
A SURVEY FOR GENERALIZED TRIGONOMETRIC AND

HYPERBOLIC FUNCTIONS

LI YIN AND LI-GUO HUANG

Abstract. The generalized trigonometric functions which have a short history,
were introduced by Lindqvist two decades ago. Since 2010, many mathemati-
cian began to study their classical inequalities, general convexity and concavity,
multiple-angle formulas and parameter convexity and concavity. A number of re-
sults have been obtained. This is a survey. Some new refinements, generalizations,
applications, and related problems are summarized.

1. introduction

It is well known from calculus that

arcsinx =

∫ x

0

1

(1− t2)1/2
dt

for 0 ≤ x ≤ 1 and
π

2
= arcsin 1 =

∫ 1

0

1

(1− t2)1/2
dt.

For 1 < p <∞ and 0 ≤ x ≤ 1, the arcsine may be generalized as

arcsinp x =

∫ x

0

1

(1− tp)1/p
dt (1.1)

and
πp
2

= arcsinp 1 =

∫ 1

0

1

(1− tp)1/p
dt. (1.2)

The inverse of arcsinp on [0,
πp
2 ] is called the generalized sine function, denoted

by sinp and may be extended to (−∞,∞). See [29] and closely related references
therein.

For x ∈ [0,
πp
2 ], the generalized cosine function cosp x is defined by

cosp x =
d sinp x

dx
. (1.3)

It is easy to see that
cosp x = (1− sinpp x)1/p (1.4)

and
d cosp x

dx
= − cos2−pp x sinp−1p x. (1.5)
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The generalized tangent function tanp x is defined as

tanp x =
sinp x

cosp x
, x ∈ R\

{
kπp +

πp
2

: k ∈ Z
}
. (1.6)

From (1.6), it follows that

d tanp x

dx
= 1 + | tanp x|p, x ∈

(
− πp

2
,
πp
2

)
. (1.7)

The generalized secant function secp x is defined as

secp x =
1

cosp x
, x ∈

[
0,
πp
2

)
. (1.8)

It follows from (1.6) and (1.7) that

secpp x = 1 + tanpp x, x ∈
(

0,
πp
2

)
(1.9)

and
d secp x

dx
= secp x tanp−1p x, x ∈

[
0,
πp
2

)
. (1.10)

The generalized cosecant function cscp x may be defined as

cscp x =
1

sinp x
, x ∈

(
0,
πp
2

]
. (1.11)

It is clear that

cscpp x = 1 +
1

tanpp x
, x ∈

(
0,
πp
2

)
(1.12)

and
d cscp x

dx
= − cscp x

tanp x
, x ∈

(
0,
πp
2

)
. (1.13)

The generalized inverse hyperbolic sine function arcsinhpx is defined by

arcsinhp(x) =


∫ x

0

1

(1 + tp)1/p
dt, x ∈ [0,∞),

−arcsinhp(−x), x ∈ (−∞, 0).

(1.14)

The inverse of arcsinhp is called the generalized hyperbolic sine function and denoted
by sinhp.

The generalized hyperbolic cosine function coshp x is defined as

coshp x =
d sinhp x

dx
. (1.15)

It is easy to show that

(coshpp x)− |sinhp x|p = 1, x ∈ R (1.16)

and
d coshp x

dx
= cosh2−p

p x sinhp−1p x, x ≥ 0. (1.17)

The generalized hyperbolic tangent function and the generalized hyperbolic secant
function are defined as

tanhp x =
sinhp x

coshp x
(1.18)
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and

sechpx =
1

coshp x
. (1.19)

Their derivatives are
d tanhp x

dx
= 1− tanhpp x = sechppx, x ≥ 0 (1.20)

and
dsechpx

dx
= −sechpx tanhp−1p x. (1.21)

Recently, Takeuchi [46] studied the (p, q)-trigonometric functions depending on
two parameters. For p = q, these functions reduce to the so-called p-trigonometric
functions introduced by Lindqvist in his highly cited paper [34]. In present, there
has been a vivid interest on the generalized trigonometric and hyperbolic functions,
numerous papers have been published on the studies of generalized trigonomet-
ric functions and their inequalities. The following (p, q)-eigenvalue problem with
Dirichlét boundary condition was considered by Drábek and Manásevich [23]. Let
φp(x) = |x|p−2x. For T, λ > 0 and p, q > 1{

(φp(u
′))′ + λφq(u) = 0, t ∈ (0, T ),

u(0) = u(T ) = 0.

They found the complete solution to this problem. The solution of this problem also
appears in [46, Thm 2.1]. In particular, for T = πp,q the function u(t) = sinp,q(t) is
a solution to this problem with λ = p/q(p− 1), where

πp,q =

∫ 1

0
(1− tq)−1/p dt =

2

q
B

(
1− 1

p
,
1

q

)
. (1.22)

For p = q, πp,q reduces to πp, see [6]. In order to give the definition of the function
sinp,q , first we define its inverse function arcsinp,q , then the function itself. For
x ∈ [0, 1], set

Fp,q(x) = arcsinp,q =

∫ x

0
(1− tq)−1/p dt . (1.23)

The function Fp,q : [0, 1]→ [0, πp,q/2] is an increasing homeomorphism, and

sinp,q = F−1p,q

is defined on the the interval [0, πp,q/2]. The function sinp,q can be extended to
[0, πp,q] by

sinp,q(x) = sinp,q(πp,q − x), x ∈ [πp,q/2, πp,q].

By oddness, the further extension can be made to [−πp,q, πp,q]. Finally, the functions
sinp,q is extended to whole R by 2πp,q-periodicity, see [25].

In this survey, we give an account of the work in the generalized trigonometric
and hyperbolic functions. In many of these results, the l’Hôspital Monotone Rule is
a very useful tool. Because of practical constraints, we have to exclude many fine
papers and have limited our bibliography to those papers most closely connected to
our work.

This survey is organized as follows: In Section 1, we give the introduction. Sec-
tion 2 gives multiple-angle formulas of generalized trigonometric functions. Section
3 presents classical inequalities for generalized trigonometric and hyperbolic func-
tions. In Section 4, we focus on general convexity and concavity for generalized
trigonometric and hyperbolic functions. In section 5, Some Turán type inequalities
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have been obtained. Section 6 shows some new results about generalized elliptic
integrals. Finally, we gives some open problems in Section 7.

2. Multiple-angle formulas of generalized trigonometric functions

Motivated by addition formula for sine function, Edmunds, Gurka and Lang ob-
tained a very beautiful result named by Edmunds-Gurka-Lang identity:

sin4/3,4(2x) =
2 sin4/3,4 x(cos4/3,4 x)1/3

(1 + 4(sin4/3,4 x)4(cos4/3,4 x)4/3)1/2
(2.1)

for x ∈ [0, π4/3,4/4] in [25]. The proof of formula (2.1) applied the addition formula
of the Jacobian elliptic function.

Later, in 2012, Bhayo and Vuorinen gave two sub-additive inequalities. For p, q >
1, then

sinp,q(r + s) ≤ sinp,q(r) + sinp,q(s), r, s ∈ (0, πp,q/4); (2.2)

and

sinhp,q(r + s) ≥ sinhp,q(r) + sinhp,q(s), r, s ∈ (0,∞). (2.3)

See Lemma 2.14 of reference [13] in detail.
Recently, Takeuchi [50] gave an alternative proof of formula (2.1) based on multiple-

angle formula of lemniscate function slx in 2016. In the paper, he also presented
multiple-angle formulas between two kind of the generalized trigonometric functions
with parameters (2, p) and (p∗, p) where p∗ = p

p−1 .

Theorem 2.1 (Theorem 1.1 [50]). For p ∈ (1,∞) and x ∈ [0, 2−2/pπ2,p] = [0, πp∗,p/2],
we have

sin2,p(2
2/px) = 22/p sinp∗,p x cosp∗−1p∗,p x (2.4)

and

cos2,p(2
2/px) = cosp∗p∗,p x− sinpp∗,p x = 1− 2 sinpp∗,p x = 2 cosp∗p∗,p x− 1. (2.5)

Moreover, for x ∈ R, we have

sin2,p(2
2/px) = 22/p sinp∗,p x| cosp∗,p x|p∗−2 cosp∗,p x (2.6)

and

cos2,p(2
2/px) = | cosp∗,p x|p∗ − | sinp∗,p x|p = 1− 2| sinp∗,p x|p = 2| cosp∗,p x|p∗ − 1.

(2.7)

The general multiple-angle formulas of generalized trigonometric functions with
single and two parameters are till open.

3. Classical inequalities for generalized trigonometric and
hyperbolic functions

3.1. Mitrinović-Adamović-type inequalities and Lazarević-type inequali-
ties. In 2010, Klén, Vuorinen and Zhang [32] obtained Mitrinović-Adamović in-
equality and Lazarević inequality for generalized trigonometric and hyperbolic func-
tions, showing that, for all p ∈ (1,∞) and x ∈ (0,

πp
2 )

(cosp(x))α <
sinp(x)

x
< 1 (3.1)
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with the best constant α = 1
p+1 , and that, for all p ∈ (1,∞) and x ∈ (0,∞),

(coshp(x))α <
sinhp(x)

x
< (coshp(x))β, (3.2)

with the best constants α = 1
p+1 and β = 1.

In 2013, Bhayo and Yin solved conjecture 3.12 posed by Klén, Vuorinen and
Zhang [32]. In [19], they gave the following inequalities:

For p ∈ [2,∞) and x ∈ (0,
πp
2 ), then(
x

sinhp(x)

)p
<

sinp(x)

x
<

x

sinhp(x)
, (3.3)

and
1

(coshp(x))β
<

sinp(x)

x
<

1

(coshp(x))α
, (3.4)

with the best constants α = 1
p+1 and β =

log(
πp
2
)

log(coshp(
πp
2
))

.

The inequality (3.4) had also been obtained by Yang. See Theorem 1.6 of reference
[52].

3.2. Huygens-type inequalities. In 2010, Klén, Vuorinen and Zhang [32] ob-
tained the following inequalities of Huygens type for the generalized trigonometric
and hyperbolic functions

p sinp(x)

x
+

tanp(x)

x
> 1 + p, (3.5)

for p > 1 and x ∈ (0,
πp
2 );

p sinhp(x)

x
+

tanhp(x)

x
> 1 + p, (3.6)

for p > 1 and x > 0.
In the same paper, they also showed that

(p+ 1)
sinp(x)

x
+

1

cosp(x)
> p+ 2, for p > 1, x ∈ (0,

πp
2

), (3.7)

and

(p+ 1)
sinhp(x)

x
+

1

coshp(x)
> p+ 2, for p > 1, x > 0. (3.8)

In 2014, Yin, Huang and Qi [58] obtained the second Huygens-type inequalities.

px

sinp(x)
+

x

tanp(x)
> 1 + p, for p ∈ (1, 2], x ∈ (0,

πp
2

), (3.9)

and
px

sinhp(x)
+

x

tanhp(x)
> 1 + p, for p ∈ (1, 2], x ∈ (0,∞). (3.10)

The formulas (3.5) and (3.9) had also been obtained by Neumann in 2014. See
formulas (41) and (43) of references [39]. A particular case p = 2 of formulas
(3.5)(3.9) and (3.10) also appeared [37] in 2014.
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3.3. Wilker-type inequalities. In 2010, Klén, Vuorinen and Zhang [32] obtained
Wilker-type inequalities for generalized hyperbolic functions(

sinhp(x)

x

)p
+

tanhp(x)

x
> 2, (3.11)

for p > 1 and x > 0.
In 2014, Yin, Huang and Qi proved Wilker-type inequalities involving the gener-

alized sine and tangent functions: For p > 1 and x ∈ (0,
πp
2 ), then(

sinp(x)

x

)p
+

tanp(x)

x
> 2. (3.12)

In the same paper, they also proved the second Wilker-type inequalities, showing
that, for x ∈ (0,

πp
2 ), p ∈ (1, 2],(

x

sinp x

)p
+

x

tanp x
> 2 (3.13)

and that, for x > 0, p ∈ (1, 2],(
x

sinhp(x)

)p
+

x

tanhp(x)
> 2. (3.14)

Later, Yin and Huang [56] generalized above the first and second Wilker-type
inequalities, showing that, for x ∈ (0,

πp
2 ), p > 1, α− pβ ≤ 0, β > 0,(

sinp x

x

)α
+

(
tanp x

x

)β
> 2 (3.15)

and that, for p > 1, x > 0, α− pβ ≤ 0, β > 0,(
sinhp x

x

)α
+

(
tanhp x

x

)β
> 2. (3.16)

Using different method, Neumann [37] and Yin el. [58] proved the following
inequality (

t

sinp(t)

)p
+

t

tanp t
<

(
sinp(t)

t

)p
+

tanp t

t
(3.17)

for p > 1 and t ∈ (0,
πp
2 ). Applying AGM inequality, Yin, Huang and Qi had proved

that, for p ≥ 2, t > 0 and x ∈ (0,
πp
2 ),(

x

sinp(x)

)pt
+

(
x

sinhp(x)

)t
> 2 (3.18)

and

p

(
x

sinp(x)

)t
+

(
(

x

sinhp(x)

)t
> p+ 1. (3.19)
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3.4. Cusa-Huygens-type inequalities. In 2010, Klén, Vuorinen and Zhang proved
the following Cusa-Huygens type inequalities for generalized trigonometric and hy-
perbolic functions, showing that, for p ∈ (1, 2] and x ∈ (0,

πp
2 ],

sinp(x)

x
<

cosp(x) + p

1 + p
≤ cosp(x) + 2

3
(3.20)

and that, for p ∈ (1, 2] and x > 0,

sinhp(x)

x
<

coshp(x) + p

1 + p
. (3.21)

Later, Yin and Huang [56] obtained the following version of (3.20): For p ∈ (1, 2]
and x ∈ (0,

πp
2 ], (

p+ cosp x

p+ 1

)α
<

sinp(x)

x
<

(
p+ cosp x

p+ 1

)β
. (3.22)

The constrants α =
ln( 2

πp
)

ln( p
p+1

)
and β = 1 are best possible.

In 2013, Yin and Huang [55] also obtained the following inequality(
2 + cosx

3

)α
<

sinp x

x
<

(
2 + cosp x

3

)β
(3.23)

for p ∈ (1, 2] and x ∈ (0,
πp
2 ]. The constants α =

ln( 2
πp

)

ln( 2
3
)

and β = 3
p+1 are best

possible.

3.5. Neumann inequality. In 2014, by using Schwab-Borchadt mean, Neumann
proved that

(cosp t)
1
p+1 <

[
sinp t

tanh−1(sinp t)

] 1
p

<
sinp t

t
, for p > 1, x ∈ (0,

πp
2

)

and

(coshp t)
1
p+1 <

[
sinhp t

tanh−1(sinhp t)

] 1
p

<
sinhp t

t
, for p > 1, x > 0.

3.6. Bounds of generalized trigonometric and hyperbolic functions. In
2013, Bhayo and Vuorinen [14] gave some bounds of generalized trigonometric and
hyperbolic functions by using properties of hypergeometric function. Their results
read as follows

Theorem 3.1 (Theorem 1.1 [14]). For p > 1 and x ∈ (0, 1), we have(
1 +

xp

p(1 + p)

)
x < arcsinp x <

πp
2
x,(

1 +
1− xp

p(1 + p)

)
(1− xp)1/p < arccosp x <

πp
2

(1− xp)1/p,

(p(1 + p)(1 + xp) + xp)x

p(1 + p)(1 + xp)1+1/p
< arctanp x < 21/pbp

(
xp

1 + xp

)1/p

.
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Theorem 3.2 (Theorem 1.2 [14]). For p > 1 and x ∈ (0, 1), we have

z

(
1 +

log(1 + xp)

1 + p

)
< arcsinhpx < z

(
1 +

1

p
log(1 + xp)

)
, z =

(
xp

1 + xp

)1/p

,

x

(
1− 1

1 + p
log(1− xp)

)
< arctanhpx < x

(
1− 1

p
log(1− xp)

)
.

Later, in [13], they also gave bounds of generalized trigonometric and hyperbolic
functions with two parameters, showing that for p, q > 1 and x ∈ (0, 1),

(1) x
(

1 + xq

p(1+q)

)
< arcsinp,q x < min

{πp,q
2 x, (1− xq)−1/(p(1+q))x

}
,

(2)
(

xp

1+xq

)1/p
L(p, q, x) < arcsinhp,qx <

(
xp

1+xq

)1/p
U(p, q, x),

where L(p, q, x) = max

{(
1− qxq

p(1+q)(1+xq)

)−1
, (xq + 1)1/p

(
pq+p+qxq

p(q+1)

)−1/q}
, and

U(p, q, x) =
(

1− xq

1+xq

)−q/(p(q+1))
.

In 2014, Baricz, Bhayo and Pogány presented some new lower and upper bounds
for the functions arctanp(x) and arctanhp(x) in [5].

Theorem 3.3 (Theorem 6 [5]). For p > 1, x ∈ (0, 1), there holds

arctanhp(x) <
x

2

1− 2

p
log(1− x

p
2 ) +

2
2
p b p

2

(1 + x
p
2 )

2
p

 ,

arctanp(x) < x

(
1− 1

p(1 + p)
log(1− xp)− 1

p
log(1 + xp)

)
=: Rp(x),

where

bs :=
1

2s

{
ψ

(
1 + s

2s

)
− ψ

(
1

2s

)}
.

Moreover, we have

arctanhp(x) >
x

2

(
1− 2

2 + p
log(1− x

p
2 ) +

p(2 + p)(1 + x
p
2 ) + 4x

p
2

p(2 + p)(1 + x
p
2 )

1+ 2
p

)
,

and

arctanp(x) > x

(
1 +

1

p(1 + p)
log(1− xp)− 2

1 + 2p
log(1 + xp)

)
=: Lp(x).

In addition, they also proved that

xF

(
1

p
, 1 +

1

p
; 2 +

1

p
;−xp

)
< arcsinhpx < xF

(
−1 +

1

p
,

1

p
;

1

p
;−xp

)
, p, x ∈ (0, 1)

(3.24)
and

arctanp(x) > xF (2,
1

p
; 2 +

1

p
;−xp) (3.25)

by proving that the function

x 7→ arcsinhp(x)

xF (−1 + 1
p ,

1
p ; 1

p ;−xp)
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is decreasing on (0, 1) for all p ∈ (0, 1), while the functions

x 7→
xF (1p , 1 + 1

p ; 2 + 1
p ;−xp)

arcsinhp(x)

and

x 7→
xF (2, 1p ; 2 + 1

p ;−xp)
arctanp(x)

are increasing on (0, 1) for all p > 0.

3.7. Grünbaum-type inequalities. In 2014, Baricz, Bhayo and Pogány gave Grünbaum-
type inequalities for generalized inverse trigonometric functions.

Theorem 3.4 (Theorem 5 [5]). Let x, y, z ∈ (0, 1) be such that z2 = x2 + y2. If
p ≥ 1, then the following Grünbaum type inequalities are true

1 +
arcsinp(z

2)

z2
≥ arcsinp(x

2)

x2
+

arcsinp(y
2)

y2
,

1 +
arctanhp(z

2)

z2
≥ arctanhp(x

2)

x2
+

arctanhp(y
2)

y2
.

Moreover, if p ≥ 2, then we have

1 +
arctanp(z

2)

z2
≤ arctanp(x

2)

x2
+

arctanp(y
2)

y2
,

1 +
arcsinhp(z

2)

z2
≤ arcsinhp(x

2)

x2
+

arcsinhp(y
2)

y2
,

and the last inequality is reversed when p ∈ (0, 1].

Recently, Yin and Huang generalized these inequalities to generalized inverse
trigonometric function with two parameters in 2015. See [57].

4. General convexity and concavity for generalized trigonometric
and hyperbolic functions

For two distinct positive real numbers x and y, the Arithmetic mean, Geometric
mean, Logarithmic mean, Harmonic mean and the Power mean of order p ∈ R are
respectively defined by

A(x, y) =
x+ y

2
, G(x, y) =

√
(xy),

L(x, y) =
x− y

log(x)− log(y)
, x 6= y,

H(x, y) =
1

A(1/x, 1/y)
,

and

Mt =


(
xt+yt

2

)1/t
, t 6= 0,

√
xy, t = 0.

Let f : I → (0,∞) be continuous, where I is a sub-interval of (0,∞). Let M
and N be the means defined above, then we call that the function f is MN-convex
(concave) if

f(M(x, y)) ≤ (≥)N(f(x), f(y)) for all x, y ∈ I.
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Recently, generalized convexity/concavity with respect to general mean values has
been studied by Anderson et al. in [4]. We recall one of their results as follows.

Lemma 4.1 ([4], Theorem 2.4). Let I be an open sub-interval of (0,∞) and let
f : I → (0,∞) be differentiable. Then f is HH-convex (concave) on I if and only if
x2f ′(x)/f(x)2 is increasing (decreasing).

In [4], Baricz studied that if the functions f is differentiable, then it is (a, b)−convex
(concave) on I if and only if x1−af ′(x)/f(x)1−b is increasing (decreasing).

It is important to mention that (1,1)-convexity means theAA-convexity, (1, 0)−convexity
means the AG−convexity, and (0,0)-convexity means the AG-convexity, and (0,0)-
convexity means GG−convexity.

Recently, Bhayo and Yin considered extensively LL-convex, II-convex by using
Chebshev inequality in [17, 18]. They presented the following results.

Lemma 4.2 ([17], Theorem 1). Let f : I → (0,∞) be a continuous and I ⊆ (0,∞),
then

1. L(f(x), f(y)) ≥ (≤)f(L(x, y)),
2. L(f(x), f(y)) ≥ (≤)f(A(x, y)),

if f is increasing and log-convex(concave).

Lemma 4.3 ([18], Theorem 1). Let f : I → (0,∞) and I ⊆ (0,∞). Then the
following inequalities holds true:

I(f(x), f(y)) ≥ f(I(x, y)) (I(f(x), f(y)) ≤ f(A(x, y))).

If the function f(x) is a continuous differentiable, increasing and log-convex(concave).

Other results of MN-convexity may see references [59, 18]. When these results ap-
plied to generalized trigonometric and hyperbolic functions, we can obtain a number
of inequalities.

In 2015, [15], Bhayo and Vuorinen proved some power mean inequalities for gen-
eralized trigonometric functions with single parameter.

Theorem 4.1 ([15] Theorem 1.1). For p > 1, t ≥ 0 and r, s ∈ (0, 1), we have
(1) arcsinp(Mt(r, s)) ≤Mt(arcsinp(r), arcsinp(s)),
(2) arctanhp(Mt(r, s)) ≤Mt(arctanhp(r), arctanhp(s)),
(3) arctanp(Mt(r, s)) ≥Mt(arctanp(r), arctanp(s)),
(4) arcsinhp(Mt(r, s)) ≥Mt(arcsinhp(r), arcsinhp(s)).

Theorem 4.2 ([15] Theorem 1.2). For p > 1, t ≥ 0 and r, s ∈ (0, 1), the following
relations hold

(1) sinp(Mt(r, s)) ≥Mt(sinp(r), sinp(s)),
(2) cosp(Mt(r, s)) ≤Mt(cosp(r), cosp(s)),
(3) tanp(Mt(r, s)) ≤Mt(tanp(r), tanp(s)),
(4) tanhp(Mt(r, s)) ≥Mt(tanhp(r), tanhp(s)),
(5) sinhp(Mt(r, s)) ≤Mt(sinhp(r), sinhp(s)).

Using the same method, Baricz, Bhayo and Klén obtained some power mean
inequalities for generalized trigonometric functions with two parameters.

Theorem 4.3 ([7] Theorem 1). If p, q > 1 and a ≥ 1, then arcsinp,q is (a, a)−convex
on (0,1), arctanp,q is (a, a)−convex on (0,1), while arcsinhp,q is (a, a)−convex on
(0,∞). In other words, if p, q > 1 and a ≥ 1, then we have

arcsinp,q(Ma(r, s)) ≤Ma(arcsinp,q(r), arcsinp,q(s)), r, s ∈ (0, 1),
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arctanp,q(Ma(r, s)) ≥Ma(arctanp,q(r), arctanp,q(s)), r, s ∈ (0, 1),

arcsinhp,q(Ma(r, s)) ≥Ma(arcsinhp,q(r), arcsinhp,q(s)), r, s > 0.

Theorem 4.4 ([7] Theorem 2). If p, q > 1 and a ≥ 1, then sinp,q is (a, a)−concave,
and cosp,q, tanp,q, sinhp,q are (a, a)−convex on (0,1). In other words, if p, q > 1, a ≥ 1
and r, s ∈ (0, 1), then the next inequalities are valid

sinp,q(Ma(r, s)) ≥Ma(sinp,q(r), sinp,q(s)),

cosp,q(Ma(r, s)) ≤Ma(cosp,q(r), cosp,q(s)),

tanp,q(Ma(r, s)) ≤Mt(tanp,q(r), tanp,q(s)),

sinhp,q(Ma(r, s)) ≤Mt(sinhp,q(r), sinhp,q(s)).

The next theorems improve some of the above results.

Theorem 4.5 ([7] Theorem 3). If p, q > 1, a ≤ 0 and b ∈ R or 0 < a ≤ b and b ≤ 1,
then arcsinp,q is (a, b)−convex on (0,1), and in particular if p = q, then the function
arcsinp = arcsinp,p is (a, b)−convex on (0,1). In other words, if p, q > 1, a ≤ 0, and
b ∈ R or 0 < a ≤ b and b ≤ 1, then for all r, s ∈ (0, 1) we have

arcsinp,q(Ma(r, s)) ≤Mb(arcsinp,q(r), arcsinp,q(s)).

Theorem 4.6 ([7] Theorem 4). If p, q > 1, a ≤ 0 ≥ b or 0 < a ≤ b and a ≤ 1, then
arcsinhp,q is (a, b)−convex on (0,∞), and in particular if p = q, then the function
arcsinhp = arcsinhp,p is (a, b)−concave on (0,∞). In other words, if p, q > 1, a ≤
0 ≥ b or 0 < b ≤ a and a ≤ 1, then for all r, s ∈ (0,∞) we have

arcsinhp,q(Ma(r, s)) ≥Mb(arcsinhp,q(r), arcsinhp,q(s)).

Due to geometric convexity (concavity), Bhayo and Vuorinen [13] posed a conjec-
ture in 2012:

Conjecture 4.1. For p, q ∈ (1,∞) and r, s ∈ (0, 1), we have

(1) sinp,q(
√
rs) ≤

√
sinp,q(r) sinp,q(s),

(2) sinhp,q(
√
rs) ≥

√
sinhp,q(r) sinhp,q(s).

Very quickly, the conjecture has been proved to be correct by Jiang et. in [29].
In 2014, Bhayo and Yin gave some logarithmic mean inequalities for generalized

trigonometric functions by using Lemma 4.2. Their results read as follows:

Theorem 4.7 ([17] Theorem 2). For x, y ∈ (0, πp/2), the following inequalities
1. L(sinp(x), sinp(y)) ≤ sinp(L(x, y)), p > 1,
2. L(cosp(x), cosp(y)) ≤ cosp(L(x, y)), p ≥ 2.

Theorem 4.8 ([17] Theorem 3). For p > 1, we have
1. L( 1

sinp(x)
, 1
sinp(y)

) ≥ 1
sinp(A(x,y))

, x, y ∈ (0, πp/2),

2. L( 1
cosp(x)

, 1
cosp(y)

) ≥ 1
cosp(L(x,y))

, x, y ∈ (0, πp/2),

3. L(tanhp(x), tanhp(y)) ≤ tanhp(A(x, y)), x, y ∈ (0,∞),
4. L(arcsinhp(x), arcsinhp(y)) ≤ arcsinhp(A(x, y)), x, y ∈ (0, 1),
5. L(arctanp(x), arctanp(y)) ≤ arctanp(A(x, y)), x, y ∈ (0, 1).

Later, in 2014, Cui and Yin [22] obtained logarithmic mean inequalities for gen-
eralized trigonometric functions with two parameters.
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5. Parameter convexity and concavity for generalized trigonometric
and hyperbolic functions

In 2015, Baricz, Bhayo and Vuorinen began to discuss parameter convexity and
concavity of generalized trigonometric functions in [6]. Their main results read as
follows.

Theorem 5.1 ([6] Theorem 1). For all x ∈ (0, 1) fixed, the following hold:
(1) The functions p 7→ arcsinp(x) and p 7→ arctanhp(x) are strongly decreasing

and log-convex on (1,∞). Moreover, p 7→ arcsinp(x) is strictly geometrically convex
on (1,∞).

(2) The function p 7→ arctanp(x) is strictly increasing and concave on (1,∞). In
particular, the following Turán type inequalities are valid for all p > 2 and x ∈ (0, 1)

arcsin2
p(x) < arcsinp−1(x) arcsinp+1(x),

arctanh2
p(x) < arctanhp−1(x)arctanhp+1(x),

arctan2
p(x) > arctanp−1(x) arctanp+1(x).

Theorem 5.2 ([6] Theorem 2). For all x ∈ (0, 1) fixed, the following hold:
(1) p 7→ arcsinp,q(x) is completely monotonic and log-convex on (1,∞) for q > 1.
(2) p 7→ arcsinp,q(x) is strictly geometrically convex on (1,∞) for q > 1.
(3) q 7→ arcsinp,q(x) is completely monotonic and log-convex on (1,∞) for p > 1.
(4) p 7→ arcsinhp,q(x) is strictly increasing and concave on (1,∞) for q > 1.
(5) q 7→ arcsinhp,q(x) is strictly increasing and concave on (1,∞) for p > 1.

In particular, the following Turán type inequalities are valid for all p > 2, q > 1 and
x ∈ (0, 1)

arcsin2
p,q(x) < arcsinp−1,q(x) arcsinp+1,q(x),

arcsinh2
p,q(x) > arcsinhp−1,q(x)arcsinhp+1,q(x).

Moreover, for p > 1, q > 2 and x ∈ (0, 1), we have the next Turán type inequalities

arcsin2
p,q(x) < arcsinp,q−1(x) arcsinp,q+1(x),

arcsinh2
p,q(x) > arcsinhp,q−1(x)arcsinhp,q+1(x).

In the same paper, they also posed two conjectures.

Conjecture 5.1. For x ∈ (0, 1) fixed, the function p 7→ arcsinhp(x) is strictly
concave on (1,∞). In particular, the following Turán type inequality is valid for all
p > 2 and x ∈ (0, 1)

arcsinh2
p(x) > arcsinhp−1(x)arcsinhp+1(x).

Conjecture 5.2. The following Turán type inequalities hold for all p > 2 and
x ∈ (0, 1)

sin2
p(x) > sinp−1(x) sinp+1(x),

cos2p(x) > cosp−1(x) cosp+1(x),

tan2
p(x) < tanp−1(x) tanp+1(x),

sinh2
p(x) < sinhp−1(x) sinhp+1(x),

tanh2
p(x) > tanhp−1(x) tanhp+1(x).
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Later, Karp and Prilepkina [31] studied extensively the conjectures in 2015. Using
an auxiliary Lemma, they obtained the following results, showing that, for each fixed
y ∈ (0, 1), the function p 7→ sinp(y) is strictly log-concave on (0,∞), and that, for
each fixed y ∈ (0, log 2), the function p 7→ tanp(y) is strictly convex on (1,∞), and
the function p 7→ cosp(y) is strictly concave on (1,∞) respectively, and that, for
each fixed y ∈ (0,∞), the functions p 7→ sinhp(y) and p 7→ coshp(y) are strictly
log-concave on (0,∞), the function p 7→ tanhp(y) is strictly concave on (0,∞).

6. generalized complete elliptic integrals

We may define all kinds of general complete elliptic integrals via generalized
trigonometric functions.

6.1. Complete p-elliptic integrals. In 2016, Takeuchi [49] defined a new form
of the generalized complete elliptic integrals via generalized trigonometric functions
with single parameter. We repeat the definition of complete p−elliptic integrals of
the first kind Kp(k) and of the second kind Ep(k): for k ∈ (0, 1)

Kp(k) :=

∫ πp
2

0

dθ

(1− kp sinpp θ)
1− 1

p

=

∫ 1

0

dt

(1− tp)
1
p (1− kptp)1−

1
p

, (6.1)

Ep(k) :=

∫ πp
2

0
(1− kp sinpp θ)

1
pdθ =

∫ 1

0

(
1− kptp

1− tp

) 1
p

dt. (6.2)

In the paper, he showed Legendre’s relation for Kp(k) and Ep(k)

K ′p(k)Ep(k) +Kp(k)E′p(k)−Kp(k)K ′p(k) =
πp
2
, for k ∈ (0, 1), (6.3)

where k′ := (1− kp)
1
p ,K ′p(k) = Kp(k

′) and E′p(k) := Ep(k
′), and observed relation-

ship between the complete p-elliptic integrals and the Gaussian hyperbolic functions.
As applications of complete p-elliptic, Takeuchi also gave a computation formula of
πp with p = 3 and an elementary proof of Ramanujan’s cubic transformation.

Later, Yin and Mi [59] presented some Landen type inequalities related to Kp(k)
as follows.

Theorem 6.1 ([59] Theorem 2.1). Let a, b, c ∈ R, p > 1 such that c is not a negative
integer or zero and consider the function H : (0, 1) 7→ (0,∞), defined by H(x) =
F (a,b;c;x)

F ( 1
p
,1− 1

p
;1;x)

. Then the following results are true.

(1) If a + b − c ≥ 0 and p2ab ≥ max{(p − 1)c, (p − 1)}, then H(x) is increasing,
and

F (a, b; c; rp)

F
(
a, b; c; ppr

(1+r)p

) ≤ Kp(r)

Kp

(
p p
√
r

1+r

) , (6.4)

F
(
a, b; c;

(
1−r
1+r

)p)
F (a, b; c; 1− rp)

≤
Kp

(
1−r
1+r

)
Kp

(
(1− rp)1/p

) (6.5)

hold true for each other r ∈ (0, 1).
(2)If a + b − c ≤ 0 and p2ab ≤ max{(p − 1)c, (p − 1)}, then H(x) is increasing,

and
F (a, b; c; rp)

F
(
a, b; c; ppr

(1+r)p

) ≥ Kp(r)

Kp

(
p p
√
r

1+r

) , (6.6)
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F
(
a, b; c;

(
1−r
1+r

)p)
F (a, b; c; 1− rp)

≥
Kp

(
1−r
1+r

)
Kp

(
(1− rp)1/p

) (6.7)

hold true for each other r ∈ (0, 1).

6.2. Complete (p, q)-elliptic integrals. In 2015, for all p,∈ (1,∞) and r ∈ (0, 1),
the complete (p, q)-elliptic integrals of the first and second kinds [20, 47] are defined
by

Kp,q(r) :=

∫ πp,q
2

0
(1− rq sinqp,q t)

(1/p−1)dt,K ′p,q = K ′p,q(r) = Kp,q(r
′)

and

Ep,q(r) :=

∫ πp,q
2

0
(1− rq sinqp,q t)

1/pdt, E′p = E′p,q(r) = Ep,q(r
′),

respectively. Here, p, q > 1, r ∈ (0, 1) and r′ = (1− rp)1/p.
In [20], Bhayo and Yin studied Turán type inequalities and series representation

of complete (p, q)−elliptic integrals in detail. Their main results read as follows.

Theorem 6.2 ([18] Theorem 2.6). For p, q > 1 and r ∈ (0, 1), we have
(1) The function r 7→ Kp,q(r) is strictly increasing and log-convex. Moreover,

r 7→ Kp,q(r) is strictly geometrically convex on (0, 1).
(2) The function r 7→ Ep,q(r) is strictly decreasing and geometrically concave on

(0, 1).

Theorem 6.3 ([18] Theorem 2.7). For fixed r ∈ (0, 1) and q > 0,
(1) The functions p 7→ Kp,q(r) is strictly increasing and log-concave on (0,∞),
(2) The function p 7→ Ep,q(r) is strictly increasing and log-concave on (0,∞).
For fixed r ∈ (0, 1) and p > 0,
(3) The functions q 7→ Kp,q(r) is strictly decreasing and log-convex on (0,∞),
(4) The function q 7→ Ep,q(r) is strictly decreasing and log-convex on (0,∞).

In particular, for r ∈ (0, 1), the following Turán type inequalities hold true

Kp,q(r)
2 ≥ Kp−1,q(r)Kp+1,q(r), p > 1, q > 0,

Ep,q(r)
2 ≥ Ep−1,q(r)Ep+1,q(r), p > 1, q > 0,

Kp,q(r)
2 ≤ Kp,q−1(r)Kp,q+1(r), p > 0, q > 1,

Ep,q(r)
2 ≤ Ep,q−1(r)Kp,q+1(r), p > 0, q > 1.

Theorem 6.4 ([18] Theorem 2.9). For p, q > 1 and r ∈ (0, 1), λ < 1
2 , we have

Kp,q(r) =
πp,q
2

∞∑
n=0

( 1
p − 1

n

)
1

(1− λ)
n+1− 1

p

n∑
j=0

(−1)j
(
n
j

)(
−1
q

j

)( 1
p − 1− 1

q

j

)
λn−jrqj ,

(6.8)
and

Ep,q(r) =
πp,q
2

∞∑
n=0

( 1
p

n

)
1

(1− λ)
n− 1

p

n∑
j=0

(−1)j
(
n
j

)(
−1
q

j

)( 1
p − 1− 1

q

j

)
λn−jrqn.

(6.9)
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Later, Bhayo and Yin [20] gave two interesting inequalities. First of all, they
denoted the function

∆p,q(r) =
Ep,q − (r′)pKp,q

rp
−
E′p,q − rpK ′p,q

(r′)p

and obtained following theorems.

Theorem 6.5 ([20] Theorem 1.3). The function ∆p,q is strictly increasing and strict-

ly convex from (0, 1) onto

(
(1− 1

p
)πp,q

2(1+ 1
q
− 1
p
)
− 1, 1−

(1− 1
p
)πp,q

2(1+ 1
q
− 1
p
)

)
for p, q satisfy the following

conditions:
(i) 2 + 1

p + 1
p2
≤ 5

p + 1
q < 3 + 1

p2
;

(ii) ε(p, q) > 0;
where

ε(p, q) = 20− 42

p
+

6

q
+

21

p2
− 2

q2
− 20

pq
+

9

p2q
− 3

p3
− 1

p3q
.

Moreover, for all r ∈ (0, 1), we have

(1− 1
p)πp,q

2(1 + 1
q −

1
p)
− 1 + α(r) < ∆p,q(r) <

(1− 1
p)πp,q

2(1 + 1
q −

1
p)
− 1 + βr (6.10)

with best possible constants α = 0 and β = 2−
(1− 1

p
)πp,q

(1+ 1
q
− 1
p
)

.

Theorem 6.6 ([20] Theorem 1.4). For all r, s ∈ (0, 1) and p, q satisfying conditions
(i) and (ii), we have

(1− 1
p)πp,q

2(1 + 1
q −

1
p)
− 1 < ∆p,q(rs)−∆p,q(r)−∆p,q(s) < 1−

(1− 1
p)πp,q

2(1 + 1
q −

1
p)
. (6.11)

Theorem 6.5 and 6.6 generalized results of Alzer and Richards in [2]. It is worth
to note that Yin and Huang also denoted another (p, q)−elliptic integrals in 2015.
The reader may see the reference [55] for more. Very recently, Takeuchi [51] gave a
new complete (p, q, r)− elliptic integrals with three parameters. These integrals are
defined by

Kp,q,r(k) :=

∫ 1

0

dt

(1− tq)
1
p (1− kqtq)

1
r

(6.12)

and

Ep,q,r(k) :=

∫ 1

0

1− kqtq1/r∗

1− tq
1
p

dt, (6.13)

wherep ∈ P∗ := (−∞, 0) ∪ (1,∞], q, r ∈ (1,∞) and 1/r + 1/r∗ = 1.
For p ∈ P∗ and q, r ∈ (1,∞), using sinp,q θ and πp,q, we can express Kp,q,r(k) and

Ep,q,r(k) as follows.

Kp,q,r(k) =

∫ πp,q/2

0

dθ

(1− kq sinqp,q θ)
1/r

, (6.14)

Ep,q,r(k) =

∫ πp,q/2

0
(1− kq sinqp,q θ)

1/r∗dθ. (6.15)
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In the paper, he proved Legendre type relation:
Let p ∈ P∗, q, r ∈ (1,∞) and k ∈ (0, 1). Then

Ep,q,r∗(k)Kp,r,q∗(k
′) +Kp,q,r∗(k)Ep,r,q∗(k

′)−Kp,q,r∗(k)Kp,r,q∗(k
′) =

πp,qπs,r
4

, (6.16)

where k′ := (1− kq)1/r and 1/s = 1/p− 1/q.
The research has just begun, and there are a lot of work remains to be further

research.

7. Open problems

Here, we enumerate several open problems or unsolve problems.

Open Problem 7.1. (conjecture 3.29 [32]) For p ∈ (2,∞) and x ∈ (0, πp/2),

sinhp(x)

x
<

p+ 1

p+ cosp(x)
. (7.1)

Open Problem 7.2. (conjecture [31]) There exists p0 ∈ (0, 1) such that the function
p 7→ sinp(y) is strictly concave on (p0,∞) for all y ∈ (0, 1). If p ∈ (0, p0), concavity
is violated for some y ∈ (0, 1).

Open Problem 7.3. (open problem 3.1 [53]) For all p ∈ (1, 2] and x ∈ (0, πp), then

ln(1− sinp(x))

ln cosp(x)
<
x+ p

x
. (7.2)

Open Problem 7.4. (conjecture 3.8 [14]) For a fixed x ∈ (0, 1), the functions
sinp

(πpx
2

)
, tanp

(πpx
2

)
, sinhp(cpx) are monotone in p ∈ (1,∞). For fixed x > 0,

tanhp(x) is increasing in p ∈ (1,∞).

Open Problem 7.5. (open problem 4.1 [58]) For p ∈ (1,+∞),

p sinp x

x
+

tanp x

x
>

px

sinp x
+

x

tanp x
(7.3)

is valid on (0,
πp
2 ).

Open Problem 7.6. For p ∈ [2,+∞), the function
Kp(
√
r)

Kp(r)
−1

r is strictly decreasing
for x ∈ (0, 1).

Open Problem 7.7. For λ ≤ 0 and p ≥ 2, then the inequality

Mλ(m(x),m(y)) ≤ m(Mλ(x, y)) (7.4)

holds true for all x, y ∈ (0, 1), where Mλ(x, y) is the power mean and m(r) is defined
by m(r) = p

πp
(1− rp)Kp(r)K

′
P (r).
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[5] Á. Baricz, B. A. Bhayo, T. K. Pogány: Functional inequalities for generalized inverse
trigonometric and hyperbolic functions. J. Math. Anal. Appl., 417 (2014), 244-259. 8, 9
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[10] Á. Baricz: Geometrically concave univariate distributions. J. Math. Anal. Appl., 363, No. 1
(2010), 182-196.

[11] P. J. Bushell, D. E. Edmunds: Remarks on generalised trigonometric functions. Rocky
Mountain J. Math., 42 (2012), 13-52.

[12] B. A. Bhayo, J. Sándor: Inequalities connecting generalized trigonometric functions with
their inverses. Issues of Analysis, 2, No. 20 (2013), 82-90.

[13] B. A. Bhayo, M. Vuorinen: On generalized trigonometric functions with two parameters. J.
Approx. Theory, 164 (2012), 1415-1426. 4, 8, 11

[14] B. A. Bhayo, M. Vuorinen: Inequalities for eigenfunctions of the p-Laplacian, Issues of
Analysis, 2, No. 20 (2013), 13-35. 7, 8, 16

[15] B.A. Bhayo, M. Vuorinen: Power mean inequalities generalized trigonometric functions.
Math. Vesnik, 67, No. 1 (2015), 17-25. 10

[16] B.A. Bhayo, M. Vuorinen: On generalized complete elliptic integrals and modular functions.
Proc. Edinb. Math. Soc., 55(2012), 591-611.

[17] B. A. Bhayo and L. Yin: Logarithmic mean inequality for generalized trigonometric and
hyperbolic functions. Acta. Univ. Sapientiae Math., 6, No. 2 (2014), 135-145. http://arxiv.
org/abs/1404.6732 10, 11

[18] B. A. Bhayo and L. Yin: On the generalized convexity and concavity. Problemy Analiza-
Issues of Analysis, 22, No. 1 (2015), 1-9. http://arxiv.org/abs/1411.6586 10, 14

[19] B. A. Bhayo and L. Yin: On the conjecture of generalized trigonometric and hyperbolic
functions. Math. Pannon., Vol. 24, No. 2 (2013), 1-8. http://arxiv.org/abs/1402.7331 5

[20] B. A. Bhayo and L. Yin: On generalized (p, q) elliptic integrals, http://arxiv.org/abs/

1507.00031 14, 15
[21] B. A. Bhayo and L. Yin: On a function involving generalized complete (p, q) elliptic integrals

, http://arxiv.org/abs/1606.03621
[22] W. Y. Cui and L. Yin: Logarithmic mean inequalities for the generalized trigonometric and

hyperbolic functions with two parameters. Octogon Math. Mag., 22, No. 2 (2014), 700-705. 11
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