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Abstract

We establish a characterization for the class of multivalued nonexpansive mappings

with nonempty fixed point-sets as an extension of the well known Nadler’s contrac-

tion mapping principle to multivalued nonexpansive mappings in Banach spaces. Our

results also establish a fixed point property of Banach spaces for a wide class of con-

tractive operators in Banach spaces.
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1 Introduction

The popular Nadler’s [6] fixed point result for multivalued contractions states that if a

multivalued operator T from a complete metric space (X, d) into the collection CB(X) of

its closed bounded subsets satisfies the condition

H(Tx, Ty) ≤ Ld(x, y); L ∈ (0, 1), (1)

then the fixed point-set Fix(T ) of T is not empty. Here, we recall the Hausdorff metric

H(A,B), (induced by the metric d), on a the collection CB(X)×CB(X) of nonempty closed
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bounded subsets of a metric space (X, d) defined as follows:

H(A,B) = max{sup
x∈A

D(x,B), sup
y∈B

D(y,A)}; A,B ∈ CB(X) (2)

where D(x,B) is given by

D(x,B) = inf{d(x, y) : y ∈ B} (3)

In normed linear spaces (3) takes the form

D(x,B) = inf{‖x− y‖ : y ∈ B}. (4)

Nadler’s contraction theorem has so many extensions (see [1, 2] and the references there-

in), based on modifications of the contractive condition (1), among which a result due to

M. Berinde and V. Berinde [3] concerning fixed points of multivalued almost contractions,

is of interest in this praxis.

Definition 1 [3]Let (X, d) be a metric space T : X −→ P(X) be multivalued operetor. T

is said to be a multivalued (δ, L)−weak contraction if and only if there exist δ ∈ (0, 1) and

L ≥ 0 such that

H(Tx, Ty) ≤ δd(x, y) + LD(y, Tx). (5)

Following [4] (δ, L)−weak contractions are called almost contractions. M. Berinde and V.

Berinde [3] showed that multivalued almost contractions defined on a complete metric spaces

have nonempty fixed point-sets. They also used many important examples to illustrate

that the almost contraction condition (5) generalizes the Nadler’s condition (1) and many

others. We desire to obtain further extension of Nadler’s result and several of its extensions

via applications of the result in [3] mentioned above. In particular, we use a fixed point

property of Banach spaces to characterize a class of nonexpansive mappings for which the

following condition is satisfied:

D(y, Tx) ≤M‖x− y‖ (6)

for some constant M ≥ 1 and all distinct elements x and y in a certain open subset of a

Banach space.

The following lemma proves invaluable in the sequel:

Lemma 2 [10] Let A and B be subsets of a metric space (X, d) and q > 1. Then for every

a ∈ A there exists an element b ∈ B such that

d(a, b) ≤ qH(A,B) (7)

Other interesting metrical studies of fixed points of multivalued operators can be found in

[7, 5, 10, 8, 9].
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2 Main Results

We shall prove a characterization of a class of multivalued nonexpansive mappings by a fixed

point property of arbitrary Banach spaces (with respect to this class). Specifically we shall

prove the following result:

Theorem 3 Let K be a closed convex subset of a Banach space E and T : K −→ K a a

multivalued nonexpansive operator. Then T has a fixed point in K if and only if T satisfies

the mixed orbital condition (6) in some open subset K1 ⊂ K and the Krasnoselskii iteration

scheme xn+1 ∈ λxn + (1 − λ)Tnx0, n ≥ 0 converges to a fixed point of T in K; for some

x0 ∈ K1 and y ∈ Tx0 such that x1 = y.

Lemma 4 Let T : V −→ V be a multivalued self-map of a normed linear space V . If T

is such that ‖x − y‖ ≤ D(y, Tx) for any distinct x, y ∈ V satisfying x, y /∈ Fix(T ), then

Tx 6= Ty.

PROOF

Given a multivalued nonexpansive mapping T : V −→ CB(V ) of a normed linear space V

with ‖x − y‖ ≤ D(y, Tx). Let x and y be distinct elements of the normed linear space V

with x, y /∈ Fix(T ).

Let Z be defined by Z = {λx + (1 − λz) : z ∈ Ty}. Clearly, Z is the collection of all

convex combinations of the point x and the elements of the set Ty, and D(y, Z) ≤ D(y, Ty).

It follows that there exists z ∈ Ty such that ‖y − [λx+ (1− λ)z]‖ ≤ ‖y − z‖. It also follow

that when for all λ ∈ [0, 1] the following holds:

‖x− y‖+ λ‖x− z‖ ≤ ‖y − z‖, (8)

then we obtain z = x yielding x ∈ Ty. In this case Ty = Tx leads to the contracdiction

x ∈ Fix(T ). End of proof. �

Lemma 5 Let K be a closed convex subset of a real Banach space E and T : K −→ K a

multivalued nonexpansive mapping. If Fix(T ) 6= ∅, then for any initial guess x0 ∈ K the

multivalued Krasnoselskii iteration scheme xn+1 ∈ λxn + (1 − λ)Txn converges to a fixed

point of T for any λ ∈ (0, 1) and for some y ∈ λx0 + (1− λ)Tx0 such that x1 = y.

PROOF

Let T : K −→ K be a multivalued nonexpansive operator, λ ∈ (0, 1) and z ∈ K fixed, then

the mapping x 7→ λz+(1−λ)Tx, x ∈ K is a multivalued contraction mapping of the convex
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set K into K. In partitcular, given that Fix(T ) 6= ∅, the mapping S∗λ : K −→ K given by

S∗λx = λp+ (1− λ)Tx, p ∈ Fix(T ) is a multivalued contraction and p ∈ Fix(S∗λ).

Observe that the operator S∗λ and the multivalued averaged operator Sλ given by Sλx =

λx+ (1−λ)Tx, x ∈ K (which yields the multivalued Krasnoselskii scheme with initial guess

x) have the following orbital relation:

H(Sλx, Sλy) ≤ λ‖x− y‖+H(S∗λx, S
∗
λy). (9)

Let xn+1 = Sλxn for any x0 ∈ K and for some y ∈ λx0 + (1− λ)Tx0 such that x1 = y and

such that xk ∈ λxk−1 + (1 − λ)Txk−1; k = 1, ..., n. Applying (9) and in view of Lemma 2

choosing q > 1 such that λq < 1 we obtain for n ≥ N ∈ N the following:

H(Sλxn, Sλxn−1) ≤ ‖xn+1 − xn‖ ≤ λ‖xn − xn−1‖+H(S∗λxn, S
∗
λxn−1)

≤ λqH(Sλxn−1, Sλxn−2) +H(S∗λxn, S
∗
λxn−1)

≤ λ2q‖xn−1 − xn−2‖+ λqH(S∗λxn−1, S
∗
λxn−2) +H(S∗λxn, S

∗
λxn−1)

≤ h2‖xn−1 − xn−2‖+ hH(S∗λxn−1, S
∗
λxn−2) +H(S∗λxn, S

∗
λxn−1)

≤ hn‖x1 − x0‖+

n∑
j=1

hn−jH(S∗λxj , S
∗
λxj−1); where h = λq. (10)

It is obvious from (10) that limN→∞H(Sλxn, Sλxn−1) = 0 since S∗λ is known to be a

contraction. Application of (10) yields for n,m ≥ N ∈ N with m = n+ l; l = 0, 1, ...,m−n:

H(Sλxn, Sλxm) ≤
l∑
i=0

hn+i‖x1 − x0‖+

l∑
i=0

n∑
j=1

hn+i−jH(S∗λxj , S
∗
λxj−1)

≤ hn+l

1− h
‖x1 − x0‖+

l∑
i=0

n∑
j=1

hn+i−jH(S∗λxj , S
∗
λxj−1). (11)

By (11) the sequence {Sλxn}∞n=1 generated by the process described above is a Cauchy

sequence in a complete metric space and it is trivial to prove that a fixed point p ∈ Tp is

the limit of the sequence. This completes the proof. �

Theorem 6 Let K be a closed convex subset of a real Banach space E and T : K −→ K a

multivalued nonexpansive mapping. If Fix(T ) 6= ∅, then there exists an open subset K1 ⊂ K
such that T satisfies the condition (6) stated below:

D(y, Tx) ≤ M‖x− y‖

for some M ≥ 1 and for all x, y ∈ K1;x 6= y, x, y /∈ Fix(T ).
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PROOF

If T is such that D(y, Tx) ≤ ‖x − y‖ then the proof is done. On the other hand, given a

closed convex subset K of real Banach space E and T : K −→ K a nonexpansive mapping

with Fix(T ) 6= ∅. Let Y denote the collection of ellements of K satisfying ‖x − y‖ ≤
D(y, Tx), x 6= y, x, y /∈ Fix(T ). We shall derive an open subset K1 ⊂ K in which (6) is

satisfied. For x, y ∈ Y nonexpansiveness of T yields the following:

H(Tx, Ty) ≤ ‖x− y‖ (12)

‖x− y‖ ≤ D(y, Tx)

H(Tx, Ty) ≤ D(y, Tx). (13)

Adding (12) and (13) yields

2H(Tx, Ty) ≤ ‖x− y‖+D(y, Tx)

=⇒ D(y, Tx)−D(y, Ty) ≤ 1

2
‖x− y‖+

1

2
D(y, Tx)

=⇒ D(y, Tx) ≤ ‖x− y‖+ 2D(y, Ty). (14)

Let {xn}∞n=0 be the sequence generated from the multivalued Krasnoselskii iteration scheme

xn+1 ∈ λxn + (1− λ)Txn (for certain λ ∈ (0, 1)) for some x0 ∈ Y and y ∈ λx0 + (1− λ)Tx0

such that x1 = y. It follows from Lemma 5 that for this initial guess x0 ∈ K the sequence

associated with Krasnoselskii iteration {xn}∞n=1 = {Snλx0}∞n=1 converges to a fixed point

of the nonexpansive mapping T since Fix(T ) 6= ∅. Based on Fix(T ) 6= ∅ we set K0 =

Y ∩ {Snλx0}∞n=1 and observe that K0 is a nonempty bounded set. This follows since we can

always find n,m ∈ N such that ‖Snλx0 − Smλ x0‖ ≤ ‖Smλ x0 − S
n+1
λ x0‖ for any x0 ∈ K. By

Lemma 4 Smλ x0 6= Sn+1
λ x0 if x0, Sλx0 /∈ Fix(Sλ). Since Fix(T ) = Fix(Sλ) it follows that

Tmx0 6= Tn+1x0 if x0, Tx0 /∈ Fix(T ).

In this case D(y, Sλy) = infz∈Sλxm{‖xm−z‖} since xk ∈ Skλx0 while ‖x−y‖ ≤ D(y, Tx)

takes the form ‖xn − xm‖ ≤ infz∈Sλxn ‖xm − z‖. Clearly, infz∈Sλxn ‖xm − z‖ ≤ ‖xn − xm‖.
This follows from the fact that the converse condition ‖xn − xm‖ ≤ infz∈Sλxn ‖xm − z‖
implies that n ≥ m for n and m large enough contradicting convergence of the scheme.

This means that D(y, Sλy) ≤ ‖x − y‖ whenever ‖x − y‖ ≤ D(y, Sλx) in K0. This yields

D(y, Ty) +λD(y, Ty) ≤ ‖x− y‖ for all λ ∈ [0, 1]. This holds because K is metrically convex

with respect to the norm of E. Therefore, since λ can be made as small as we please, it also

holds that D(y, Ty) ≤ ‖x− y‖ in K0, so (14) yields D(y, Tx) ≤ 3‖x− y‖ in K0. Let K1 be

the smallest open set in K containing K0 and considering continuity of T we conclude that

condition (6) is satisfied by multivalued nonexpansive mappings T for which Fix(T ) 6= ∅.�
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Theorem 7 Let K be a closed convex subset of a Banach space E and T : K −→ K a

multivalued nonexpansive operator. Suppose there exists an open subset K1 ⊂ K such that

T satisfies the condition below:

D(y, Tx) ≤ M‖x− y‖ (15)

for some M ≥ 1 for all x, y ∈ K1;x 6= y, x, y /∈ Fix(T ). Then T has a fixed point in K and

the Krasnoselskii iteration scheme xn+1 ∈ λxn + (1− λ)Tnx0, n ≥ 0;x0 ∈ K1 converges to

a fixed point of T in K.

Further, condition (15) generalizes Nadler’s contraction condition (1) in Banach spaces.

PROOF

Let Sλ denote the multivalued avearged operator Sλ = λI + (1− λ)T, λ ∈ [0, 1) associated

with the multivalued nonexpansive operator T. Applying (9) we obtain

H(Sλx, Sλy) ≤ D(y, λx+ (1− λ)Tx) +D(y, [λy + (1− λ)Ty])

= D(y, λx+ (1− λ)Tx) +D((1− λ)y + λy, [λy + (1− λ)Ty])

≤ D(y, λx+ (1− λ)Tx) + (1− λ)D(y, Ty)

≤ D(y, Sλx) + (1− λ)D((y, Tx) + (1− λ)‖x− y‖. (16)

If D(y, Tx) ≤ ‖x−y‖ then (16) yields H(Sλx−Sλy) ≤ 2(1−λ)‖x−y‖+‖y−Sλx‖. Clearly,

if λ ∈
(
1
2 , 1
]

then (16) yields:

H(Sλx, Sλy) ≤ δ‖x− y‖+D(y, Sλx) whereλ and δ satisfy
δ

2
+ λ < 1.

So in this case, when D(y, Tx) ≤ ‖x − y‖, Sλ is a (δ, k)−weak contraction with k = 1 and

δ as stipulated above.

On the other hand if (or when) ‖x − y‖ ≤ D(y, Tx) then by (15) equation (16) yields

(Sλx, Sλy) ≤ (1−λ)(M + 1)‖x− y‖+ ‖y−Sλx‖. So choosing λ ∈ (0, 1) such that (1−λ) <

min
{

1
2 ,

1
M+1

}
and k = 1 we conclude that Sλ is an almost contraction and by existence

theorem of Berinde and Berinde [3] we conclude that Sλ has a fixed point in K. Therefore

T has a fixed point in K.

To complete the proof we need to establish that condition (15) genralizes, in the Banach

space context, the Nadler’s contraction condition (1). The proof of this part follows as an

application of Theorem 6 since the collection of all multivalued contractions is a proper

subclass of the class of nonexpansive mappings T with Fix(T ) 6= ∅. In other words, since

nonexpasive condition of the later class imply (15) then all contractions satisfy condition

(15) since they are special cases. �
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On merging Theorem 6 and Theorem 7 we obtain the following fixed-point-property

characterization for nonexpansive mappings:

In conclusion we emphasize that:

1. It is important to note that Theorem 6 and Theorem 7 are respective formulations of

necessary and sufficient aspects of Theorem 3.

2. Results established here are extremely non-triovial considering the fact that a very

high percentage of results concerning existence of - or convergence of various schemes

to fixed points for nonexpansive mappings often require specialized mappings defined

on specialized Banach spaces and specialized iteration schemes.

3. The results in this article also apply without changes in metrically convex metric

spaces.

4. Further studies include extensions of these reults to more general Lipschitzian map-

pings, continuous and discontinuous operators as well.
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