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RECENT DEVELOPMENTS OF DISCRETE INEQUALITIES FOR
CONVEX FUNCTIONS DEFINED ON LINEAR SPACES WITH
APPLICATIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we survey some recent discrete inequalities for func-
tions defined on convex subsets of general linear spaces. Various refinements
and reverses of Jensen’s discrete inequality are presented. The Slater inequal-
ity version for these functions is outlined. As applications, we establish several
bounds for the mean f-deviation of an n-tuple of vectors as well as for the
f-divergence of an n-tuple of vectors given a discrete probability distribution.
Examples for the K. Pearson x?-divergence, the Kullback-Leibler divergence,
the Jeffreys divergence, the total variation distance and other divergence mea-
sures are also provided.

1. INTRODUCTION

The Jensen inequality for convex functions plays a crucial role in the Theory of
Inequalities due to the fact that other inequalities such as that arithmetic mean-
geometric mean inequality, Holder and Minkowski inequalities, Ky Fan’s inequality
etc. can be obtained as particular cases of it. In order to state some recent reverses
of Jensen’s discrete inequality for functions of a real variable we need the following
facts.

If 2;, y; € Rand w; > 0 (i =1,...,n) with W, := > |, w; = 1 then we may
consider the Cebysev functional

n n n
(1.1) Tw (],‘,y) = Zwﬂ:lyz - ZwixiZwiyi.
i=1 i=1 i=1

The following result is known in the literature as the Griiss inequality

1
(12) T (2,9)] < 7 (0 =) (A=3),
provided
(1.3) —o<y<r;<I'<oo, —0<di<y; <A<
fori=1,...,n.
The constant % is sharp in the sense that it cannot be replaced by a smaller
constant.
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2 S.S. DRAGOMIR

If we assume that —co < v < x; < T' < oo for i = 1,...,n, then by the Griiss
inequality for y; = z; and by the Schwarz’s discrete inequality, we have

1
n n n m 71 1
2
(1.4) iE=1 w; |T; — JEZl wjz;| < zél W;T; — JEZl w;x; 5 (T —7).

In order to provide a reverse of the celebrated Jensen’s inequality for convex
functions of a real variable, S. S. Dragomir obtained in 2002 [I4] the following
result:

Theorem 1. Let f : [m, M] — R be a differentiable convex function on (m,M). If
z; € [m,M] and w; >0 (i=1,...,n) with W,, :== Y, w; = 1, then one has the
counterpart of Jensen’s weighted discrete inequality:

(1.5) 0< ZW (z4) (Z wm)

< Z wif/ (w4) 2 — Z wif/ (z;) Z W; T4
1., , n n
IR SRR SR

Remark 1. We notice that the inequality between the first and the second term in
was proved in 1994 by Dragomir & Ionescu, see [28].

IN

On making use of (|1.4 m, we can state the following string of reverse inequalities

(1.6) 0< szf z;) (Z wlzz>
< Zwif/ (i) 5 — Zwif/ (i) Y wi;
i=1 i=1 i=1

< SUOD = £ ) Y wfoi = 3wy

<UD~ )] [ S wia? — | uge
i=1 j=1

< 17 (M) = 7 ()] (O = ),

provided that f : [m, M] C R — R is a differentiable convex function on (m, M),
z; €mMlandw, >0 (i=1,...,n) with W, := >  w; = 1.

Remark 2. We notice that the inequality between the first, second and last term
from @) was proved in the general case of positive linear functionals in 2001 by
S. S. Dragomir in [L3].

The following reverse Jensen’s inequality for convex functions of a real variable
also holds:
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Theorem 2 (Dragomir, 2013 [23]). Let f : I — R be a continuous convex function
on the interval of real numbers I and m, M € R, m < M with [m, M] C I, I is the
interior of I. If z; € [m, M] and w; >0 (i=1,...,n) with W, := > jw; =1,
then

(1.7) 0< sz (z4) <Z 'wlxz)
< (M =370, wij\ji)_(%i:l wi; —m) U (Z WL M, M)

i=1

M — i L wiT; —
( Z =1 Wi Ly ) (Zz:l Wi T m) sup \I/f (t m,M)
M—m te(m,M)

n n f/, M _f/ m
(M—Z;wixi> <2wﬂi—m> (J\/}—m+( :

1O = m) [ () = 1. ()],

IN

IA

where ¥y (-;m, M) : (m, M) — R is defined by

We also have the inequality

o v ()
< (M — E —1 w;T;) (Ei:l wi; —m) Uy (i W;Tq; M, M>

M—m

gi(M—m)\Iff (é;wimi;m,M)

SE(M—m) sup Wy (t;m, M)
4 te(m,M)

< 3 (M —m) [72 (M) ~ 1 (m)]

provided that Y, wx; € (m,M).

The following result also holds:
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Theorem 3 (Dragomir, 2013 [23]). With the assumptions of Theorem[d, we have
the inequalities

(1.9)

HM:

i o)

M =370 wii Yl wiky —m
M m ’ M—-—m

[ 2o ()]
< ;max{M—;wixi,;wﬂi —m} [fL (M) = f (m)] .

Remark 3. Since, obviously,

M =" Jwizg Y wiz; —m <1
M—m ’ M—-m -7
then we obtain from the first inequality in (@ the simpler, however coarser in-
equality, namely

(1.10) 0<Zwl ) (Zwm)<2[f(m);f(M)—f<m;M>].

This inequality was obtained in 2008 by S. Simi¢ in [31].

I /\

The following result also holds:

Theorem 4 (Dragomir, 2013 [24]). Let ® : I — R be a continuous convex function
on the interval of real numbers I and m, M € R, m < M with [m, M] C f, I is
the interior of I. If z; € I and w; > 0 for i € {1,...,n} with Y ., w; =1, denote
Ty = Zn L wix; € I, then we have the inequality

(1.11) 0< Zw@ (i) — @ (Zw)

M — %) [T |® (1) dt + (F —m MAd (1) dt

S( ) [, 19" ()] dt + ( ) [z, 127 (1)l = O (£ M)
M—-m

where Og (Ty;m, M) satisfies the bounds

(1.12) Og (Tu;m, M)

Ty —mEM M
b e e
<

L2t @)lde+

(1.13) O (Ty;m, M)

Mo (1) dt — [ | (t)

.

(T —m) (M — Zy)
= (19 iz 21,00 19 1,00
1 191, 00+ 19 oo _ 1
< 5 (M—m) . < 5 O =) |91l 011
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and

(1.14) O (To;m, M)

1 = = /4
=M —_m (T —m) (M — Zy) ”(I)/”[;iw,M]p
(M = T0) (T =) ]
1 _ _ _ _ 1/
< 57— (@ =m)T (M = 20) + (M = 20)" (@0 = m)] 12l 01

where p > 1, 7—|—%:1

For a real function ¢ : [m, M] — R and two distinct points «, 8 € [m, M] we
recall that the divided difference of g in these points is defined by

[ov, B; g] =

Theorem 5 (Dragomir, 2011 [22]). Let f : I — R be a continuous convex function
on the interval of real numbers I and m, M € R, m < M with [m, M] C 1,1 the
interior of I. Let a = (a1,...,an), P = (p1,-..,0n) be n-tuples of real numbers
withp; >0 (i €{1l,...,n}) and >\ pi=1. If m<a; <M, i€{l,...,n}, with
Z?:l Dia; 7é m, Mv then

n
(1.15) Sopilf ijaj sgn | @i =Y _pja;
: ~
< sz a;) (sza1>
% (lZpiai,M;f] — [m,Zpiai;fD > pilai = pja;
i—1 i=1 i=1 J=1

(lZPianM;f] - [mvzpiaiQ f])
i=1 i=1

07 1/2
n
> pja
j=1

IA

IN

X
| N | =

n

=

1=
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If the lateral derivatives f' (m) and f’ (M) are finite, then we also have the in-
equalities

(1.16) 0< Zpl a;) (szm)
% <[Zpiai,M; f] - [myzpi%;f}) > pilai— > pja
i=1 i=1 i=1 =1

<5 1200 = £ m) Y pi|as— Y piy
i=1 j=1
97 1/2
< S [0 = g o] [Soma? — [ Y piey
i=1 j=1

In this paper we survey some recent discrete inequalities for functions defined
on convex subsets of general linear spaces. Various refinements and reverses of
Jensen’s discrete inequality are presented. The Slater inequality version for these
functions is outlined. As applications, we establish several bounds for the mean
f-deviation of an n-tuple of vectors as well as for the f-divergence of an n-tuple
of vectors given a discrete probability distribution. Examples for the K. Pearson
x2-divergence, the Kullback-Leibler divergence, the Jeffreys divergence, the total
variation distance and other divergence measures are also provided.

2. REFINEMENTS OF JENSEN’S INEQUALITY

2.1. Preliminary Facts. Let C' be a convex subset of the linear space X and
f a convex function on C. If p = (p1,...,pn) is a probability sequence and x =
(x1,...,2n) € C™, then

(2.1) f (Zm%) <> pif (@),
i=1

is well known in the literature as Jensen’s inequality.
In 1989, J. Pecari¢ and the author [30] obtained the following refinement of (2.1)):

n n $i1+...+xik+l
(22) f <lezl'1> < Z Diy ---pikﬂf <k+1
1= 71

SRS ik+1:1

T 4+ x;
< Z R
71

’Lk 1
n

<> pif (),
=1

for £ > 1 and p, x are as above.



DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS 7

If g1,...,qx > 0 with Z 14 = 1, then the following refinement obtained in
1994 by the author [2] also holds

(2.3) f(;}%%)ﬁ Z Diy - Din f (W)

7,k1

n
< Z Pir D f (@i, + o+ qexi) <Y pif (@
i=1

11,0 =1

where 1 < k < n and p, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the arith-
metic mean-geometric mean inequality, the generalized triangle inequality etc., see
[3]-129].

2.2. General Results. The following result may be stated.
Theorem 6 (Dragomir, 2010 [19]). Let f : C — R be a convex function on the

convez subset C of the linear space X, z; € C, p; > 0,4 € {1,...,n} with Y . p; =
1. Then

> pjzj | < min l(l—pk)f<zj_1pj$jkpkmk> +pkf(xk)]
j=1

ke{l,...,n} 1 -

IR S DT — DRk "
S[Z(lp@f( j 11J j >+Zpkf(zk)]

n — Dk

k=1 k=1
27—1 DT — Py

< 1- j=
= el l( pi) f < 1= pn + o f (z)

INA
1
EON
kﬁ
g

In particular,

@5 f Y] <y win [(n—l)f (Z‘nfl"> +f(xk>]
1 & Z;l 1T — Tk =
< 2 l(n1)§f <n—1> Jr};f(xk)]

A
| =
)
3
2
| —— |
—
3
|
—_
N—
k‘\
N
<.
i s
N
o
—

-
N———
+
~
—
=

=
~—
| IS

INA
SN
\g

—

S}
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Proof. For any k € {1,...,n}, we have

j=1 n n
a 1
£k
Zpﬂa Py, = Zpﬂa == iy = (L=—pr)-— > Pz,
Tk J;pj Tk j;pj Ik
i#k i#k
which implies that
> i_1 DiTj — DrTk R
(26) e = Do €0
Dk Z
Pj 5 7¢k
7#k

for each k € {1,...,n}, since the right side of (2.6) is a convex combination of the
elements z; € C, j € {1,...,n}\ {k}.

Taking the function f on (2.6)) and applying the Jensen inequality, we get suc-
cessively

7 (Z?_1 pbjx; — pkxk)

ZP;% = m ij (;)

— pj J#k — pj J#k
j=1 j=1
i#k i#k

1—px

1 n
1T ;pjf(xj) —pif (zk)

for any k € {1,...,n}, which implies

Z?;l PjTj — PkTk >

+oif (k) < pif ()

27) ﬂ—mU( T '

for each k € {1,...,n}.
Utilising the convexity of f, we also have

(23) umw<ZFff;m”ﬂ+puuw

1—px

oD% — PR n
> f [(1 —pr) - =2 +prxi | = f ijwj
j=1

for each k € {1,...,n}.
Taking the minimum over & in (2.8)), utilising the fact that

1 n
< — Z < max oy
ke{l JQ n ke{l,...,n}
and then taking the maximum in ([2.7), we deduce the desired inequality (2.4)).

After setting z; =y, —> ., qu and p; = ¢;, j € {1,...,n}, Theorem@becomes
the following corollary:
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Corollary 1 (Dragomir, 2010 [19]). Let f : C — R be a convex function on the
convex subset C, 0 € C, y; € X and g; > 0, j € {1,...,n} with Z;;l g = 1. If
Yj — Y @yt € C for any j € {1,...,n}, then

(2.9) f(0)

fke?ﬁi&n}{“q [ a0
1 n
n{;(l—% f[ (

1_
keﬁf‘.}fn}{ ar) [

<> af <yg me)
j=1

(Z ay — yk> :rq;ef (yk - %mw) }
k) ()]

Qyr — yk> + aif (yk - Z%Zﬂ) }
=1

IN

IN

n
> aw -
=1

A

In particular, if y; — %Z?:I yr € C for any j € {1,...,n}, then

(210) £(0)

Lowin Jo-nr| (1Y
nke{r{l,l.l},n} " n—1 nlzlyl Yk

IN

A IN
§\>—‘ :m"‘
-

,9: 3

" !

3
> —
—— —

s M-

S

| ~

— —

— 3

< 7l
L —

: —

| | =
— S|
/_\HM:
S|

<

(]

< <

= =

N——

NS

=
N——

IN
S|~
[~]=
&,‘
T
Sl
|
\
()=
<
N————

The above results can be applied for various convex functions related to cele-
brated inequalities as mentioned in the introduction.

Application 1. If (X, ||-||) is a normed linear space and p > 1, then the function
f: X =R, f(x)=|z|”is convex on X. Now, on applying Theorem@and Corollary
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for:ciEX,pi>O,i€{1, ,n} with >0 p; =1, we get:

p p
n
(2.11) E piTs|| < keglin , (1—pp)' 7 E piz; — pexk| + ok |k’
yeens TV -
_ =
1 n
< — E 1 — E E : P
=0 & pk: Pj%j — Pk + Dk ||x/€||
P

< 1— 1-p o »
*keg?ﬁn} (1= px) ;pﬂj Pei|| + okl

n

<Y o)l

and

T — me

ke{l,....n

(2.12) max }{[(1_pk>1 p p+pk]

1=1
n n P
< ZP;‘ Ty — Zpliﬁl
j=1 I=1
In particular, we have the inequality:
P P
1 n 1 1 » n »
(2.13) n 2o < omin =TT @ —an el
j=1 Jj=1
1
< |00y ij ~a +Zuwkw’
k=1
1 - ’
< = _ 1P o P
T L (n—1) j;% wr|| A+ el
1< »
<3 ol
j=1
and
n 1 n p
2.14 n—ll_p—&—l} max lzp — ) S Ti—— ) T
(214)  [(n-1) s Z g Py

If we consider the function h, (t) := (1 — £ PP 4+, p>1,t€0,1), then we
observe that

W) =1+ptP Q-0+ (p-1)tP(1-t)",

which shows that h, is strictly increasing on [0,1) . Therefore,

. 1_ l_p }:m 1_m1_pp
kefnl,l.?,n}{( pe) UL Aok =pm+ (1 —pm) T 0h,
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where p,, := i %nin , p- By (2.12)), we then obtain the following inequality:
e{l,...,n

P

2.15)  [pm 1—m1"’-”]
(2.15)  |pm+ (1 =pm) " D5, e

n
Ty — me
=1
n n
< ij Tj— Zpléﬂz
j=1 1=1

Application 2. Let z;, p; >0, i € {1,...,n} with > | p; = 1. The following
inequality is well known in the literature as the arithmetic mean-geometric mean
inequality:

p

n

(2.16) ijmj > ﬁx?j.
j=1

Jj=1

The equality case holds in (2.16)) iff 1 = - -+ = .
Applying the inequality (2.4) for the convex function f : (0,00) — R, f(z) =
—Inz and performing the necessary computations, we derive the following refine-

ment of (2.16]):

n n 1-
Zj:] PjTj — PkXk e i
(2.17) Zpixi >  max -z,

= ke{l,...,n} 1 —pi
n n 1—ps n
ijl bjTj — Prlk i
> H "L
pale 1—pk

TR A .
) _1Di%j — PrTk ‘ ,
>  min ( g=1-9"J ) -szk > Hatfl

= ke{l,...n} 1—pp

In particular, we have the inequality:

n =
1 n Zj:l xj — Tk %
— E T; > max -1 C Xy,
n P ke{1,...,n} n—

Z'ﬂ T — xk n 1 n %
. j=13 -

>  min == - - cxr b > o
T ke{1,...,n} n—1 k = le[l g

2.3. Applications for f-Divergences. The following refinement of the positivity
property of f-divergence may be stated.
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Theorem 7 (Dragomir, 2010 [I9]). For any p, q € P", namely p, q are probability
distributions, we have the inequalities

(2.18) Ir(p,q) > max [(1 —a) f <1 —Z:) kS <§:ﬂ

= ke{l,...,n} 1
1, 1 —px - Pk
Zanzjl(l qk)f(lqk>+’;qkf<qk>1

>  min 1- + — ]| =0,
ke{l,...,n} [( a) f (1 — g af qx

provided f : [0,00) — R is convex and normalized on [0, 00).

The proof is obvious by Theorem@applied for the convex function f : [0,00) — R
and for the choice z; = %, i € {1,...,n} and the probabilities ¢;, i € {1,...,n}.
If we consider a new divergence measure Ry (p,q) defined for p,q € P" by

(2.19) Ry (o) = 2 S (22

— 1—q

and call it the reverse f-divergence, we observe that

(2.20) Ry (p,q) = Iy (r,t)
with

L—p L—pn l—q l—qn
= t= >2).
g <nl7 ’nl)’ (nl’ "n—1 (n=2)

With this notation, we can state the following corollary of the above proposition.

Corollary 2. For any p, q € P, we have

(2.21) If (p,q) > Ry (p,q) > 0.

The proof is obvious by the second inequality in and the details are omit-
ted.

In what follows, we point out some particular inequalities for various instances of
divergence measures such as: the total variation distance, x2-divergence, Kullback-
Leibler divergence, Jeffreys divergence.

The total variation distance is defined by the convex function f(t) = [t — 1],
t € R and given in:

(2.22) V(p,q) = qu

n
i
- ‘lejcm-
4 =

The following improvement of the positivity inequality for the total variation
distance can be stated as follows.

Proposition 1. For any p, q € P*, we have the inequality:

(2.23) V(p,q) >2 max |pp—q| (>0).
ke{1l

yeeeyn }

The proof follows by the first inequality in (2.18]) for f(¢) =t —1|,t € R.
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2

3

The K. Pearson y2-divergence is obtained for the convex function f (t) = (1 —t)
t € R and given by

n

2 L - (P 2_ M
(2.24) X~ (p.q) .—;% <qj ) —Z G

Jj=1

Proposition 2. For any p, q € P",

2
2.25 2(p,q) > max M >4 max —q)? (>0).
(225) X" (p,q) = pemax {qk(l e G L (P —ar)” (=0)

Proof. On applying the first inequality in 1' for the function f (¢) = (1 — t)z,
t € R, we get

1 —pk ? Dk 2
2 > 1— - 1> + < ~1
X (p,q) = pomax {( ax) <1 —. o

B (o — ar)’
= max I E— .
ke{l,.n} | @ (1 —qx)

Since 1 1
q (1 —qx) < 1 [ar + (1 —qu)]* = R
then 5
(pr — aqr) 2
= > 4(pr —
ar (1 —qi) ( )
for each k € {1,...,n}, which proves the last part of (2.25). |

The Kullback-Leibler divergence can be obtained for the convex function f :
(0,00) = R, f(t) =tlnt and is defined by

~  pi, (D) - P;
(2.26) KL(p,q) := qu - 1n <J> = ij In <j> )
P A = %

Proposition 3. For any p, q € P, we have:

L-pe\ 77 e\
2.27 KL(p,q) > In max S = > 0.
(2.27) (,9) pemax (1 — qk) <qk>

Proof. The first inequality is obvious by Theorem [7] Utilising the inequality be-
tween the geometric mean and the harmonic mean,

1
l’aylia Z P p—— x,y>0, o€ [O, 1]

& _|_ &

x y
we have )

_ —Dk Pk

(=) () =
1 — gk qk

for any k € {1,...,n}, which implies the second part of (2.27)). O

Another divergence measure that is of importance in Information Theory is the
Jeffreys divergence

(2.28) J(p.q) = jz:qj : (2; - ) In (pj) = En: (pj —q;)In (pj> ;

qj j=1 q;
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which is an f-divergence for f (t) = (¢ — 1)Int, ¢ > 0.

Proposition 4. For any p, q € P, we have:

(1—pk)qu”
2.29 J(p,q) > max — In | —"——
(2.29) v,9) ke{lmn}{(qk o) [uqu
2
> max M > 0.
ke{l,...n} | Pk + qk — 2Pk

Proof. Writing the first inequality in Theorem (7| for f (¢) = (¢ — 1) Int, we have

1 —pi > <1—pk>] <Pk
J(p,q) > max 1-— —1])In + — -1
(P, q) ke{l,...n} {( o) K 1—qx 1—qs i qx

1 —pg Pk
ke?ll?-x-,n} {(Qk Pi) In (1 - Qk> (@ —pe)ln (q’f>}

s {in-rom =202}

ke{l,...,n} (1 — Qk)pk-
proving the first inequality in (2.29)).
Utilising the elementary inequality for positive numbers,

Inb—1na 2
> )
b—a T a+bd

a,b>0

we have

—Db Pk —
1—(1: q: L= a aw
1-p p
C(ge—py)? I (1—q:) —1In (qf)
— Pe_ ——
qr (1 — qx) Bk B
2 2
(g —pr)” 2 2@-—p)
Tae(l—gr) R P prtqe — 2pRar

for each k € {1,...,n}, giving the second inequality in (2.29).

)

Pk

qk

)}

O

2.4. More General Results. Let C' be a convex subset in the real linear space
X and assume that f : C — R is a convex function on C. If z; € C and p; >
0,7 € {1,...,n} with > | p; = 1, then for any nonempty subset J of {1,...,n} we
put J :={1,...,n} \ J (# 0) and define P; :=Y_,., p; and P; := P; = SieiPi =
1 — > ,c;pi- For the convex function f and the n-tuples x := (z1,...,2,) and

p := (p1,...,pn) as above, we can define the following functional

(230) D (f,p,x;J) = Psf (;I Zp,-xi) + Py f P% > b

v aed < jeg

where here and everywhere below J C {1,...,n} with J # 0 and J # {1,...,n}.
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It is worth to observe that for J = {k},k € {1,...,n} we have the functional
(2.31) Dy (f,p,%) := D (f,p,x;{k})
=pif (zr) + (L —pi) f <

D1 Pi%i — pkxk)
1 —pi

that has been investigated in the paper [19].

Theorem 8 (Dragomir, 2010 [20]). Let C' be a convexr subset in the real linear

space X and assume that f : C — R is a convex function on C. If x; € C and

pi > 0,4 € {1,...,n} with Y. | p; = 1 then for any nonempty subset J of {1,...,n}
we have

(2.32) Zpkf z) > D (f,p,x;J) > f (Zpkxk>

k=1

Proof. By the convexity of the function f we have

D(f.p.x:J) = PJf< me) + By f me

zEJ ]eJ
> f ( ZP;%) +PJ P ijmj
ZGJ jEJT

S {g)

for any J, which proves the second inequality in (2.32)).
By the Jensen inequality we also have

> pef (k) =Y pif (@) + > pif (x5)
k=1

ieJ jeJ

2PJf< sz$z> + Py f zpﬂj

ZEJ jeJ
=D (f,p,x;J)
for any J, which proves the first inequality in (2.32]). a

Remark 4. We observe that the inequality can be written in an equivalent
form as

(2.33) Zpkf D(f.p.x;J)

@ JC{I, .,n}

and

(2.34) min D (f,p,x;J) > f (me) -

0#JC{1,...,n} P
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These inequalities imply the following results that have been obtained earlier by the
author in [19] utilising a different method of proof slightly more complicated:

(2.35) Zpkf Tk) > maX }Dk (f,p,x)

and

(236) ke{nllin }Dk (f,p7x) > f (ZPk%&) .
et k=1

Moreover, since
max D(f,p,x;J)> max D (f,p,x
0#£JC{1,...,n} (f p ) ke{l,...,n} k (f p )
and

in D > i D o J
o k(f’p’x)*wﬂglll?---,n} (2 x;.J),

then the new inequalities and are better than the earlier results devel-
oped in [19].

The case of uniform distribution, namely, when p; = % for all {1,...,n} is of
interest as well. If we consider a natural number m with 1 < m <n — 1 and if we
define

n

1 & - 1
(2.37) Dm(f,x):::jbf<m;xi>+nnmf T m Z Z;

j=m+1

then we can state the following result:

Corollary 3 (Dragomir, 2010 [20]). Let C be a convex subset in the real linear
space X and assume that f : C — R is a convex function on C. If x; € C, then for
any m € {1,...,n — 1} we have

(2.38) —Zf (1) > Dy (f,%) ( ka>

In particular, we have the bounds

(2.39) Zf i)
m 1 n
= ey 0 ( sz) =1 n—m _z: i

and

m 1 — n—m 1
2.40 i — — i ;
( ) me{f.l.l?nq} nf (m ;x> + n ! n—m Z T

f(i;xk>

The following version of the inequality (2.32]) may be useful for symmetric convex
functions:
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Corollary 4 (Dragomir, 2010 [20]). Let C be a convex function with the property
that 0 € C. If y; € X such that for p; > 0,5 € {1,...,n} with > p; = 1 we
have y; — Y. piy; € C for any j € {1,...,n}, then for any nonempty subset J of
{1,...,n} we have

(2.41) Zpkf Y — Zpiyi > P;f | Ps L sz‘yz‘ . ijyj
k=1 i=1 Pric Py

jeJ
+Pyf P LZ*LZ > £(0)
J J pJ .Ejpjy] P, ‘EJpzyz = .
J K3

Remark 5. If C is as in Corollary and y; € X such that y; — % > yi €C for
any j € {1,...,n} then for any m € {1,...,n — 1} we have

n

1 n 1 n _ 1 i 1
(2.42) nl;f(yk—nl_zlyz>>7:f nnm E;yl_ Z Yj

n—m .
j=m+1

n—m

m 1 " 1 &
— g ‘——g i > f(0).
+ n ! n\n—m Yi mizly = f(0)

j=m+1

Remark 6. It is also useful to remark that if J = {k} where k € {1,...,n} then
the particular form we can derive from can be written as

(243) > pof (ye - Zm%)

{=1 i=1

1 n
>pef | (L=pr) | ye — T iji‘/j — PrYk
j=1

+ (L —pr) f | Pk

1 > oy —peuk | —ue || = £(0),
S et

which is equivalent with

(2.44) Zpef (yz - Zpiyi> >pef | yr — ijyj
=1 i=1 j=1

Pk
1—pg

+ (1 =pe) f ijyj_yk > f(0)
Jj=1

for any k € {1,...,n}.

2.5. A Lower Bound for Mean f-Deviation. Let X be a real linear space. For
a convex function f : X — R with the properties that f(0) = 0, define the mean
f-deviation of an n-tuple of vectors x = (z1,...,z,) € X™ with the probability
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distribution p = (p1, ..., p) by the non-negative quantity

(2.45) Ky (p,x) =Y pif (xi - Zpk$k> :
i=1 k=1

The fact that K (p,x) is non-negative follows by Jensen’s inequality, namely

Ky (p,x) > f (sz (Iz - ZPk%)) =[(0)=0.
i=1 k=1

A natural example of such deviations can be provided by the convex function
[ (z) :=||z||" with r > 1 defined on a normed linear space (X, ||-||) . We denote this
by

T

(2.46) K. (p,x) =Y pi|zi— Y prak
i=1 k=1
and call it the mean r-absolute deviation of the n-tuple of vectors x = (21, ...,x,) €
X™ with the probability distribution p = (p1, ..., pn) -
The following result that provides a lower bound for the mean f-deviation holds:

Theorem 9 (Dragomir, 2010 [20]). Let f : X — [0,00) be a convex function with
f0)=0.If x=(z1,...,2n) € X" and p = (p1, ..., Pn) is a probability distribution
with all p; nonzero, then

_ 1 1
(247) Kf (p,X) > max PJf PJ F] Zp,mi — ?] ijxj

T 0#AJC{1,...,n} J T T ieT
1 1
+Pif [ 5D pivi— 5 Y i | ¢ (20).
PJ A PJ .
jeJ icJ

In particular, we have

(2.48) Ky (p,x)

The proof follows from Corollary [ and Remark [6}
As a particular case of interest, we have the following:

Corollary 5 (Dragomir, 2010 [20]). Let (X,||-|) be a normed linear space. If
X = (1, .., zp) € X™ and p = (p1,...,pn) 18 a probability distribution with all p;
nonzero, then for r > 1 we have

(2.49) K, (p,x)

T

— _ 1 1
> max PiPy (P 4+ Py 5= pimi— = Y piz; >0).
0£JC{1,...,n} ( J J ) inGZJ PJJEZJ L g (>0)
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Remark 7. By the convezity of the power function f (t) =t",r > 1 we have
P;P; (P;' + P;7Y) = P;Py + PP}
> (PJPJ + pJPJ)T = 2TP§p§

therefore
(2.50) PJ.PJ (P§71 + P} 1 szxz ijmj
zeJ JEJ
> 2" PPy Zplac2 Zp]xj =2"|\P; Zpimi - Py ijffj
T e ]EJ ieJ jeJ
Since
(251) PyY piwi— Py pjw;=(1—P) Y piwi— Py (Zpkxk - Zpﬂ&)
i€J jeJ i€J i€J
- szxz PJ Zpkxkv
icJ

then by - we deduce the coarser but perhaps more useful lower bound

Zpﬂh PJZPkl‘k }>0)~

i€J
Corollary 6 (Dragomir, 2010 [20]). Let (X,|-||) be a normed linear space. If
X = (1, ., zp) € X™ and p = (p1,...,pn) 18 a probability distribution with all p;
nonzero, then for r > 1 we have
b= }
1=1

Remark 8. Since the function h, (t) :== (1 —t)" "t +t, r > 1, t € [0,1) is strictly
increasing on [0,1), then

2.52 K, (p,x) > 2"
(2.52) (p,x) 0y X ’n}{

The case for mean r-absolute deviation is incorporated in:

2.53 K, (p,x) > 1—pe) " ph
(2.53) (p X>—ke?%i‘?in}{[< pi)' " b+ i

win {090 B+ ) = o+ (0 =)
ke{l,...,n}
where p, :— min  pg.
ke{l,...,n}

We then obtain the following simpler inequality:

(2.54) K, (p,x) > [pm +(1=pm) " -plﬁ} max

ke{l,...,n} ’

n P
Tp — E Pz
=1

which is perhaps more useful for applications (see also [19)]).
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2.6. Applications for f-Divergence Measures. We endeavour to extend the
concept of f-divergence for functions defined on a cone in a linear space as follows.

Firstly, we recall that the subset K in a linear space X is a cone if the following
two conditions are satisfied:

(¢) for any z, y € K we have z +y € K;

(#4) for any x € K and any a > 0 we have az € K.

For a given n-tuple of vectors z = (21, ..., 2,) € K™ and a probability distribution
q € P" with all values nonzero, we can define, for the convex function f: K — R,
the following f-divergence of z with the distribution q

n
2

(2.55) If(z,q) =Y af <Z> :

— qi

i=1
It is obvious that if X = R, K = [0,00) and x = p €P™ then we obtain the usual
concept of the f-divergence associated with a function f : [0,00) — R.

Now, for a given n-tuple of vectors x = (z1,...,2,) € K", a probability distrib-

ution q € P™ with all values nonzero and for any nonempty subset J of {1,...,n}
we have

as = (Qs,Qs) € P?
and

Xy = (XJ,XJ) e K?
where, as above

Xy := in, and Xy := X;.
i€
It is obvious that
X - X
Iy (x5,q5) = Quf (Qj) +Quf <Qj> :
The following inequality for the f-divergence of an n-tuple of vectors in a linear
space holds:

Theorem 10 (Dragomir, 2010 [20]). Let f : K — R be a convex function on
the cone K. Then for any n-tuple of vectors x = (x1,...,x,) € K™, a probability
distribution q € P with all values nonzero and for any nonempty subset J of
{1,...,n} we have

2.56 I (x,q) > I (x7,q7) > I (%,
(2.56) 7 (x Q)fm;“én{?}f“m}f(XJ qs) > Iy (x75,q7)

> in I > F (X,
T (x7.q7) > f(Xn)

where X, = > | x;.

The proof follows by Theorem [§ and the details are omitted.

We observe that, for a given n-tuple of vectors x = (z1, ..., x,) € K", a sufficient
condition for the positivity of Iy (x,q) for any probability distribution q € P" with
all values nonzero is that f(X,) > 0. In the scalar case and if x = p €P", then a
sufficient condition for the positivity of the f-divergence Iy (p,q) is that f (1) > 0.

The case of functions of a real variable that is of interest for applications is
incorporated in:
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Corollary 7 (Dragomir, 2010 [20]). Let f : [0,00) — R be a normalized convex
function. Then for any p, q € P we have

PJ 1- PJ
2.57 If (p,q) > — |+ (1—- >0).
e Lz mx foir(02) -0 (20| 2o
In what follows we provide some lower bounds for a number of f-divergences that
are used in various fields of Information Theory, Probability Theory and Statistics.
The total variation distance is defined by the convex function f(¢) = |t —1],
t € R and given in:

(2.58) V(pq) = Z 4

n
b
— - ’:Z|pj_qj|'
q; =

The following improvement of the positivity inequality for the total variation
distance can be stated as follows.

Proposition 5. For any p, q € P, we have the inequality:

2.59 Vip.q)>2 Py — > 0).
(2.59) (o) =2 max [Pr—Qil (20)

The proof follows by the inequality (2.57) for f(¢t) =t —1|,¢t € R.

The K. Pearson x2-divergence is obtained for the convex function f (¢) = (1 — t)?,
t € R and given by

S\ - (-9’
(2.60) X (a) =) g (j_ - ) =
j=1 5 j=1 9
Proposition 6. For any p, q € P",
Py —Q,)’
2.61 2(p,q) >  max (Pr=Qy)"
( ) X (p q) B @#JC{I,‘..,’H,}{QJ (1_QJ)
>4 P;—Qj)° (>0).
> @#J?{?f.,n}( 7 —Qy)" (=20)

Proof. On applying the inequality 1) for the function f(t) = (1 — 15)27 t e R,
we get

Y2 (p,q) >  max {(1QJ)<1—PJ1)2+QJ <P‘]1)2}

T p£JC{l,...,n} 1-Qy Q7

. {(PQ)} |
0£Ic{1,..n} | Qs (1 —Qy)
Since
Q-Qn <R+ 1-QF =1,
then )
m > 4(Py - Q)

for each J C {1,...,n}, which proves the last part of (2.61]). a
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The Kullback-Leibler divergence can be obtained for the convex function f :
(0,00) = R, f(t) =tInt and is defined by

~ v, (1) _\ Pj
(2.62) KL (p,q):= Zq]— - In <J> = ij In <j> .
= U NG 5T 4

J

Proposition 7. For any p, q € P, we have:

1-P, 1-P; P, Py
(2.63) KL(p,q) 2 In l@#?ﬁf.,n} { (1 — QJ) . <QJ> }

Proof. The first inequality is obvious by Corollary [} Utilising the inequality be-
tween the geometric mean and the harmonic mean,

1

=~ a 11—’
ZE+ Yy

> 0.

a, l-«a

x%y xz,y >0, a€0,1]

we have for z = %721 = 11:5‘3 and o = Py that

() ()
1-Qy Q. -

for any J C {1,...,n}, which implies the second part of (2.63]). O

Another divergence measure that is of importance in Information Theory is the
Jeffreys divergence

j=1 j 95 j=1 4q;
which is an f-divergence for f (t) = (¢t — 1) Int, ¢ > 0.

Proposition 8. For any p, q € P, we have:

(1-Py)Q, %"
(2.65) J(p,q) = In (0#3635.7“} { [(1%};)3;]

Qs — Py)°
Pr+Qj;—2P;Qy

Proof. On making use of the inequality (2.57)) for f (t) = (t — 1) Int, we have
J (pq)

1-Py 1- Py Py Py
2 ke(lon) {(1 — @) [(1 -Qs 1) . (1 —QJH Qs <QJ - 1> . <QJ>}
1—PJ PJ
s, (@ P (1257 ) - @ rom ()}

= s, @ pom [=gn |

proving the first inequality in (2.65).

Utilising the elementary inequality for positive numbers,
Inb—Ina 2

> )

b—a T a+b

> 0.

> max
0#JC{1,...,n}

a,b>0
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we have
1-P, P,
w-rln(i=g) ()]
Qs =Fn) 1-Qy Qs
1-P; ) _ Py
— (Qs—Py) (i) - (&) [1—3, _PJ}
0 — o 1-Qs Qu
1-P, P
_ (@s— Py* n (1—Q;) —ln (73)
Qs (1-Qy) =L — &
(Qs — Py)’ _ 2 _ 2@ - Py’
TQI-Qy) =G Pt Qu-2PQ, 7
for each J C {1,...,n}, giving the second inequality in (2.65)). O

3. INEQUALITIES IN TERMS OF GATEAUX DERIVATIVES

3.1. Gateaux Derivatives. Assume that f: X — R is a convex function on the
real linear space X. Since for any vectors z, y € X the function g,, : R — R,
Gz, (t) == f (x4 ty) is convex it follows that the following limits exist

Vi f @) ()= lim flx+ tz? — f(2)

and they are called the right (left) Gateauzr derivatives of the function f in the
point x over the direction y.
It is obvious that for any £ > 0 > s we have

fz+ty) = f(x)
t

(3.1) > Vi f(x)(y) = inf

t>0
2o [+ )~ (@)
<0 S

[f(thy)—f(w)
t

f(z+sy)— f(x)

S

|=vr@w:=
for any z, y € X and, in particular,

(3-2) Vo f(u)(u—v) = f(u) = f(v) 2 Vif(v)(u—0)
for any u, v € X. We call this the gradient inequality for the convex function f. It
will be used frequently in the sequel in order to obtain various results related to
Jensen’s inequality.

The following properties are also of importance:

(3.3) Vif(@)(~y)=-V_f(z)(y),
and
(3.4) Vi f (@) (ay) =aVif(z)(y)

for any z, y € X and o > 0.
The right Gateaux derivative is subadditive while the left one is superadditive,
ie.,
(3.5) Vif(@)(y+2) SVif(z)(y) +Vif(z)(2)
and

(3.6) Vof@)(y+2)2V_f(z)(y)+V-_f(z)(z)
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forany z,y, z € X .

Some natural examples can be provided by the use of normed spaces.

Assume that (X, ||-||) is a real normed linear space. The function f : X — R,
f(z):=1 |]|* is a convex function which generates the superior and the inferior
semi-inner products

N ] el
@) g0 1= tgl(}gl(*) t '

For a comprehensive study of the properties of these mappings in the Geometry of
Banach Spaces see the monograph [16].
For the convex function f, : X — R, f, (x) := ||z||” with p > 1, we have

plll’ ™ (y,2),; if 2 #0

Vit (@) (y) =
0 ifxz=0

for any y € X.
If p =1, then we have

Hx”71 (y,x)s(i) ifx#0
Vi fi(@) (y) =
+(=) Iyl ifz=0

for any y € X.

This class of functions will be used to illustrate the inequalities obtained in the
general case of convex functions defined on an entire linear space.

The following result holds:

Theorem 11 (Dragomir, 2011 [21]). Let f : X — R be a convex function. Then
for any z, y € X and t € [0,1] we have
B7) tA=0)[V_fy)(y—=z)-Vif(z)(y—=z)
Ztf(x)+ (1=t f(y) - fltx+(1-t)y)
2t(1=)[Vifltz+ (1 -t)y)(y—=z) - V_fltx+ (1 -t)y) (y — )] > 0.
Proof. Utilising the gradient inequality we have

(3.8) flz+ 1 -t)y)—f(2) > 1 -)Vif(z)(y—2)
and
(3.9) flz+ 1 =)y) - fy) > -tV_f(y)(y—z).

If we multiply (3.8)) with ¢ and (3.9) with 1 — ¢ and add the resultant inequalities
we obtain

flr+(Q—t)y) —tf(z)—(1—1) f(y)
>(1=-t)tVif(@)(y—2)—t(1-)V_f(y) (y — )

which is clearly equivalent with the first part of (3.7)).
By the gradient inequality we also have

1=V _fltz+(1-t)y)(y—z) > fltz+(1-1)y) — f(z)
and
—tViftr+(1-t)y)(y—2)> ftz+(1-t)y) — f(y)
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which by the same procedure as above yields the second part of (3.7)). ([l
The following particular case for norms may be stated:

Corollary 8 (Dragomir, 2011 [21]). If x and y are two vectors in the normed linear
space (X, ||||) such that 0 ¢ [z,y] :={(1 —s)x + sy,s € [0,1]}, then for any p > 1
we have the inequalities
(3.10) pt(1—1) [Iol" > (v — 29}, — ol >y — 2, 2),

> tllzl” + @ =) lyll” = [ltz + (1 =) y|”
>pt(1—t) e+ 1 - 1)y’ [y -2 to+ (1 —t)y), — (y— 2.tz + (1 —1)y);] > 0
for any t € [0,1]. If p > 2 the inequality holds for any x and y.
Remark 9. We observe that for p=1 in we derive the result

(3.11) t(1—1) [<y — % ”ZIH> N <y o HS;H

>tz) + (1 =) lyll — [tz + (1 = 1)y
_ o, ety \ /0 tr+(A-ty
>i1-9) K” ’ ||m+<1—t>y||>s <y tw+ =ty H =0
while for p = 2 we have
(3.12) 2t(1—t)[{y —z,9); — (y — =, 2) ]
>t + (1 —t) lyl? = [tz + (1 — ) y||?
>20(1 =) [(y—w,tr+ (1=t y), — (y— 2tz + (1 -t)y);] > 0.

We notice that the inequality holds for any x, y € X while in the inequality
we must assume that x, y and tx + (1 — t)y are not zero.

Remark 10. If the normed space is smooth, i.e., the norm is Gateauz differentiable
in any nonzero point, then the superior and inferior semi-inner products coincide
with the Lumer-Giles semi-inner product |-, -] that generates the norm and is linear
in the first variable (see for instance [16]). In this situation the inequality
becomes
—2 -2
(3.13) pt (=) (WP~ Iy = 2] — all”~ [y - 2.2])
>tz + (1 =) lyl” =tz + (1 =) y||” > 0

and holds for any nonzero x and y.
Moreover, if (X, (-,-)) is an inner product space, then becomes

(314) pt(1—1)(y—allyl" "y~ al" " w)

> tllz]” + 1 =) lyl” -tz + 1 - t)y||” > 0.
From we deduce the particular inequalities of interest

(3.15) t(1—1) <y||Z|| = ||||> > tlal| + (1 —¢) lyll — |tz + (1 = )yl >0

and
(3.16) 26(1—1t) fly—z)* > t|=l* + 1 — &) lyl* = [tz + 1 - t) y|* > 0.
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Obviously, the inequality can be proved directly on utilising the properties of
the inner products.

3.2. A Refinement of Jensen’s Inequality. The following refinement of Jensen’s
inequality holds:

Theorem 12 (Dragomir, 2011 [21]). Let f : X — R be a convex function defined
on a linear space X. Then for any n-tuple of vectors x = (21, ...,2,) € X™ and any
probability distribution p = (p1,...,Pn) € P™ we have the inequality

(3.17) sz () <szxz>
> gpkmf (me) ~Vif <me> (2;”) >0

In particular, for the uniform distribution, we have

(318) =3 f @) - (i Zw>
gl ()5
k=1 i=1 i=1

Proof. Utilising the gradient inequality (3.2)) we have

(3.19) fog) = f (Zpﬁ%) >Vif (Zpﬁ%) (afk - Zpi%‘)

for any k € {1,...,n}.
By the subadditivity of the functional V_ f (-) (-) in the second variable we also
have

o 5ot (S S
>V, f (Z pm) ~Vif (Z pm) (épm)

=1 1=1
for any k € {1,...,n}.
Utilising the 1nequahtleb and (| we get

(3.21)  f (x1) (Z pr1>
o s () (5

=1
for any k € {1,...,n}.
Now, if we multiply with pr > 0 and sum over k from 1 to n, then
we deduce the first inequality in . The second inequality is obvious by the
subadditivity property of the functional Vi f (-) (-) in the second variable. O



DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS 27

The following particular case that provides a refinement for the generalized tri-
angle inequality in normed linear spaces is of interest:

Corollary 9 (Dragomir, 2011 [21]). Let (X,||-||) be a normed linear space. Then
for any p > 1, for any n-tuple of vectors x = (1, ...,x,) € X™ and any probability
distribution p = (p1, ..., pn) € P" with Y., piz; # 0 we have the inequality

n p
E Di%s
i=1

p—2

(3.22) }:pAMA

n n
k=1 j=1

If p > 2 the inequality holds for any n-tuple of vectors and probability distribution.

S

In particular, we have the norm inequalities

(3.23) Zpt || — i T
z 1pz$z >
Dk \ Tk, izi|[| =0
[Z < 1S pil 1
and
(3.24) Zpl [l:]|% — 2

> 0.

n n n 2
>2 > p <mk,2pixi> — 1> P
k=1 i=1 s =t

We notice that the first inequality in (3.24)) is equivalent with

n 2 n n
S il + ~23 " <zp> |
i=1 k=1 i=1 s

which provides the result

i

(3.25) E:MH%H

T

n n
> Dk <$k,ZPixi>
1 i=1 s

k=
2

Zpixi

i=1

for any n-tuple of vectors and probability distribution.
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Remark 11. If in the inequality we consider the uniform distribution, then
we get

(3.26) ZHlep—nl p Zml

n p—2 n n
g T Tk, g T -
i=1 k=1 i=1 s

3.3. A Reverse of Jensen’s Inequality. The following result is of interest as
well:

> pn' P > 0.

Theorem 13 (Dragomir, 2011 [21]). Let f : X — R be a convex function defined
on a linear space X. Then for any n-tuple of vectors x = (21, ...,2,) € X™ and any
probability distribution p = (p1,...,Dn) € P™ we have the inequality

(3.27) Zpkv f (@) (1) va f () (Zm)

k=1 k=1

In particular, for the uniform distribution, we have
n

Y v f Zv f () ( Xn:xﬂ
f

(3.28) %

k=1

Proof. Utilising the gradient inequality (3.2)) we can state that

(3.29) V_f(xk (xk: - sz$z> > f(xr) (szxz>

i=1

for any k € {1,...,n}.
By the superadditivity of the functional V_f () (:) in the second variable we
also have

(3.30) V_f(xg) (xg) = V_f (zr) <sz$z> >V_f(xk) (mk—2p1x1>

i=1

for any k € {1,...,n}.

Therefore, by and we get
(3.31) V_f(zk) (zr) = V_f (zk) <sz$z> > fzg) (Zpl.’)%)

i=1
for any k € {1,...,n}.

Finally, by multiplying (3.31)) with pr > 0 and summing over k from 1 to n we
deduce the desired inequality (3.27]). O
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Remark 12. If the function f is defined on the Euclidian space R™ and is differ-
entiable and convex, then from we get the inequality

(3.32) Zpk Vi (zk) , zk) <Zpkw o) Zmz>
k=1
> Zn: $z (szitz)
=1

where, as usual, for i = (xi, . ) Vf(zk) = (3f(7“1k) s ey %) . This inequal-
ity was obtained firstly by Dragomir & Goh in 1996, see [26].
For one dimension we get the inequality

(3.33) Zpkxkf zr) szxlzpkf zp)
i=1
>Zp¢ 1'1 (Zp;%)

that was discovered in 1994 by Dragomir and Ionescu, see [28].
The following reverse of the generalized triangle inequality holds:

Corollary 10 (Dragomir, 2011 [21]). Let (X,||-||) be a normed linear space. Then
for any p > 1, for any n-tuple of vectors x = (x1,...,x,) € X"\ {(0,...,0)} and any
probability distribution p = (p1,...,pn) € P™ we have the inequality

(3.34) lZpknxknp Zpknwknp <Zpixi,xk>]
i=1 i

> pilla|” -
i=1

i

In particular, we have the norm inequalities

n n n T
035) Srullal -3 oo (S 24 )
k=1 k=1 i=1 kIS
> pilla] -
=1

n
E DiZ;
i=1

for x, #0, k € {1,...,n} and
(3.36) Zpk\lka - "k <Zpﬂj’$k>
k=1 j=1 i

n n 2
> sz‘ [N Zpiwi ;
i=1 i=1

for any xy.
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We observe that the inequality (3.36]) is equivalent with

n n 2 n n
S izl + Y piwl| >2> p <ijxjv$k> :
i—1 i=1 k=1 j=1

i
which provides the interesting result

n
E DiZ;
i=1

2
1| 9
(3.37) By ;m”%“ +

n n
2 Zpk <ij$j,$k>
j=1 i

k=1

n n

>3 pipk (), ),

k=1j=1
holding for any n-tuple of vectors and probability distribution.

Remark 13. If in the inequality we consider the uniform distribution, then
we get

n 1 n _ n
(338) p ijW—REme2<Zﬁpm>
k=1 k=1 j=1

n
> 3 il 0t
i=1

i

p

n
D> i
i=1

For p € [1,2) all vectors x) should not be zero.

3.4. Bounds for the Mean f-Deviation. Utilising the result from [19] we can
state then the following result providing a non-trivial lower bound for the mean
f-deviation:

Theorem 14. Let f : X — [0,00) be a convex function with f(0) = 0. If y=
(Y1, -y Yn) € X™ and p = (p1, .., Dn) 18 a probability distribution with all p; nonzero,
then

(3.39) Ky (p.y)

> s {(1 —or) f [1 fkpk (yk - ;mm) +prf (yk - ;mw) } (>0).

The case for mean r-absolute deviation is incorporated in

Corollary 11. Let (X, ||-||) be a normed linear space. If y= (y1,...,yn) € X™ and
p = (p1,...,pn) is a probability distribution with all p; nonzero, then for r > 1 we

have

Remark 14. Since the function h, (t) == (1—8)" """ +t, 7 > 1, t € [0,1) is
strictly increasing on [0,1), then

n

Yk — szyz

=1

) > — )t
(3.40) K. (p,y) ke%,a..}.(,n}{[(l PE) D +pk}

min {(1 — o) +pk} = P+ (1= pm) " P,
ke{l,...n}
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where p,, = i {min }pk. We then obtain the following simpler inequality:
€{l,...,n
n P
1—
(3.41) K, (p,y) > [pm + (1 —pm) " ~pfn] peax Yk~ szyz )

=1
which is perhaps more useful for applications.

We have the following double inequality for the mean f-mean deviation:

Theorem 15 (Dragomir, 2011 [21]). Let f : X — [0,00) be a convex function with
f(0)=0. Ify= (y1,.-,yn) € X™ and p = (p1,...,pn) s a probability distribution
with all p; nonzero, then

(3.42) Ky 1)) (P,y) = Ky (P,Y) = Kv 50 (P,y) = 0.
Proof. If we use the inequality (3.17) for z; = y; — > r_, PrYx We get

> onif (yi - me) —f <Zpi (yz - me))
i=1 k=1 i=1 k=1
> Vit <Zpi (yi - Zm%)) <yj - Zpkyk->
j=1 i=1 k=1 k=1
—Vif <sz- (yz - me)) <Zpi (yi - Zm%)) >0,
=1 k=1 i=1 k=1

which is equivalent with the second part of (3.42)).
Now, by utilising the inequality (3.27)) for the same choice of z; we get

391 (1= Y] (1= ooun
j=1 k=1 k=1
> pV-f (yj - me) (Zpi <yz - me))
k=1 k=1 i=1 k=1
> pif (yi - Zm%) —f (Zm (yz - Zm%)) ,
=1 k=1 =1 k=1

which in its turn is equivalent with the first inequality in (3.42)). O

We observe that as examples of convex functions defined on the entire normed
linear space (X, ||-||) that are convex and vanishes in 0 we can consider the functions

f)=g(lzl), ze X
where g : [0,00) — [0,00) is a monotonic nondecreasing convex function with

g(0)=0.
For this kind of functions we have by direct computation that

V. (0) (u) = gl (0) ul] for any u € X

and
V_f(u)(u) =g~ (Jlull) [lul| for any u € X.

We then have the following norm inequalities that are of interest:
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Corollary 12 (Dragomir, 2011 [2I]). Let (X, ||-||) be a normed linear space. If

g :[0,00) — [0,00) is a monotonic nondecreasing convez function with g (0) = 0,
then for any y= (Y1, ...,yn) € X™ and p = (p1,...,pn) a probability distribution, we

have
n n n
(343) Y pig- ( Yi— Y Pkk ) Yi— Y PkUk
=1 k=1 k=1
n n n n
> pig ( Yi— Y Prlk ) >, (00 pillyi — > Pk
=1 k=1 i=1 k=1

3.5. Bounds for f-Divergence Measures. The following inequality for the f-
divergence of an n-tuple of vectors in a linear space holds [20]:

Theorem 16. Let f : K — R be a convex function on the cone K. Then for any
n-tuple of vectors x = (x1,...,x,) € K™, a probability distribution q € P™ with all
values nonzero and for any nonempty subset J of {1,...,n} we have

3.44 I (x,q) > I , > 7

(3.44) f(x,q) > opsix s (x7,a7) = Iy (x7,47)

> ' I (x7.qs) > f (X,
> i Iy (x7,q7) > f(Xn)

where X, ==Y | @

We observe that, for a given n-tuple of vectors x = (x4, ..., z,) € K", a sufficient
condition for the positivity of Iy (x,q) for any probability distribution q € P™ with
all values nonzero is that f (X,) > 0. In the scalar case and if x = p €P", then a
sufficient condition for the positivity of the f-divergence Iy (p,q) is that f (1) > 0.

The case of functions of a real variable that is of interest for applications is
incorporated in [20]:

Corollary 13. Let f:[0,00) — R be a normalized convex function. Then for any
P, 9 € P we have

PJ 1- PJ
3.45 I ,q) > ma; . — |+ (1-Q. >0).
3845 Lrpa) 0£IC T m} [Q]f (QJ) ( Ql)f<1—QJ>} =0

In what follows, by the use of the results in Theorem [I2] and Theorem [I3] we can
provide an upper and a lower bound for the positive difference Iy (x,q) — f (X5,).

Theorem 17 (Dragomir, 2011 [2I]). Let f : K — R be a convex function on the
cone K. Then for any n-tuple of vectors x = (x1,...,x,) € K™ and a probability
distribution q € P™ with all values nonzero we have

(3446) Iv_jye) (%a) = Iv_p(yx,) (x5a) > Iy (x,q) — f(Xn)
> Iy, f(x)0) (%a) = Vi f (Xn) (Xn) > 0.

The case of functions of a real variable that is useful for applications is as follows:

Corollary 14. Let f :[0,00) — R be a normalized convex function. Then for any
P, 9 € P we have

(3.47) Is ey (Pyq) — Iy (Pyq) > I (P, q) >0,

or, equivalently,

(3.48) I (yi¢)-1) (P @) = 15 (P,a) > 0.
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The above corollary is useful to provide an upper bound in terms of the varia-
tional distance for the f-divergence Iy (p,q) of normalized convex functions whose
derivatives are bounded above and below.

Proposition 9. Let f : [0,00) — R be a normalized convex function and p, q € P™.
If there exists the constants v and T' with

—o0o <y < fL (q )<F<oof0rallke{l o},
k
then we have the inequality

(3.49) 0<1Is(p,aq) S%(F—W)V(Pﬂ),

where

n
Zqz 1‘ > lpi — ail -
=1

Proof. By the inequality (3.48)) we have successively that
0<1I;(p,a) < Iy (y)-1(P,;a)

(G G) -]

pi po(r) Lty ’
<D a =) - —
Yool <qi> :
<1 pi
5 F Y Z qi 4 )
which proves the desired result - O

Corollary 15. Let f : [0,00) — R be a normalized convez function and p, q € P™.
If there exist the constants v and R with

O<T<qf<R<oof0rallk€{1 ,n},
k

then we have the inequality
1
(3.50) 0<1I;(p,a) <5 [fL(R) = fL ("] V(p.a).

The K. Pearson x2-divergence is obtained for the convex function f (t) = (1 — )2,
t € R and given by

~ (L) (s — 4)°
Gl =Y (2 1) =3 B
Finally, the following proposition giving another upper bound in terms of the x2-

divergence can be stated:

Proposition 10. Let f : [0,00) — R be a normalized convex function and p,
q € P*. If there exists the constant 0 < A < oo with

7(B) =)

pi_ ]
qi

(3.51) <A forallke{l,..,n},
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then we have the inequality

(3.52) 0<1I;(p,a) <AX* (p,q).

In particular, if f' (-) satisfies the local Lipschitz condition
(3.53) |f2 (@) = fL (1) < Alz—1] for any x € (0,00)

then holds true for any p, q € P".
Proof. We have from (3.48) that

0<1I;(p,q) < Iy (yi)-1 (P;a)

_ Zj;q (7; - 1) [f’_ (2) -1 (1)]

a(zo) |t (5) -

B

qi

and the inequality (3.52)) is obtained. O

Remark 15. It is obvious that if one chooses in the above inequalities particular
normalized convex functions that generates the Kullback-Leibler, Jeffreys, Hellinger
or other divergence measures or discrepancies, that one can obtain some results of
interest. However the details are not provided here.

4. INEQUALITIES OF SLATER’S TYPE

4.1. Introduction. Suppose that I is an interval of real numbers with interior I
and f: I — R is a convex function on I. Then f is continuous on I and has finite
left and right derivatives at each point of I. Moreover, if z, y € I and z < Y,
then f’ (z) < fi (z) < f (y) < fi (y) which shows that both f’ and f| are
nondecreasing function on I. Tt is also known that a convex function must be
differentiable except for at most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Jf is the
set of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

f(x)> f(a)+ (x—a)p(a) for any z, a € I.

It is also well known that if f is convex on I, then Jf is nonempty, f’, fi € 0f
and if ¢ € Jf, then
fl(x) < o(@) < fl () for any x € 1.

In particular, ¢ is a nondecreasing function.
If f is differentiable and convex on I, then df = {f’}.
The following result is well known in the literature as the Slater inequality:
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Theorem 18 (Slater, 1981, [32]). If f: I — R is a nonincreasing (nondecreasing)
convez function, z; € I, p; > 0 with P, := Y i p; > 0 and Y., pip (z;) # 0,
where ¢ € Of, then

=1 =11 7

K3
As pointed out in [I7, p. 208], the monotonicity assumption for the derivative
can be replaced with the condition

Z?:l Pixip (xl)
(1.2) Lz PiTiip (1)
> ie1 it (i)
which is more general and can hold for suitable points in I and for not necessarily
monotonic functions.

The main aim of the next section is to extend Slater’s inequality for convex
functions defined on general linear spaces. A reverse of the Slater’s inequality is
also obtained. Natural applications for norm inequalities and f-divergence measures
are provided as well.

el

4.2. Slater’s Inequality for Functions Defined on Linear Spaces. For a
given convex function f: X — R and a given n-tuple of vectors x = (x1,...,x,) €
X™ we consider the sets

(4.3)  Slayy (f,x):={ve X | Vi) f(zi)(v—=;) >0foralliec{l,.. n}}

and

(4.4) Slay—y (f,x,p) := {v e X| Zpiv+(,)f () (v—2;) >0 }
i=1
where p = (p1,...,pn) € P™ is a given probability distribution.

Since V4 (_)f (z)(0) = 0 for any € X, then we observe that {z1,...,z,} C
Slay—y (f,x,p), therefore the sets Slay_) (f,x,p) are not empty for each f,x
and p as above.

The following properties of these sets hold:

Lemma 1 (Dragomir, 2012 [25]). For a given convexr function f : X — R, a
given n-tuple of vectors x = (x1,...,2,) € X™ and a given probability distribution
p =(p1,...,Pn) € P we have

(i) Sla_(f,%) C Slas (f,x) and Sla_ (f,x,p) C Slas (f,%,p);

(i) Sla_ (f,x) C Sla_ (f,x,p) and Slas (f,x) C Slas (f,x,p)

for allp =(p1,...,pn) € P™;
(iti) The sets Sla_ (f,x) and Sla_ (f,x,p) are convez.

Proof. The properties (i) and (ii) follow from the definition and the fact that

Vif(2)(y) = V_f(z)(y) for any z,y.

(iii) Let us only prove that Sla_ (f,x) is convex.

If we assume that y1,y2 € Sla_ (f,x) and «, 8 € [0,1] with « + 8 = 1, then by
the superadditivity and positive homogeneity of the Gateaux derivative V_f (+) (+)
in the second variable we have

V_f(z)(ayr + Byz —xi) = V_f(x) ey —2i) + B (y2 — x5)]
> aV_f(z:)(yr —xi) + BV _f (2:) (y2 — i) 20
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for all 4 € {1,...,n}, which shows that ay; + Sy2 € Sla_ (f,x).
The proof for the convexity of Sla_ (f,x, p) is similar and the details are omitted.
O

For the convex function f, : X — R, f,(z) := ||z||” with p > 1, defined on
the normed linear space (X, ||-||) and for the n-tuple of vectors x = (1, ..., z,) €
X"\ {(0,...,0)} we have, by the well known property of the semi inner products

(y+az,x) ;) = (¥, ) ) + @ |z||* for any z,y € X and a € R,
that

Sla+(_) (”'Hpax) = Sla+(_) (B[S

- {v € X | (v,2;)yp 2 llajll* for all j € {1, n}}

s(3

which, as can be seen, does not depend of p. We observe that, by the continuity
of the semi-inner products in the first variable that Slai ) (||-||,x) is closed in
(X, ]|]l) . Also, we should remarks that if v € Slay ) (||-||,x) then for any v > 1
we also have that yv € Sla (|||, x) .

The larger classes, which are dependent on the probability distribution p € P"
are described by

2
Slayy (1P %) = qv e X [ D pjlla;lP 7 (v,25) i) = D pj Il
J=1 J=1

If the normed space is smooth, i.e., the norm is Gateaux differentiable in any
nonzero point, then the superior and inferior semi-inner products coincide with the
Lumer-Giles semi-inner product [-,-] that generates the norm and is linear in the
first variable (see for instance [I6]). In this situation

Sta (|||, x) = {v € X | [v,2;] > |l;|® for all j € {1, n}}

and
n n
—2
Sla (|7, %,p) =qve X [ > pjlla|” 7 fv,z;] =D pj ]
Jj=1 Jj=1

If (X, (-,-)) is an inner product space then Sla (||||”,x,p) can be described by

n n
-2
Sla(|-|",x,p) = qve X | <U>ij 511" »"Cj> > i llzll?
i=1 i=1

and if the family {z;},_,

=L...n

is orthogonal, then obviously, by the Pythagoras
theorem, we have that the sum 2?21 x; belongs to Sla (||| ,x) and therefore to
Sla (|||, x, p) for any p > 1 and any probability distribution p = (p1, ..., pn) € P™.

We can state now the following results that provides a generalization of Slater’s
inequality as well as a counterpart for it.

Theorem 19 (Dragomir, 2012 [25]). Let f : X — R be a convez function on the real
linear space X, x = (x1,...,x,) € X™ an n-tuple of vectors and p = (p1, ..., pn) € P"
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a probability distribution. Then for any v € Slay (f,x,p) we have the inequalities
(4.5) V_f@) @)=Y pV_f ) (@) > f(v sz () >
i=1

Proof. If we write the gradient inequality for v € Slay (f,x,p) and z;, then we
have that
(4.6) Vof@)(v—wzi) = f(v) = f(z:) 2 Vi f(zi)(v—az)

for any ¢ € {1,...,n}.
By multiplying (4.6) with p; > 0 and summing over ¢ from 1 to n we get

(4.7) ZpN—f (0) (v —2i) = f(v) = Zpif (i) > ZinJrf (i) (v —2i) -

Now, since v € Slay (f,x,p), then the right hand side of is nonnegative,
which proves the second inequality in .

By the superadditivity of the Gateaux derivative V_f (-) (-) in the second vari-
able we have

V_f ) () =V_f(©)(z:) 2 V_f(v)(v—1i),

which, by multiplying with p; > 0 and summing over i from 1 to n, produces the
inequality

(@8)  VF @) - pV-f @) @) = Y pV-f () (0 w).

Utilising (4.7) and (4.8)) we deduce the desired result (4.5). O

Remark 16. The above result has the following form for normed linear spaces. Let
(X, I be a normed linear space, x = (1, ...,x,) € X™ an n-tuple of vectors from
X and p =(p1,-..,pn) € P a probability distribution. Then for any vector v € X
with the property

n

(4.9) > i llzs 177 (v, 25), Z ;11" p =1,
j=1

we have the inequalities

—2
(4.10) p | ol” =D pilles 1777 (w,s), | 2 Mloll” =Dy llas 1" > 0.
- =

Rearranging the first inequality in we also have that
n n
-2
(4.11) (=D ol + > psllzsl” =0y pjlas |~ (v,25), -
=1 j=1
If the space is smooth, then the condition (@) becomes

-2
(4.12) > il ) =) py llasl”, p =1,
j=1

Jj=1
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implying the inequality

-2
(4.13) p Il = p a7 [, ] | = (oll” = pj lla|” > 0.
j=1

j=1

Notice also that the first inequality in is equivalent with

-2
414) (=D ol + > pilill” = 0> i sl o, a5
Jj=1 j=1

n
>p Y pjllal” >0
j=1

The following corollary is of interest:

Corollary 16 (Dragomir, 2012 [25]). Let f : X — R be a convex function on the
real linear space X, x = (1, ..., x,) € X™ an n-tuple of vectors and p = (p1,...,Pn) €
P™ a probability distribution. If

(4.15) Zpiv+f (i) (z;) = (<) 0
i=1

and there exists a vector s € X with

(4.16) > iV f (@) (s) = ()1
i=1

then

(4.17) V_f ijv+f(33j)(xj)5 ijv+f(33j)($j)5

N——

[

piVif(x)) () s | (w)

-> pV_f
=1

1

J

> D piVaf (@) (@)s | =D pif (w:) > 0.
1=1

Jj=1

Proof. Assume that Y. p;Vif () (x;) > 0 and > p;Vif(z;)(s) > 1 and
define v := 377 p; Vi f (z) (x;) s. We claim that v € Sla (f,x,p).

By the subadditivity and positive homogeneity of the mapping V. f (+) (+) in the
second variable we have



DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS 39

> piVif (@) (v — )

Zpiv+f (i) (v) — Zpiv+f (i) ()

=1

Y

= Zplv+f ;) (ZPJVJrf (z7) (w5) s ) szv+f () (2:)

=1 j=1 =1

= Zpyv+f ;) (x; szv+f ) (s) = Y _ 0V f () ()

j=1 i=1
= ijv+f ;) () lzpzv+f i) (s) — 1] >0,
Jj=1

as claimed. Applying Theorem [19] for this v we get the desired result.
Y piVif(z)(x;) <0and Y1 p;V_f(z;)(s) <1 then for

wi=Y p;Vif(z;)(z;)s

j=1

we also have that

Zpiv+f (z) (w — ;)

>szv+f (ijv+f xj x] ) szv+f ;)

j=1

j=1 i=1

=> piVif () ((‘ijv+f(xj) (%‘)) (—8)) = piVif (i) (2:)
=1

= =D 0 Vif () (x) szv+f (zi) szv+f (i) (@s)
Jj=1 i=1
=|- ijv+f (@) () (1 + Zpierf (@) (3)>
j=1 i=1
= =D pVif(z)) (x)) (1 > piV_f(x) (s)) > 0.
j=1 i=1
Therefore w € Slay (f,x,p) and by Theorem [19[ we get the desired result. O

It is natural to consider the case of normed spaces.

Remark 17. Let (X, ||||) be a normed linear space, x = (x1,...,2,) € X™ an n-
tuple of vectors from X and p = (p1,...,pn) € P a probability distribution. Then
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for any vector s € X with the property that
n

(4.18) pY_pi " (s ), > 1,
i=1

we have the inequalities

p—1

n n n
-1
P lsIP [ D py s pllsll Y psllzs " =D pj (. 9),
j=1 j=1 j=1

p
n n
> 7 (s | Y psllaslP | =D ps llas|” > 0.
j=1 j=1

The case of smooth spaces can be easily derived from the above, however the
details are left to the interested reader.

4.3. The Case of Finite Dimensional Linear Spaces. Consider now the finite
dimensional linear space X = R™ and assume that C is an open convex subset of
R™. Assume also that the function f : C — R is differentiable and convex on C.
Obviously, if z = (z',...,#™) € C then for any y = (y,...,y™) € R™ we have

" Of (2, .., 2™
V() (y) :Z%'yk
k=1

For the convex function f : C — R and a given n-tuple of vectors x = (21, ..., 2,) €
m

C"™ with z; = (xll, ey T ) with 4 € {1,...,n}, we consider the sets
. Of (m},,xf‘) %
(4.19) Sla(f,x,C):= {U eC | ;T -V

L Of (z), .2
ZZ%“? forallie{l,...,n}}
k=1

and

n m 8f ("Ezl,..-,il;;n) X
(4.20) Sla(f,x,p.C):= {v €CID D p— v

i=1 k=1
"N Of (.
> ZZMW 2t }

i=1 k=1

where p = (p1, ..., pn) € P is a given probability distribution.

As in the previous section the sets Sla (f,x,C) and Sla (f,x,p,C) are convex
and closed subsets of clo(C), the closure of C. Also {x1,...,z,} C Sla(f,x,C) C
Sla (f,x,p,C) for any p = (p1,...,pn) € P a probability distribution.

Proposition 11. Let f : C' — R be a convex function on the open convex set C
in the finite dimensional linear space R™, (z1,...,x,) € C™ an n-tuple of vectors
and (p1,...,pn) € P™ a probability distribution. Then for any v = (vl,...,’un) €



DISCRETE INEQUALITIES FOR CONVEX FUNCTIONS 41

Sla (f,x,p,C) we have the inequalities

m "I Af (b
(4.21) Z ) Zzpi%.vk

k=1 i=1 k=1
Zf Zpl 7;7 *y Zn) 20

The unidimensional case, i.e., m = 1 is of interest for applications. We will state
this case with the general assumption that f : I — R is a convex function on an
open interval I. For a given n-tuple of vectors x = (z1, ..., x,) € I"™ we have

Slay -y (f,x,I) = {v el f—/s-(—) (z;) - (v—um;) >0 for all ¢ € {1, ,n}}

and

Slay—y (f,%,p,1) := {v €Y pifly (@) (v—a) >0 } :
i=1

where (p1,...,pn) € P" is a probability distribution. These sets inherit the general
properties pointed out in Lemma Moreover, if we make the assumption that

Yoy pifl (@) # 0 then for Y7 | pifi (x;) > 0 we have
Yy pilfl (@) wi }
Z?:l plf-/i,- (331)

Sla+ (f?xapa:[): {UEI| v 2>

while for 31", p; f% (z;) < 0 we have

n . / . .
v= {vell p < Lzt Pift (00) }

Z?:l pz’f-/}- (ﬂfi)
Also, if we assume that f/ (z;) >0 for all i € {1,...,n} and >, p;f} (z;) >0
then
. — 22;1 pifjr (xz)ﬂﬁz
3 Z?=1 plf-li,- (:El)

due to the fact that x; € I and I is a convex set.

el

Proposition 12. Let f : I — R be a convex function on an open interval I. For
a given n-tuple of vectors x = (x1,...,x,) € I"™ and (p1,...,pn) € P" a probability
distribution we have

(4.22) (v (U—Zplml> >f(v sz x;) >

for any v € Slay (f,x,p,I).
In particular, if we assume that > | pi fi (z;) # 0 and
Z?:l pifl (z:)
Z?:l pifjr (LUZ)

el
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then

’ Z?:lpifjr (xz)xz> Zz 1sz+
am) 1 (SRS l ST pf) () ZW%}

Zz 1pzf+ z; mz)
2f< Z 1pzf+ l'z sz 1’1 =

Moreover, if fi (x;) >0 foralli € {1,...,n} and X7 | p; f} (z;) > 0 then

holds true as well.

Remark 18. We remark that the first inequality in provides a reverse in-
equality for the classical result due to Slater.

4.4. Some Applications for f-divergences. It is obvious that the above def-
inition of Iy (p,q) can be extended to any function f : [0,00) — R however the
positivity condition will not generally hold for normalized functions and p, q € R}

with 3701 pi = 3711 ¢i-
For a normalized convex function f : [0,00) — R and two probability distribu-
tions p, q € P" we define the set

(424)  Slas (f.p.q) = { € [0, 00)| iqiﬁ (2) - ( pl) >0 }

4
P qi qi

Now, observe that

is equivalent with

- Di & bi
(4.25) quz‘fi () > Zpifjr (> )

P ai = qi
Ity afh ( ) > 0, then (4.25)) is equivalent with

Sivfs ()
- Z?:l aif} (%)

v

therefore in this case

[0, 00) it i pifl (2) <0,

[Zz;lqif;(gzj)’oo if Y apafi (5F) 2 0.

(4.26)  Slay (f,p,q) =

Iy, af ( ) < 0, then (4.25)) is equivalent with

St (%)
Sl (2)

RS
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therefore

Z 1p7f+( ) . n . b
[0 Zl‘lthﬁ()} it > iy pifl (%) <0,

2|8

(4.27) Slay (f,p,q) =
0 it Y i} (2) > 0.
Utilising the extended f-divergences notation, we can state the following result:

Theorem 20 (Dragomir, 2012 [25]). Let f : [0,00) — R be a normalized convex
function and p, q € P™ two probability distributions. If v € Slay (f,p,q) then we
have

(4.28) fL(@)(v=1)> f(v) = Iy (p,q) > 0.
In particular, if we assume that Iy (p,q) #0 and

Iy ¢y (P q)

Iy (p,a) € [0.0)
then
(oo Pa) )\ [ oo (Pa)
29 f_< Iy, (p,q) >[ Iy, (p,q) 1]

Iy () (@)
_f<If/(pq)> —I; (p.q) > 0.

Moreover, if f! ( ) >0 foralli€{l,..,n} and Iy, (p,q) > 0 then (4.29) holds
true as well.

The proof follows immediately from Proposition (12| and the details are omitted.
The K. Pearson y2-divergence is obtained for the convex function f (t) = (1 — ¢)?,
t € R and given by

a0 Cma=Xa (Z-1) - Z Z pi )

The Kullback-Leibler divergence can be obtained for the convex function f :
(0,00) = R, f(t) =tlnt and is defined by

(4.31) qu le (pj) ijln <p3>

If we consider the convex function f : (0,00) — R, f () = —Int, then we observe
that
. S pi\ . Pi
(432 Lo o =Y af (q) ==Y g ()
i=1 ‘ i=1 ¢



44 S.S. DRAGOMIR

For the function f (t) = —In¢ we have obviously have that
n -1 )
(4.33) Sla(—1In,p,q) := {ve[O,oo) —Zq (21) ~<v—zz> ZO}
i=1 ¢ i

2
:{ve()oo —1<0}
K3

B [O’mqu“]

Utilising the first part of the Theorem 20| we can state the following

Proposition 13. Let p, q € P" two probability distributions. If v € [0, m}
then we have

(4.34) L-v

>—In(v) — KL(q,p) > 0.

v

- _ 1
In particular, for v = Cap T we get

(4.35) x*(a,p) >In[x*(q,p) + 1] — KL(q,p) > 0.

If we consider now the function f : (0,00) — R, f (¢) = tlnt, then f/ (¢) =Int+1
and

(4.36)  Sla((-)In(-),p,q)

~[remor Euln(z) ) (-3) =0
“freoieSa(u(z) ) S (u(3) 1) o)

={ve0,00)v(l-KL(q,p)) > 1+ KL(p,q)}.
We observe that if p, q € P two probability distributions such that 0 < KL (q,p) <
1, then

Sta ()10 (). pva) = |15y 20 0.

If KL(q,p) > 1 then Sla (())In (), p. q) = 0.
By the use of Theorem [20] we can state now the following

Proposition 14. Let p, q € P™ two probability distributions such that 0 < KL (q,p) <

1. Ifve [M oo) then we have

1-KL(q,p)’
(4.37) (nv+1)(v—=1) >wvln(v) — KL (p,q) > 0.
In particular, for v = %&28 we get
1+KL(p,q)} ><1+KL(p,q) )
4.38 In|———=| +1 —= -1
(43 < [1—KL(q7p) 1-KL(q,p)

L1+ KL(p.a), [1+KL(p,q)

“1-KL(ap) 1KL(q7p)} —KL(p,q) > 0.
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Similar results can be obtained for other divergence measures of interest such as

the Jeffreys divergence, Hellinger discrimination, etc...However the details are left

to

(1]

2]
(3]
(4]

(5]

[13]

[14]

[15]

[16]
[17]
18]
[19]
[20]

[21]

the interested reader.
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