=q

����x� a+ b2
����1=q kf 0kp;[a;b]

and

(3.31)

����f (a+ b� x) + f (x)2
� Sf (x)

���� � 1

21=p (q + 1)
1=q

����x� a+ b2
����1=q kf 0kp;[a;b]

for any x 2 [a; b] :
Moreover, we have the integral inequalities

(3.32)

����� 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

������ � q

2 (q + 1)
1=q+1

(b� a)1=q kf 0kp;[a;b]

and

(3.33)

����� 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx

�����
� q

2 (q + 1)
1=q+1

(b� a)1=q kf 0kp;[a;b] :

Proof. The proof of (3.30) and (3.31) follow by (3.28) and (3.29) by employing a
similar argument to the one from the proof of Theorem 4.
Taking the integral in (3.30) and (3.31) and observing that

1

b� a

Z b

a

����x� a+ b2
����1=q dx = 2

b� a

Z b

a+b
2

�
x� a+ b

2

�1=q
dx

=
2

b� a

�
b�a
2

�1=q+1
1=q + 1

=
q (b� a)1=q

21=q (q + 1)
;

we deduce the desired results (3.32) and (3.33). �

4. Further Results for Convex Functions

In [7] we established the following reverse of the �rst inequality in the Hermite-
Hadamard result. This can be stated as

(4.1) 0 � 1

� � �

Z �

�

f (s) ds� f
�
�+ �

2

�
� 1

8
[f 0 (�)� f 0 (�)] (� � �) ;

for any �; � 2 [a; b] with � 6= �, provided that f : [a; b] ! R is continuous convex
on [a; b] and di¤erentiable on (a; b) :
With the same assumptions, we have the following reverse of the second inequal-

ity in the Hermite-Hadamard result as well [8]

(4.2) 0 � f (�) + f (�)

2
� 1

� � �

Z �

�

f (s) ds � 1

8
[f 0 (�)� f 0 (�)] (� � �) ;

for any �; � 2 [a; b] with � 6= �
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Theorem 6. Assume that f : [a; b] ! R is continuous convex on [a; b] and di¤er-
entiable on (a; b) : Then

(4.3) 0 � Sf (x)� f
�
a+ b

2

�
� 1

4
[f 0 (x)� f 0 (a+ b� x)]

�
x� a+ b

2

�
and

(4.4) 0 � f (a+ b� x) + f (x)
2

� Sf (x) �
1

4
[f 0 (x)� f 0 (a+ b� x)]

�
x� a+ b

2

�
for any x 2 [a; b] :
Moreover, we have the integral inequalities

0 � 1

b� a

Z b

a

Sf (x) dx� f
�
a+ b

2

�
(4.5)

� 1

2

"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (x) dx

#
� 1

16

�
f 0� (b)� f 0+ (a)

�
(b� a)

and

0 � 1

b� a

Z b

a

f (x) dx� 1

b� a

Z b

a

Sf (x) dx(4.6)

� 1

2

"
f (a) + f (b)

2
� 1

b� a

Z b

a

f (x) dx

#
� 1

16

�
f 0� (b)� f 0+ (a)

�
(b� a) :

Proof. The inequalities (4.3) and (4.4) follow by (4.1) and (4.2) for � = x and
� = a+ b� x:
Now, observe thatZ b

a

�
x� a+ b

2

�
d [f (x) + f (a+ b� x)]

= [f (x) + f (a+ b� x)]
�
x� a+ b

2

�����b
a

�
Z b

a

[f (x) + f (a+ b� x)] dx

= [f (b) + f (a)]

�
b� a+ b

2

�
� [f (a) + f (b)]

�
a� a+ b

2

�
�
Z b

a

[f (x) + f (a+ b� x)] dx

= [f (b) + f (a)] (b� a)� 2
Z b

a

f (x) dx;

then by integrating (4.3) and (4.4) we deduce the second inequalities in (4.5) and
(4.6). The last part is obvious by (4.1) and (4.2). �

5. Some Examples

If we consider the function f�1 : [a; b] � (0;1)! R, f�1 (t) = 1
t ; then

Sf�1 (x) :=

8<: L�1 (a+ b� x; x) if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;

A�1 (a; b) if x = a+b
2 ;
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and by (4.3) and (4.4) we get

(5.1) 0 � L�1 (a+ b� x; x)�A�1 (a; b) � 1

(a+ b� x)2 x2

�
a+ b

2

��
x� a+ b

2

�2
and

0 � a+ b

2x (a+ b� x) � L
�1 (a+ b� x; x)(5.2)

� 1

(a+ b� x)2 x2

�
a+ b

2

��
x� a+ b

2

�2
for any x 2 [a; b] :
From (4.5) and (4.6) we also have

0 � 1

b� a

Z b

a

L�1 (a+ b� x; x) dx�A�1 (a; b)(5.3)

� 1

2

�
H�1 (a; b)� L�1 (a; b)

�
� 1

16

b+ a

a2b2
(b� a)2

and

0 � L�1 (a; b)� 1

b� a

Z b

a

L�1 (a+ b� x; x) dx(5.4)

� 1

2

�
H�1 (a; b)� L�1 (a; b)

�
� 1

16

b+ a

a2b2
(b� a)2 :

For the function f0 : [a; b] � (0;1)! R, f�0 (t) = ln t; we have

Sf0 (x) =

8<: ln I (a+ b� x; x) if x 2
�
a; a+b2

�
[
�
a+b
2 ; b

�
;

ln (A (a; b)) if x = a+b
2 ;

and by (4.3) and (4.4) for the concave function f�0 (t) = ln t we get

(5.5) 0 � lnA (a; b)� ln I (a+ b� x; x) � 1

2x (a+ b� x)

�
x� a+ b

2

�2
and

0 � ln I (a+ b� x; x)� lnG (a+ b� x; x)(5.6)

� 1

2x (a+ b� x)

�
x� a+ b

2

�2
for any x 2 [a; b] :
From (4.5) and (4.6) we also have

0 � lnA (a; b)� 1

b� a

Z b

a

ln I (a+ b� x; x) dx(5.7)

� 1

2
[ln I (a; b)� lnG (a; b)] � 1

16ab
(b� a)2

and

0 � ln I (a; b)� 1

b� a

Z b

a

ln I (a+ b� x; x) dx(5.8)

� 1

2
[ln I (a; b)� lnG (a; b)] � 1

16ab
(b� a)2 :
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