
FURTHER INEQUALITIES OF HERMITE-HADAMARD TYPE
FOR CONVEX FUNCTIONS AND RIEMANN-LIOUVILLE

FRACTIONAL INTEGRALS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish several upper and lower bounds for the
functions

1

2

�
J�a+f (x) + J

�
x�f (a)

�
for a < x � b

and
1

2

�
J�b�f (x) + J

�
x+f (b)

�
for a � x < b

in the case of Riemann-Liouville fractional integrals J���; for convex and h-
convex functions f : [a; b] ! R, for � > 0 and x 2 (a; b) : Some particular
cases of interest are examined. Various Hermite-Hadamard type inequalities
are also provided.

1. Introduction

The following integral inequality

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard inequality.
There is an extensive amount of literature devoted to this simple and nice result

which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [12], the recent survey paper [10] and the references therein.
Let f : [a; b] ! C be a complex valued Lebesgue integrable function on the real

interval [a; b] : The Riemann-Liouville fractional integrals are de�ned for � > 0 by

J�a+f (x) =
1

� (�)

Z x

a

(x� t)��1 f (t) dt

for a < x � b and

J�b�f (x) =
1

� (�)

Z b

x

(t� x)��1 f (t) dt

for a � x < b; where � is the Gamma function. For � = 0; they are de�ned as

J0a+f (x) = J
0
b�f (x) = f (x) for x 2 (a; b) :
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In [25] Sarikaya et al. established the following Hermite-Hadamard type inequal-
ity for � > 0

(1.2) f

�
a+ b

2

�
� � (�+ 1)

2 (b� a)�
�
J�a+f (b) + J

�
b�f (a)

�
� f (a) + f (b)

2

provided f : [a; b]! R is a convex function.
A di¤erent version was also obtained by Sarikaya and Yildirim in [27] as follows

(1.3) f

�
a+ b

2

�
� 2��1� (�+ 1)

(b� a)�
h
J�a+b

2 +
f (b) + J�a+b

2 �f (a)
i
� f (a) + f (b)

2

provided f : [a; b]! R is a convex function.
In the recent paper [11] we established the following results:

1

�+ 1

�
1

�
f (x) +

f (a) + f (b)

2

�
� 1

2
� (�)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�

(1.4)

�
Z 1

0

(1� s)��1 f
�
sx+ (1� s) a+ b

2

�
ds

� 1

�
f

�
�

�+ 1

�
x

�
+
a+ b

2

��
for any x 2 (a; b) : In particular, we have

f (a) + f (b)

2
� �

�+ 1

�
1

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
(1.5)

� 2��1� (�+ 1)

(b� a)�
�
J�a+f

�
a+ b

2

�
+ J�b�f

�
a+ b

2

��
� f

�
a+ b

2

�
for any � > 0:
We also have the dual result [11]:

1

�+ 1

�
f (x) +

1

�

f (a) + f (b)

2

�
� 1

2
� (�)

�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�

(1.6)

�
Z 1

0

s��1f

�
sx+ (1� s) a+ b

2

�
ds

� 1

�
f

�
�

�+ 1

�
x+

1

�

a+ b

2

��
for any x 2 (a; b) : Moreover, we have the particular inequalities

f (a) + f (b)

2
� �

�+ 1

�
f

�
a+ b

2

�
+
1

�

f (a) + f (b)

2

�
(1.7)

� 2��1� (�+ 1)

(b� a)�
h
J�a+b

2 �f (a) + J
�
a+b
2 +

f (b)
i
� f

�
a+ b

2

�
;

for any � > 0:
The �rst inequality in (1.7) is improving the second inequality in (1.3).
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From a di¤erent perspective we also have [11]

f (a) + f (b)

2
� �

�+ 1

�
f (a) + f (b)

2
+
f (x) + f (a+ b� x)

2�

�
(1.8)

� 1

2

� (�+ 1)

(x� a)�
�
J�a+f (x) + J

�
b�f (a+ b� x)

�
� f

�
a+ b

2

�
for a < x � b: We observe that if we take x = b in (1.8), then we get the inequality
(1.2).
For other Hermite-Hadamard type inequalities for the Riemann-Liouville frac-

tional integrals, see [1]-[6], [16]-[34] and the references therein.
Motivated by the above results, we establish in this paper several upper and

lower bounds for the functions

1

2

�
J�a+f (x) + J

�
x�f (a)

�
for a < x � b

and
1

2

�
J�b�f (x) + J

�
x+f (b)

�
for a � x < b

in the case of convex and h-convex functions f : [a; b]! R and for � > 0: Some par-
ticular cases of interest are examined. Other Hermite-Hadamard type inequalities
are also provided.

2. Main Results

We have:

Theorem 1. Let f : [a; b]! R be a convex function, then

(2.1) f

�
a+ x

2

�
� 1

2

� (�+ 1)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
� f (a) + f (x)

2

for a < x � b and

(2.2) f

�
x+ b

2

�
� 1

2

� (�+ 1)

(b� x)�
�
J�x+f (b) + J

�
b�f (x)

�
� f (x) + f (b)

2

for a � x < b:

In particular, for x = b in (2.1) we obtain (1.2) and for x = a+b
2 we get

f

�
3a+ b

4

�
� 2��1� (�+ 1)

(b� a)�
�
J�a+f

�
a+ b

2

�
+ J�a+b

2 �f (a)

�
(2.3)

�
f (a) + f

�
a+b
2

�
2

:

In particular, for x = a in (2.2) we re-obtain (1.2) while for x = a+b
2 we get

f

�
a+ 3b

4

�
� 2��1� (�+ 1)

(b� a)�
�
J�a+b

2 +
f (b) + J�b�f

�
a+ b

2

��
(2.4)

�
f
�
a+b
2

�
+ f (b)

2
:
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If we add (2.3) and (2.4) and divide by 2; then we get

f

�
a+ b

2

�
(2.5)

� 1

2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��
� 2��2� (�+ 1)

(b� a)�

�
�
J�a+f

�
a+ b

2

�
+ J�a+b

2 �f (a) + J
�
a+b
2 +

f (b) + J�b�f

�
a+ b

2

��
� 1

2

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
� f (a) + f (b)

2
:

Theorem 2. Let f : [a; b]! R be a convex function, then

f

�
a+ b

2

�
(2.6)

� f
�
a+ x

2

�
x� a
b� a + f

�
x+ b

2

�
b� x
b� a

� 1

2

� (�+ 1)

(b� a)

"
J�a+f (x) + J

�
x�f (a)

(x� a)��1
+
J�x+f (b) + J

�
b�f (x)

(b� x)��1

#

� 1

2

�
x� a
b� a f (a) +

b� x
b� af (b) + f (x)

�
� 1

2
[f (a) + f (b)]

for any a < x < b:

We observe that if we take in (2.6) x = a+b
2 we recapture (2.5).

We also have the integral inequality:

Corollary 1. Let f : [a; b]! R be a convex function, then

f

�
a+ b

2

�
(2.7)

� 1

b� a

Z b

a

f

�
a+ x

2

�
x� a
b� a dx+

1

b� a

Z b

a

f

�
x+ b

2

�
b� x
b� adx

� 1

2

� (�+ 1)

(b� a)

�
"

1

b� a

Z b

a

J�a+f (x) + J
�
x�f (a)

(x� a)��1
dx+

1

b� a

Z b

a

J�x+f (b) + J
�
b�f (x)

(b� x)��1
dx

#

� 1

2

"
f (a) + f (b)

2
+

1

b� a

Z b

a

f (x) dx

#
� 1

2
[f (a) + f (b)] :

Assume that I and J are intervals in R; (0; 1) � J and functions h and f are real
non-negative functions de�ned in J and I; respectively.

De�nition 1 ([32]). Let h : J ! [0;1) with h not identical to 0. We say that
f : I ! [0;1) is an h-convex function if for all x; y 2 I we have
(2.8) f (tx+ (1� t) y) � h (t) f (x) + h (1� t) f (y)
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for all t 2 (0; 1) :

For some results concerning this class of functions see [32], [3], [20], [26] and [30].
We can give the following examples of h-convex functions.

De�nition 2 ([15]). We say that f : I ! R is a Godunova-Levin function or that
f belongs to the class Q (I) if f is non-negative and for all x; y 2 I and t 2 (0; 1)
we have

(2.9) f (tx+ (1� t) y) � 1

t
f (x) +

1

1� tf (y) :

De�nition 3 ([13]). We say that a function f : I ! R belongs to the class P (I)
if it is nonnegative and for all x; y 2 I and t 2 [0; 1] we have
(2.10) f (tx+ (1� t) y) � f (x) + f (y) :

It is important to note that also P (I) contain all nonnegative monotone, convex
and quasi convex functions.
We can introduce now another class of functions [9].

De�nition 4. We say that the function f : I ! [0;1) is of s-Godunova-Levin
type, with s 2 [0; 1] ; if

(2.11) f (tx+ (1� t) y) � 1

ts
f (x) +

1

(1� t)s f (y) ;

for all t 2 (0; 1) and x; y 2 I:

We observe that for s = 0 we obtain the class of P -functions while for s = 1 we
obtain the class of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-
Levin functions de�ned on I, then we obviously have

P (I) = Q0 (I) � Qs1 (I) � Qs2 (I) � Q1 (I) = Q (I)
for 0 � s1 � s2 � 1:

De�nition 5 ([4]). Let � be a real number, � 2 (0; 1]: A function f : [0;1) !
[0;1) is said to be �-convex in the second sense or Breckner �-convex if

f (tx+ (1� t) y) � t�f (x) + (1� t)� f (y)
for all x; y 2 [0;1) and t 2 [0; 1] :

Theorem 3. Assume that the function f : [a; b]! [0;1) is h-symmetrized convex
on the interval [a; b] with h integrable on [0; 1] and f integrable on [a; b] : Then

1

2�h
�
1
2

�f �a+ x
2

�
� 1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(2.12)

� [f (a) + f (x)]
Z 1

0

(1� u)��1 + u��1
2

h (u) du

for a < x � b and
1

2�h
�
1
2

�f �x+ b
2

�
� 1

2

� (�)

(b� x)�
�
J�x+f (b) + J

�
b�f (x)

�
(2.13)

� [f (x) + f (b)]
Z 1

0

(1� u)��1 + u��1
2

h (u) du

for a � x < b:



6 S. S. DRAGOMIR

If we take x = b in (2.12) or x = a in (2.13), then we get

1

2�h
�
1
2

�f �a+ b
2

�
� 1

2

� (�)

(b� a)�
�
J�a+f (b) + J

�
b�f (a)

�
(2.14)

� [f (a) + f (b)]
Z 1

0

(1� s)��1 + s��1
2

h (s) ds;

that was obtained in [31].
If we take in (2.12) and (2.13) x = a+b

2 ; then we have

1

2�h
�
1
2

�f �3a+ b
4

�
� 2��1� (�)

(b� a)�
�
J�a+f

�
a+ b

2

�
+ J�a+b

2 �f (a)

�
(2.15)

�
�
f (a) + f

�
a+ b

2

��Z 1

0

(1� s)��1 + s��1
2

h (s) ds

and

1

2�h
�
1
2

�f �a+ 3b
4

�
� 2��1� (�)

(b� a)�
�
J�a+b

2 +
f (b) + J�b�f

�
a+ b

2

��
(2.16)

�
�
f

�
a+ b

2

�
+ f (b)

� Z 1

0

(1� s)��1 + s��1
2

h (s) ds:

If we add the inequalities (2.15) and (2.16), then we get

f
�
3a+b
4

�
+ f

�
a+3b
4

�
2�h

�
1
2

�(2.17)

� 2��1� (�)

(b� a)�

�
�
J�a+f

�
a+ b

2

�
+ J�a+b

2 �f (a) + J
�
a+b
2 +

f (b) + J�b�f

�
a+ b

2

��
�
�
f

�
a+ b

2

�
+
f (a) + f (b)

2

� Z 1

0

h
(1� s)��1 + s��1

i
h (s) ds:

If f : [a; b] ! [0;1) is of P -type and integrable, namely h (t) = 1; t 2 [0; 1] ;
then by Theorem 3 we have for � > 0 that

1

2
f

�
a+ x

2

�
� 1

2

� (�+ 1)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(2.18)

� f (a) + f (x)

for a < x � b and

1

2
f

�
x+ b

2

�
� 1

2

� (�+ 1)

(b� x)�
�
J�x+f (b) + J

�
b�f (x)

�
(2.19)

� f (x) + f (b)

for a � x < b:
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If f : [a; b]! [0;1) is integrable and of s-Godunova-Levin type, with s 2 (0; 1) ;
namely h (t) = 1

ts ; t 2 [0; 1] ; then by Theorem 3 we have for � > s that

1

�2s+1
f

�
a+ x

2

�
� 1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(2.20)

� f (a) + f (x)

2

�
B (1� s; �) + 1

�� s

�
for a < x � b and

1

�2s+1
f

�
x+ b

2

�
� 1

2

� (�)

(b� x)�
�
J�x+f (b) + J

�
b�f (x)

�
(2.21)

� f (x) + f (b)

2

�
B (1� s; �) + 1

�� s

�
for a � x < b; where B is Beta function, i.e.

B (u; v) :=

Z 1

0

tu�1 (1� t)v�1 dt and u; v > 0:

If f : [a; b] � [0;1)! [0;1) is integrable and Breckner �-convex with � 2 (0; 1]
then by Theorem 3 we have for � > 0 that

1

�21��
f

�
a+ x

2

�
� 1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(2.22)

� f (a) + f (x)

2

�
B (1 + �; �) +

1

�+ �

�
for a < x � b and

1

�21��
f

�
x+ b

2

�
� 1

2

� (�)

(b� x)�
�
J�x+f (b) + J

�
b�f (x)

�
(2.23)

� f (x) + f (b)

2

�
B (1 + �; �) +

1

�+ �

�
for a � x < b:
Finally, we note that if f : [a; b]! [0;1) is quasi-convex, namely

f (tx+ (1� t) y) � max ff (x) ; f (y)g for all x; y 2 I and t 2 [0; 1]

then

(2.24)
1

2

� (�+ 1)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
� max ff (a) ; f (x)g ; for a < x � b

and

(2.25)
1

2

� (�+ 1)

(b� x)�
�
J�x+f (b) + J

�
b�f (x)

�
� max ff (x) ; f (b)g or a � x < b:

Similar results may be obtained by writing the inequalities (2.17) for these examples
of h-convex functions. The details are omitted.
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3. Proofs

In 1906, Fejér [14], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Lemma 1 (Fejér�s Inequality). Consider the integral
R b
a
h (x) g (x) dx, where h is

a convex function in the interval (a; b) and g is a positive function in the same
interval such that

g (a+ t) = g (b� t) ; 0 � t � 1

2
(b� a) ;

i.e., g is symmetric. Under those conditions the following inequalities are valid:

(3.1) h

�
a+ b

2

�Z b

a

g (t) dt �
Z b

a

h (t) g (t) dx � h (a) + h (b)

2

Z b

a

g (t) dt:

If h is concave on (a; b), then the inequalities reverse in (3.1).

Clearly, for g (x) � 1 on [a; b] we get (1.1).
Using the de�nition of Riemann-Liouville fractional integrals we have

J�x�f (a) =
1

� (�)

Z x

a

(t� a)��1 f (t) dt

and then

1

2

�
J�a+f (x) + J

�
x�f (a)

�
=

1

� (�)

Z x

a

(x� t)��1 + (t� a)��1

2
f (t) dt

for a < x � b; which is an identity of interest in itself.
Observe that the function gx;a : [a; x]! [0;1) de�ned by

gx;a (t) =
1

2� (�)

h
(x� t)��1 + (t� a)��1

i
is symmetric on the interval [a; x] for any a < x � b:
Applying (3.1) on the interval [a; x] ; we get

h

�
a+ x

2

�
1

� (�)

Z x

a

(x� t)��1 + (t� a)��1

2
dt(3.2)

� 1

� (�)

Z x

a

(x� t)��1 + (t� a)��1

2
f (t) dt

� h (a) + h (x)

2

1

� (�)

Z x

a

(x� t)��1 + (t� a)��1

2
dt

for any a < x � b:
Since Z x

a

(x� t)��1 + (t� a)��1

2
dt =

1

�
(x� a)� ;

then by (3.2) we get

h

�
a+ x

2

�
1

� (�)

1

�
(x� a)� � 1

2

�
J�a+f (x) + J

�
x�f (a)

�
� h (a) + h (x)

2

1

� (�)

1

�
(x� a)� ;

which proves (2.1).
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We have

J�x+f (b) =
1

� (�)

Z b

x

(b� t)��1 f (t) dt

and then

(3.3)
1

2

�
J�b�f (x) + J

�
x+f (b)

�
=

1

� (�)

Z b

x

(b� t)��1 + (t� x)��1

2
f (t) dt

for a � x < b; which is an identity of interest in itself.
Using Fejér�s inequality for the symmetrical function

gb;x (t) =
(b� t)��1 + (t� x)��1

2

on [x; b] ; we get in a similar way the inequality (2.2).
If we multiply (2.1) by x�a

b�a and (2.2) by
b�x
b�a we have

f

�
a+ x

2

�
x� a
b� a �

1

2

� (�+ 1)

(x� a)��1 (b� a)
�
J�a+f (x) + J

�
x�f (a)

�
� f (a) + f (x)

2

x� a
b� a

for a < x � b and

f

�
x+ b

2

�
b� x
b� a �

1

2

� (�+ 1)

(b� x)��1 (b� a)
�
J�x+f (b) + J

�
b�f (x)

�
� f (x) + f (b)

2

b� x
b� a

for a � x < b:
If we add these inequalities, we get

f

�
a+ x

2

�
x� a
b� a + f

�
x+ b

2

�
b� x
b� a(3.4)

� 1

2

� (�+ 1)

(b� a)

"
J�a+f (x) + J

�
x�f (a)

(x� a)��1
+
J�x+f (b) + J

�
b�f (x)

(b� x)��1

#

� f (a) + f (x)

2

x� a
b� a +

f (x) + f (b)

2

b� x
b� a

=
1

2

�
x� a
b� a f (a) +

b� x
b� af (b) + f (x)

�
for a < x < b: This proves the second and third inequalities in (2.6).
By the convexity of f we also have

f

�
a+ x

2

�
x� a
b� a + f

�
x+ b

2

�
b� x
b� a

� f
�
a+ x

2

x� a
b� a +

x+ b

2

b� x
b� a

�
= f

�
a+ b

2

�
for a � x � b: This proves the �rst inequality in (2.6).
By the convexity of f we have

f (x) = f

�
x� a
b� a b+

b� x
b� aa

�
� x� a
b� a f (b) +

b� x
b� af (a)

for a � x � b:
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Therefore
1

2

�
x� a
b� a f (a) +

b� x
b� af (b) + f (x)

�
� 1

2

�
x� a
b� a f (a) +

b� x
b� af (b) +

x� a
b� a f (b) +

b� x
b� af (a)

�
=
1

2
[f (a) + f (b)] ;

which proves the last part of (2.6).
If we change the variable t = (1� s) a+sx; with a < x � b; then dt = (x� a) ds;

x� t = (1� s) (x� a) ; t� a = s (x� a)
1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(3.5)

=

Z 1

0

(1� s)��1 + s��1
2

f ((1� s) a+ sx) ds

and, by replacing s with 1� s we also have
1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
=

Z 1

0

(1� s)��1 + s��1
2

f (sa+ (1� s)x) ds

giving

1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(3.6)

=

Z 1

0

(1� s)��1 + s��1
2

f ((1� s) a+ sx) + f (sa+ (1� s)x)
2

ds

for a < x � b:
Now, if we assume that f is h-convex on [a; b], then

f (sa+ (1� s)x) � h (s) f (a) + h (1� s) f (x) ;
which implies, by (3.5), that

1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
(3.7)

�
Z 1

0

(1� s)��1 + s��1
2

[h (s) f (a) + h (1� s) f (x)] ds

= f (a)

Z 1

0

(1� s)��1 + s��1
2

h (s) ds

+ f (x)

Z 1

0

(1� s)��1 + s��1
2

h (1� s) ds:

Since Z 1

0

(1� s)��1 + s��1
2

h (1� s) ds =
Z 1

0

(1� s)��1 + s��1
2

h (s) ds;

then by (3.7) we get the second inequality in (2.12).
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By the fact that f is h-convex on [a; b], we have

1

2h
�
1
2

�f �a+ x
2

�
� f ((1� s) a+ sx) + f (sa+ (1� s)x)

2

for s 2 [0; 1] : Then we get
1

2h
�
1
2

�f �a+ x
2

�
(1� s)��1 + s��1

2
(3.8)

� (1� s)��1 + s��1
2

f ((1� s) a+ sx) + f (sa+ (1� s)x)
2

for s 2 [0; 1] :
If we integrate the inequality (3.8) over s 2 [0; 1] and use (3.6) we get

1

2h
�
1
2

�f �a+ x
2

�Z 1

0

(1� s)��1 + s��1
2

dt(3.9)

� 1

2

� (�)

(x� a)�
�
J�a+f (x) + J

�
x�f (a)

�
:

Since Z 1

0

(1� s)��1 + s��1
2

dt =
1

�
;

hence by (3.9) we obtain the �rst inequality in (2.12).
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