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Abstract

A unification of a new necessary condition and the Landesman-Lazer condition

is established by using a new fixed point condition, leading to further extension of

Fredholm alternatives.
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1 Introduction

In [?] Sanni obtained a nonlinear analogue of the Fredholm alternatives as a necessary

condition below: ∫
Ω

g(u(x))φk(x)dx =

∫
Ω

h(x)φk(x)dx (1)

for solvability of the boundary value problem

∆u+ λku+ g(u(x)) = h(x), x ∈ Ω; u = 0 on ∂Ω, (2)

where Ω is an open bounded subset of RN , h ∈ L2(Ω) and φk is the eigenfunction corre-

sponding to the eigenvalue λk of the eigenvalue problem:

∆u+ λku = 0, x ∈ Ω; u = 0 on ∂Ω, (3)
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It is important to observe that the condition (??) obtained in [?] neither requires bound-

edness of the nonlinearity g nor the existence of the limits g(±∞). This makes it a very

significant contribution in the direction of improvement upon the celebrated Landesman-

Lazer necessary and sufficient condition below:

g(−∞)

∫
Ω+

φkdx+g(∞)

∫
Ω−

φkdx <

∫
Ω

h(x)φkdx < g(∞)

∫
Ω+

φkdx+g(−∞)

∫
Ω−

φkdx (4)

for existence of a weak solution of the boundary value problem (??), where Ω+ = {x ∈ Ω :

φk(x) > 0} and Ω− = {x ∈ Ω : φk(x) < 0}. Here g : R −→ R is a continuous function

such that g(−∞) < g(ξ) < g(∞) where g(−∞) = lims→−∞ g(s) and g(∞) = lims→∞ g(s)

are finite and unique. The condition of Landesman and Lazer (??) which appeared in 1970

inspires quality contributions ever since (see, for example, [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]

and their references), firstly, for being a major breakthrough in the direction of Hilbert

20th problem concerned with difficulties in formulation of necessary and sufficient condition

for solvability of (??) and, secondly, for being in urgent need of improvement based on the

following two main reasons: (a) it restricts the theory of (??) to boundary value problem with

bounded nonlinearities g(u) and (b) the inherent requirement that the limits lims→±∞ g(s)

exist exclude important nonlinearities like cases when g(−∞) = g(∞). We have made

references to [?, ?, ?, ?, ?, ?, ?, ?] and their references concerning important improvements

on the Landesman-Lazer condition (??).

It is of interest to view the necessary condition (??) as a significant contribution in the

direction of nonlinear analogue of the linear Fredholm alternatives since it is equivalent to

the following nonlinear alternatives:

Either

(S1) the nonlinear problem (??) has a weak solution for each right-hand-side h ∈ L2(Ω), or

(S2) its associated nonlinear homogeneous problem (??) below:

∆u+ λku+ g(u) = 0, x ∈ Ω; u = 0 on ∂Ω, (5)

has a weak solution.

We observe that this nonlinear alternatives assert that if
∫

Ω
h(x)φk(x)dx = 0 then (??)

is a necessary condition for either the nonlinear problem (??) to have a weak solution, or

for its associated nonlinear homogeneous eigenvalue-problem (??) to have a weak solution.

This shows that the condition (??) is not a sufficient condition for solvability of (??) since

it excludes certain critical cases where h(x) and φk are orthogonal. These situations are
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dipicted in an example due to Ahmad [?], which was considered by Drabec [?] and Nieto

[?] below:

u′′ + u+ 3u = sin2x, 0 < x < π,

u(0) = 0; u(π) = 0.
(6)

Here, λk = λ1 = 1, g(u) = 3u and h(x) = sin2x and Ω = [0, π]. In this case
∫

Ω
h(x)φ1(x)dx =∫ π

0
sin 2x sinxdx = 0 and the nonlinear problem (??) has no solution because the associated

homogeneous problem (??), given as:

u′′ + u+ 3u = 0 i.e; u′′ + 4u = 0, 0 < x < π,

u(0) = 0; u(π) = 0,
(7)

has a weak solution. To ensure existence of weak solution of the problem

u′′ + u+ g(u) = h(x), 0 < x < π,

u(0) = 0; u(π) = 0,
(8)

i.e a particular case of (??) (in which g(u) in (??) is arbitrary), Ahmad and Nieto assumed

a growth condition on the nonlinearity g as: |g(u)| ≤ γ|u| + c and reported best estimate

for γ as γ ∈ [0, 3). A similar estimate was reported by Iannacci and Nkashama [?] while the

estimate, 0 < γ < (k + 1)2 − k2 < 3, which generalizes it, due to Arias [?] for solvability of

the following problem

u′′ + k2u+ g(u) = h(x) i.e; u′′ + λku+ g(u) = h(x); 0 < x < π,

u(0) = 0; u(π) = 0,
(9)

can be shown to be in general compliance with our hypothesis. For similar and related

contributions see [?, ?, ?, ?, ?, ?] and the references there-in.

So unlike the Landesman-Lazer condition, (??) is not a sufficient condition for existence

of weak solution of (??). The Lipschitz condition on g which serves as sufficient condition in

[?] is relaxed by the sufficient condition reported here-in. This new sufficient condition which

aids to unify and extend earlier necessary and sufficient conditions is merely a characteriza-

tion of certain class of L2-Caratheodory composition functions F (x, u(x)) for solvability of

(??).

2 Preliminary

The method employed in [?] made use of Schaefer fixed point theorem which is based on

compactness of associated operator which hinders extensions of the problem to arbitrary
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contexts. The method employed in this report neither requires compactness of ambient sets

nor compactness of associated operators and promises extensions to abitrary situations in

which compactness might be lacking. The following are results in [?] studied in this article:

Theorem 1 The necessary condition that u ∈ H1
0 (Ω) be a weak solution of (??) is that

condition (??) holds.

Theorem 2 Let condition (??) holds. Then there exists a weak solution to the problem

−∇.(φ2
k∇v) = φkg(φkv)− φkh(x), φkv = 0 on ∂Ω. (10)

Theorem 3 Let v ∈ H1
0 (Ω) be the solution of

Lv = −∇.(φ2
k∇v) + µφ2

kv = µφ2
ks+ φkg(φks)− φkh; φkv = 0 on ∂Ω (11)

Then the solution u = φkv of (??) belongs to H1
0 (Ω) and we have the following estimate

‖u‖H1
0 (Ω) ≤ C‖v‖H1

0 (Ω). (12)

We shall apply the following recent fixed point theorem due to Udo-utun et al in the sequel.

Theorem 4 Let K be a closed convex subset of a Banach space E and T : K −→ K an

L−Lipschitzian operator. Suppose there exists an open subset K1 ⊂ K such that T satisfies

the condition below:

‖y − Tx‖ ≤ M‖x− y‖ whenever ‖x− y‖ ≤ ‖y − Tx‖ (13)

for some M ≥ 1 for all x, y ∈ K1;x 6= y, x, y /∈ Fix(T ). Then T has a fixed point in K and

the Krasnoselskii iteration scheme xn+1 = λxn + (1− λ)Tnx0, n ≥ 0;x0 ∈ K1 converges to

a fixed point of T in K.

Further, condition (??) generalizes contraction condition in Banach spaces.

Remark 5 It is very important to comment that apart from generalizing the contraction

condition [?], the condition (??) of Theorem ?? has been shown to include so many weak

contractive conditions like the quasicontraction and almostcontraction conditions as special

cases [?]. In [?, ?] it was proved that a nonexpasive mapping has a fixed point if and only if

(??) is satisfied. Some important consequences of this include the following comments and

deductions:
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(I) All contraction mappings satisfy (??) since they constitute a proper subclass of non-

expansive mappings with unique fixed points. Specifically, if T is a contraction map-

ping with contraction constant α, it can be shown that if ‖x − y‖ ≤ ‖y − Tx‖ and

‖x− y‖ ≤ ‖x− Tx‖ then for µ ∈ [1− α, 1) we have:

(1− µ)‖x− Tx‖ ≤ ‖Tx− Ty‖. (14)

In view of symmetry considerations in (??), we may assume that ‖x−Ty‖ ≤ ‖y−Tx‖
for two points x and y in a small neighborhood U of the fixed point p of T . Firstly, if

‖x− Tx‖ < ‖x− y‖ then we have

‖y − Tx‖ ≤ ‖x− y‖+ ‖x− Tx‖ ≤ 2‖x− y‖. (15)

On the other hand, if ‖x − y‖ ≤ ‖x − Tx‖ then we apply (??) as follows: Let T be

a contraction, since Tx and Ty can be made very close to each other in appropriate

neighjborhood U of p then for any µ ∈ [1− α, 1) we have:

(1− µ)‖y − Tx‖ ≤ (1− µ)‖x− y‖+ (1− µ)‖x− Tx‖

≤ (1− µ)‖x− y‖+ ‖Tx− Ty‖ (application of (??))

‖y − Tx‖ ≤
[
1 +

α

1− µ

]
‖x− y‖ (16)

Combination of (??) and (??) verifies that for a contraction T the condition (??) is

satisfied in the open set K1 = U above with M = max
{

2, 1 + α
1−µ

}
.

(II) If an operator T satisfies (??) then T is Lipschitz in some open set since

‖Tx− Ty‖ ≤ ‖y − Tx‖+ ‖y − Ty‖ ≤ (2M + 1)‖x− y‖ (17)

for all x and y in the subset K1 of the convex set K in Theorem ??.

3 Main Results

Important applications of the comments in Remark ?? are the following lemmas needed in

the sequel:

Lemma 6 Let h be the image of a constant map χ : K −→ K where K is appropriate

subset of the Banach space L2(Ω); i.e χz = h for all z ∈ K. Then there exist an open set

Kh ⊂ K and a constant Mh ≥ 1 such that

‖z2 − h‖L2(Ω) = ‖z2 − χz1‖L2(Ω) ≤Mh‖z1 − z2‖L2(Ω) (18)

for all distinct z1, z2 ∈ Kh with z1 6= h and z2 6= h.
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The operator χ : L2(Ω) −→ L2(Ω) being a contraction has a fixed point h = χh since

χz = h for all z ∈ K ⊆ L2(Ω) where h ∈ L2(Ω) is a fixed function. We shall verify that

χ satisfies (??) by proving (??) in some deleted open neighborhood Kh ⊂ L2(Ω) of h. In

this case using ‖z2 − χz1‖L2(Ω) = ‖z2 − h‖L2(Ω) we observe that for µ ∈ (0, 1) the mapping

(1− µ)h+ µz is also a contraction, so we have:

‖z2 − h‖L2(Ω) = ‖z2 − χz1‖L2(Ω)

≤ ‖z2 − (1− µ)h− µz1‖L2(Ω) + ‖z2 − (1− µ)z1 + µh‖L2(Ω) + ‖z1 − z2‖L2(Ω)

≤ Mh‖z1 − z2‖L2(Ω)

for all distinct z1, z2 ∈ Kh with z1 6= h and z2 6= h. �

Lemma 7 Let F : Ω × R −→ L2(Ω) given by F (x, u) = −g(u) + h(x) where −g satisfies

(??) on some open set Kg ⊂ L2(Ω) and h ∈ L2(Ω) a fixed function. Then F satisfies (??),

that is; if there exists Mg ≥ 1 such that ‖z2 − [−g(z1)]‖L2(Ω) ≤ Mg‖z1 − z2‖L2(Ω) on Kg

then there exists MF ≥ 1 such that

‖z2 + h− F (x, z1 + h)‖L2(Ω) ≤ MF ‖z1 − z2‖L2(Ω), z1, z2 ∈ Kg; z1, z2 /∈ Fix(F ).(19)

PROOF

We begin by showing that if ‖z2 − [−g(z1)]‖L2(Ω) ≤Mg‖z1 − z2‖L2(Ω) on Kg then∥∥∥∥z2 ±
h

2

∥∥∥∥
L2(Ω)

≤Mh12‖z1 − z2‖L2(Ω) on Kg (20)

for some Mh12 ∈ {Mh1,Mh2} where Mh1 ≥ 1 and Mh2 ≥ 1 are constants. Now,

(1− λ)

∥∥∥∥z2 −
h

2

∥∥∥∥ =

∥∥∥∥(1− λ)z2 + λ
h

2
− h

2

∥∥∥∥ . (21)

We can make z = (1 − λ)z2 + λh2 belong to any small deleted neighborhood Uh of h
2

by appropriately choosing λ ∈ (0, 1). Since the constant operator χ2x = h
2 for all x is a

contraction, application of (??) in (??) and putting h
2 = χ2[(1− λ)z1 + λh2 ] yields:

(1− λ)

∥∥∥∥z2 −
h

2

∥∥∥∥ =

∥∥∥∥(1− λ)z2 + λ
h

2
− χ2

[
(1− λ)z1 + λ

h

2

]∥∥∥∥
≤ M1

∥∥∥∥(1− λ)z2 + λ
h

2
−
[
(1− λ)z1 + λ

h

2

]∥∥∥∥ ≤Mh1(1− λ)‖z1 − z2‖.

This gives
∥∥z2 − h

2

∥∥ ≤ Mh1‖z1 − z2‖ as desired. Similar argument yields
∥∥z2 −

[−h
2

]∥∥ ≤
Mh2‖z1 − z2‖.
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To prove that F satisfies (??) we choose the open set Kg as the ball B(p;R) for some

R > 0 where p is a fixed point of −g. We obsserve that for z1, z2 ∈ B(p;R), the difference

‖u − F (x, v)‖L2(Ω) in the ball B(h + p;R) takes the form ‖z2 + h − F (x, z1 + h)‖L2(Ω)

= ‖z2 − [−g(z1 + h)]‖L2(Ω). Application of (??) and (??) to ‖z2 − [−g(z1 + h)]‖L2(Ω) ≤
Mg[‖z1− [−h2 ]‖L2(Ω) +‖z2− h

2 ‖L2(Ω), gives ‖z2 +h−F (x, z1 +h)‖L2(Ω) ≤MF ‖z1−z2‖L2(Ω)

for all z1, z2 ∈ Kg = B(p;R).

Theorem 8 Define F : RN×R −→ R by F (x, u(x)) = −g(u(x))+h(x), x ∈ Ω. A sufficient

condition for existence of weak solution of (??) is that there exist a constant MF ∈ [1, 3)

and an open set K1 ⊂ H1
0 such that for any distinct elements z1, z2 ∈ K1 condition (??)

below is satisfied:

‖ − z2 − g(z1)‖L2(Ω) ≤MF ‖z1 − z2‖L2(Ω) (22)

provided z1 and z2 are not fixed points of g.

PROOF

Following the method employed in [?] we let A : H1
0 (Ω) −→ H1

0 (Ω) be a nonlinear operator

defined by

Aẑ = z; z, ẑ ∈ H1
0 (Ω)

whenever ∆ẑ + λẑ = −g(z) + h(x).
(23)

That the operator A is well defined on H1
0 (Ω) follows from the existence and uniqueness of

the solution u = L−1
k ξ, ξ = F (x, z1), to the linear operator equation

Lku = ξ; ξ ∈  L2(Ω) (24)

where the linear operator Lk : H1
0 (Ω) −→ L2(Ω) is an injection given by Lku = ∆u+λku =

F (x, z1); x ∈ Ω; u = 0, on ∂Ω. Further, it follows from uniqueness of solutions of (??),

for each ξ ∈ L2(Ω), that the inverse A−1 of operator A defined by (??) is so well defined

that both A and A−1 exist and have common fixed point-set Fix(A). It turns out that it is

easier to prove existence of fixed points of A−1 than proving for A in the sequel.

To apply Theorem ?? on A−1 we take H1
0 (Ω) as a convex subset K of the Banach space

L2(Ω) and infer that the operator A has a fixed point by showing that its inverse A−1 has a

fixed point. To prove sufficiency we only need to show that A−1 is a Lipschitzian operator

and satisfies ‖z2−A−1z1‖ ≤MA‖z1−z2‖ for some MA ≥ 1. Given that h is a Caratheodory

function and g satisfies Lipschitz condition in the open set K1 with Lipschitz constant γ,

let F be defined by F (x, z) = −g(z) + h(x) and z1, ẑ1 ∈ H1
0 (Ω) be such that ∆ẑ1 + λkẑ1

= F (x, z1). In view of (??) this yields:

Aẑ1 = z1. (25)
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To prove sufficiency, we assume the hypothesis (??) holds and using

A−1z1 = ẑ1 = L−1(F (x, z1)), (26)

we shall show that A−1 is a Lipschitzian operator, thereafter we estimate the constant MA

as follows:

‖A−1z1 −A−1z2‖ = ‖ẑ1 − ẑ2‖ = ‖L−1(F (x, z1))− L−1(F (x, z2))‖

≤ γ‖L−1‖‖z1 − z2‖. (27)

In (??) we have used the fact that L−1
λ is a bounded linear operator since the operator Lλ

is an unbounded linear operator. Next, choosing the open set KA = B(p+ h;R) where p is

the fixed point of −g we estimate MA as follows:

‖z2 −A−1z1‖ = ‖ẑ1 + h− (z2 + h)‖ = ‖z2 + h− L−1(F (x, z1 + h))‖

≤ ML‖z2 + h− F (x, z1 + h)‖ (28)

≤ MA‖z1 − z2‖ (by application of (??))

where MA = MLMF and (??) follows as an application of the last statement of Theorem

??. This shows that A−1 (and A) has a fixed point u. We claim that a fixed point u of A

is the desired solution of (??) since if u = Au, then Lλu = F (x, u). End of proof. �

Theorem 9 A necessary condition for solvability of the problem (??), for any RHS h ∈
L2[0, 1], is that the constant MF in the condition (??) satisfies 1 ≤MF < 3.

PROOF

It suffices to justify the situation
∫

Ω
h(x)φk(x)dx = 0 for certain h ∈ L2[0, 1] when g(u) 6= 0.

We shall prove that if there is no nonnontrivial solution x0 ∈ L2[0, 1] such that g(x0(t)) =

[λk+j−λk]x0(t); j, k ∈ N, then g satisfies (??), withMF ∈ [1, 3). In other words if (??) has a

weak solution then (??) holds with MF ∈ [1, 3). Observe that if g(x0(t)) = [λk+j −λk]x0(t)

then by Fredholm alternatives the problem (??) has no solution since the corresponding

eigenvalue problem below:

∆u+ λk+ju = 0, x ∈ Ω; u = 0 on ∂Ω,

is solvable with solution u(t) = x0(t) = φk+j(t). On the contrary, if g is such that there

exists a point x0 ∈ L2[0, 1] at which g(x0(t)) = [λk+j − λk]x0(t). Let U ⊂ L2[0, 1] be

an open set on which g satisfies (??). Since, by (??), g is Lipschitz on U , without loss

of generality we assume that g is nonexpansive on U so that g satisfies (??) on U . Then
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Theorem ?? guarantees that g has a fixed point in a closed convex set K containing the

closure U of U and the points [λk+j − λk]x0 and x0. But then the point x0 is a fixed point

of the mapping 1
λk+j−λk

g which is a contraction and so there are u, v ∈ K close to x0

such that ‖u − 1
λk+j−λk

g(v)‖ ≤ Mλ‖u − v‖; Mλ ≥ 1. This yields ‖[λk+j − λk]u − g(v)‖ ≤
[λk+j −λk]‖u− v‖, for approprite choice of j ∈ N with λk+j −λk ≥Mλ. Since we can make

u and v as close to x0 as we please, it follows that x0 is also a fixed point of g. Therefore x0

must be the trivial solution since this yields x0 = g(x0) = [λk+j − λk]x0. Therefore if (??)

is solvable then ‖u− g(v)‖ ≤MF ‖u− v‖ for some MF ∈ [1, 3) and for some distinct u and

v in some open subset.

Corollary 10 A necessary and sufficient condition for solvability of (??) is that if u =

φk+ν ; ν ∈ N, is a weak solution of the homogeneous problem (??) viz;

∆u+ λku+ g(u) = 0, x ∈ Ω; u = 0 on ∂Ω,

then the image of u = φk+ν under g be not given by g(φk+ν) = [λk+ν − λk]u, where φk is a

solution of (??).

Remark 11 It is of a significant advantage that condidition (??) is independent of Hilbert

spaces’ properties so it applies to Banach spaces other than Hilbert spaces. Further, an

appreciation of the method of proof reveals that the solution so obtained are strong solu-

tions which is an edge over usual methods which require regularity considerations for strong

solutions.

To demonstrate how general our method is we now show that for nonlinearities satisfying

our hypothesis (??) the proof of Theorem ?? follows as a special case of our Theorem ??

which we apply to prove the following result:

Theorem 12 Let there exist a constant M ≥ 1 such that the nonlinearity g satisfy the

following condition:

‖φkv2−g(φkv1)‖ ≤M‖v1−v2‖ whenever ‖v1−v2‖ < ‖φkv2−g(φkv1)‖, φkv1, φkv2 /∈ Fix(g)

(29)

for distinct points v1 and v2 in an open subset K1 ⊂ H1
0 . Then there exists a weak solution

to the problem

−∇.(φ2
k∇v) = −φkg(φkv) + φkh(x), φkv = 0 on ∂Ω.

PROOF

The proof is based on showing that the problem (??) is equivalent to the problem (??) with
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u = φkv using following:

∇.(φ2
k∇v) = φ2

k∆v + 2∇φk.∇v (30)

φk∆φkv = φ2
k∆v + 2∇φk.∇v + v.∆φk (31)

Combining (??) and (??) the problem (??) becomes

−φk∆v + v∆φk = −φkg(φkv) + φkh(x)

=⇒ −φk∆v − µφkv + v∆φk + φkv = −φkg(φkv) + φkh(x)

This yields

−∆u− µu = −φkg(u) + φkh(x)

so that Theorem ?? applies where u = φkv and ∆φ+ µφk = 0 since φk is an eigenfunction

corresponding to µ. End of proof. �

4 Illustrative Examples

For illustration we investigate cases when g(u) = sinu, when g(u) = −u2 and the situation

when g(u) = 2u considered in [?].

Example 13 For solvability of −u′′ − λku = sinu+ h(x), x ∈ [0, 1] with u(0) = u(1) = 0,

we claim that there exist a deleted neighborhood B(0, ε2 ) such that whenever x, y ∈ B(0, ε2 )

then ‖sinx−y‖
‖x−y‖ ≤ M for some M ≥ 1. This is verified by constructing two sequences {xn}

and {yn} in B(0, ε2 ) with the following properties: xn −→ 0, limn→∞ ‖xn − yn‖ = 0 and
‖sinxn−yn‖
‖xn−yn‖ > Kn for some Kn. We desire to show existence of M ≥ 1. The hypothesis holds

trivially if either xn or yn is zero, so we assume that xn and yn are nonzero and obtain the

following:

lim
n→∞

‖sinxn − yn‖
‖xn − yn‖

=

∥∥∥limn→∞
sinxn

xn
− limn→∞

yn
xn

∥∥∥∥∥∥1− limn→∞
yn
xn

∥∥∥ = 1.

This shows there exists M ≥ 1 such that ‖sinx−y‖‖x−y‖ ≤M for all x, y ∈ B(0, ε); 0 < ε < 1.

In some cases it may be difficult to verify bounedness of the sequences
{
‖g(xn)−yn‖
‖xn−yn‖

}∞
n=1

in some deleted ε−neighborhood of fixed points x0 of g. For instance, a simple and shorter

approach to to verify that g(x) = sinx satisfies (??) is to apply the comments (I) in Remark

?? by showing that there exists a deleted neighborhood, B(0, ε) ⊂ L2(Ω), of the zero function

on which sinx is a contraction mapping so that (??) follows. This method is more general

and it is easy to verify this in the following examples.
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Example 14 [?] Given the problem, −u′′−λku = 2u+h(x), x ∈ (0, 1) with u(0) = u(1) = 0.

Example 15 −u′′ − λku = u2 + h(x), x ∈ (0, 1) with u(0) = u(1) = 0

In addition to B(0, ε) it is also straightforward to construct a deleted neighborhood B(I, ε)

of the identity function I on which the mapping g(u) = u2, in Example ??, is a contraction.
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