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HERMITE-HADAMARD TYPE INEQUALITIES FOR
FRACTIONAL INTEGRALS

LOREDANA CIURDARIU

ABSTRACT. Several Hermite-Hadamard type inequalities will be given in this
paper for different types of convexity for fractional integrals.

1. Introduction

The inequality of Hermite-Hadamard type has been considered very useful in
mathematical analysis being extended and generalized in many directions by many
authors, see [22, 6, 5, 9, 1, 13, 17, 23, 11] and the references therein.

Many papers study the Riemann-Liouville fractionals integrals and give new and
interesant generalizations of Hermite-Hadamard type inequalities using these kind
of integrals, see for example [8, 7, 9, 10, 11, 18, 15, 17, 13, 22, 23, 24, 25, 26].

We begin by recalling below the classical definition for the convex functions.

Definition 1. A function f: I C R — R is said to be convex on an interval I if
the inequality
(1) [tz + (1 =t)y) <tf(x) + (1 —-1)f(y)

holds for all x,y € I and t € [0,1]. The function f is said to be concave on I if the
inequality (1) takes place in reversed direction.

It is necessary to recall below also other kind of convexity and the definition of
fractionals integrals, see [8, 10, 9, 18, 19, 24]. For other type of convexity see also
[20, 16].

Definition 2. A function f :[a,b] — R is said to be quasi-convex onl [a,b] if

ftz + (1 —t)y) < sup{f(2), f(y)}
holds for all x,y € [a,b] and t € [0,1].

Definition 3. A function f : I — R is said to be P-convex on [a,b] if it is nonneg-
ative and for all z,y € I and X € [9,1]

[tz + (1 =t)y) < flz) + f(y).
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Definition 4. A function f: I C Ry — Ry is said to be s-convex in the first sense
on an interval I if the inequality

flte+ (1 —t)y) <t°f(z) + (1 —t°)f(y)
holds for all x,y € I, t € [0,1] and for some fized s € (0, 1].

Definition 5. A function f : I C Ry — Ry is said to be s-Godunova-Levin
functions of second kind on an interval I if the inequality

fltr + (1 —t)y) < tlsf(ﬂf) + ﬁ

holds for all x,y € I, t € (0,1) and for some fized s € [0, 1].

fy)

It is easy to see that for s = 0 s-Godunova-Levin functions of second kind are
functions P-convex.

The classical Hermite-Hadamard’s inequality for convex functions is

(2) f<a;rb>§bia/abf(x)daz§f(a);ﬂb).

Moreover, if the function f is concave then the inequality (2) hold in reversed
direction.

Definition 6. Let f € L{a,b]. The Riemann-Liouwville integrals J&, f and Ji* f of
order a > 0 with a > 0 are defined by

I f(@) = s [ o= 0" 0 2> a

and

b
T 1@) = g [ =2 <,

respectively, where I'(«) is the Gamma function defined by T'(a) = fooo et ldt
and 10, f(x) = J)_ f(x) = f(a)

In this paper, two new identities are established and then by making use of these
equalities the author give new estimations of Hermite-Hadamard type inequalities
for functions whose the n-time derivative iin absolute value of certain powers satis-
fies different type of convexities via Riemann-Liouville fractional integrals.

2. Main results

The following result is a generalization of Lemma 1 from [4] when o« > n—1 and
n € N.
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Lemma 1. Letn € N* and f: I C R — R be o function such that f) exists on
the interior I° of an interval I and f™ € Lla,b] with a,b € I°, 0 < a < b. Then
for any z € [a, b], we have:

I(f,z,a,b,a,n) = (z—a) /01 o f) (ta4-(1—t)a)dt+(b—z) /1(1—15)0’]"(") (tb+(1—t)x)dt =

0

n _1Vk—1
=Y al@—1)..(a—k+2)f" ) (x) ((a(: jl)k'—l - i)k*) i

k=2

(a4 A et pg) 4L e gy,

(r—a)* @ (b—x)* o

where ae > n — 1.

Proof. By integration by parts and calculus we have,
fl@)  af(e)  Tla+l) .,
tf (¢ dt = — o
[ s s pwar= T A0 T )

and from here by induction we get:

1 n -1

_ a p(n) o _ _1\k— a(a_ 1) ( k+2) (n—k) f(n )(.T)
Ir—Atj’(m+ﬂtMMﬁ—Z; o et S @y Ly
r 1
+(1)”mJ§:"+1f(a).
Similarly, for I = fl(l — 1) fM)(th + (1 — t)x)dt we will obtain:
- Oé*l k+2) (n—k) f(nil)(x) F(O[+1) a—n+1
Z f ( ) b—=x +(b_$>oc-|-1‘]cv+ +f(b)

2 >

Now, multiplying I; by x — a and I by b — x and adding the resulting identities
we have the desired result.

Remark 1. Under conditions of Lemma 1, for n = 2, we obtain the following
equality:

I(f,2,0,b,0,2) = (z—a) /O 12 ¢ (- (1—t)a) di+(h—a) /0 (1—t)* S (th-+(1—t))dt =

1

a1 B b—a
mjﬁ f(®)]

:F(a+1)[%(} - mf(x)

Theorem 1. Let n € N* and f : I C R — R be o function such that f™ exists
on the interior I° of an interval T and t f™ € Lla,b] with a,b€ I°, 0 <a <b. If
|19 is convex on [a,b] for some fived ¢ > 1, where % + % =1 then the following
inequality takes place:

(1t 1
e )

lI(f,z,a,b,a,n)| = |Za(a—l)...(a—k—l—Q)f(”_k)(x) (
k=2
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+T (o + 1)[%5”*#(@ + ﬁJﬁf D)) <

—— (=) (SO @I+ @) -0 (LSOOG + 1O @]) )

T 2i(ap+1)r
Proof. From Lemma 1 using the property of the modulus and the power mean
inequality we obtain:

1
q

i 1
(f,2,0,b,0,m)| < (z — a) (/Olt“pdt) <0 |f<n>(m+(1—t)a)|qczt) +

+b—a) (/01(1 - t)“pdt); </01 L (th+ (1 — t)x)|th); .

If we take into account that |f (n) |7 is convex we obtain the inequality from below:

z,a,b,o,m ;xfa 1 ™) ()4 - ™) (a)]? '
b o) < Sl >(/ (1) (@)]7 + (1 — £)] ™ (a) 1dt> N

(b a) ( [ a- t)lf(”)(z)lq]dt> B!

which by calculus leads to desired inequality.

Theorem 2. Let n € N* and f : I C R — R be o function such that f™ exists
on the interior I° of an interval I and f) € Lla,b] with a,b € I°, 0 < a < b.
If | f(™|9 is quasi-convex on [a,b] for some fired ¢ > 1, where % + % =1 then the
following inequality holds:

_ . n— (_1)k_1 1
‘I(fvx’aab7a7n)| - I;a(a_l)"'(a_k+2)f( k)(x) (((E _ a)kfl - (bx)k1> +

(_1)n a—n+1 1 a—n+1
e+ Dl —ga i (@) + a0l <
1

< ————{(@ —a)sup{|f " (@), | ()]} + (b — 2) sup{| T (O)], | 1" (x)}}
(ap+1)»

Proof. We will use the property of the modulus, the power mean inequality and
then the definition of quasi-convex functions like before. i
Next result is also a generalization of Lemma 4 from [3].

Lemma 2. Letn € N*, n > 2 and f : I C R — R be o function such that f™
exists on the interior I of an interval I and f™) € Lla,b] with a,b € I°, 0 < a <
b, x € [a,b], A € (0,1). Then the following identity holds:

I(f,z,a,b,\,o,n) = (1 — \)(z — a) /01 tf™(t(a + (1 = Nz) + (1 — t)a)dt+

+ Az — a) /01(1 — )Mtz 4 (1 —t)(Na+ (1 — N\)z))dt+
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1
+(1 = N\)(b—x) / tfO ¢z 4 (1 = A\)b) + (1 — t)z)dt+
0

A — 2) /01(1 S FO b4 (1 — ) (A + (1 — A)B))dE =

n _1\k—-1 (n—k) a _ T
=3 ala = el k4 Dl iy - ) S
2

k—
f(n_k)()‘m + (1 — A)b) (_1)n a—n+1

=) 1 )]+ D+ 1){ A o —ar Gty fla)+
1 a—n 1 a—n
s aeoeri-n ) 3a e Tat iy F@)+
_1 " a—n
+ - J(Ax++11 A)b)— f()},

(1= —z)*
where ae > n — 1.

Proof. By integration by parts and then using the substitution u = t(Aa + (1 —
Az) + (1 —t)a we get

1 B e _FQa+(1-N2)  af(a+(1-Naz)
/Otf (tAa+(1—=Nzx)+(1—t)a))dt = 1—N@—a) (1= )2z —a)? +

INa+1) o
(1 _ /\)O‘+1(l‘ _ a)a+1 ()\a—l&-(l A)z)~ f( )

+

Then we check easily by induction that

I = /1 M (tNa+ (1= Nz) + (1 —t)a))dt =
0

N kfla(afl) (a k+2) (n—t) " V0a (1= M)

D' +1 o
(1 —( A)C)‘“((j— a))a+1 ‘](/\<1+J(r11 Nay- 4 (@)-

k=2

Analogously we obtain
1
I = / £ ) (b + (1 — A)b) + (1 — £)))dt =
0

FO=D Az + (1= \)b)
1=\ (b—x)

=2 e b (1) +

(_1)n]_"(a+ 1) a—n+1 f( )

+ (1 _ /\)a+1(b _ x)(x-&-l (Az+(1=X)b)~

I = /01(1 — ) fM (e + (1= t)(Aa+ (1= N\z))dt =

alo—1)..(a—k+2) .,_ D (Na+ (1 = Nzx)
Z )\kxfa)k FUPa+ (1= Na) - Mz —a) +

k=2
INa+1)

+1
+)\a+1($— )oz+1 (akai(l >\)a:)+f( )

and
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I, = /1(1 — )M b+ (1 —t)( Az + (1 — A\)b))dt =
0

Cwala=1D(a=k+2) . p . _ _
_ Voo e a0

FO=D Az + (1= A\)b)
Ab—2)

F(Oé + 1) a—n+1
N — gyt T 1)+ ().

Multiplying now Iy by (1 — A)(x — a), Is by A(z —a), I — 3 by (1 — A)(b— z) and
I, by Ab — z) and summing then these expressions we find by calculus the desired
equality.

|

+

Theorem 3. Let n € N* and f : I C R — R be o function such that f™) exists
on the interior I° of an interval I and f € Lla,b] with a,b € I°, 0 <a <b, A\ €
(0,1), 2 € [a,b]. If | f™|9 is convex on [a,b] for some fired q¢ > 1, where % + % =1
then the following inequality holds:

1
I(f,ZL',CL,b,A,Oé,’Il) S -1, 1
27 (ap + 1)

FA@ — a)(|F™ @)+ £ (Aa + (1 - N)2)|9) 7+
FA =N = 2)(FP 0@+ (1= A7 + [F0) (2)]9)5 +
HFAD = 2) ([P B+ | Az + (1= A\)b)|9) 7},

where o >n — 1.

{1=N)(@=a)(|F™ (Aa+(1=N)z)|"+|f ™) (@)|) 7+

T =

Proof. We use the power mean inequality and the definition of convex functions as
in previous theorem. i

Theorem 4. Let n € N* and f : I C R — R be o function such that f™ exists
on the interior I° of an interval I and f € Lla,b] with a,b € I°, 0 <a <b, A\ €
(0,1), = € [a,b]. If |f™|9 is convex on [a,b] then the following inequality holds:

T(f, 0,00 0m) < (=N =) (7™ Qa+(1-N)2) 1+ — | O @[+

A = a) (g D@17 + 17 (1= N2+
HI = N6 =)D O + (1= NI+ — | @)) 5+
A = ) ST BIT +7 O + (1= VB,

where ae > n — 1.

Proof. In this case we will use the Holder’s inequality and then the definition of
convex functions. i
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Theorem 5. Let n € N* and f : I C R — R be o function such that f™ exists
on the interior I° of an interval I and f € Lla,b] with a,b € I°, 0 < a <b, A\ €
(0,1), € [a,b]. If | f(™|9 is P-convex on [a,b] then the following inequality holds:
1 1
I(f,w,a,b, 7 a,n) < ———{(1=N)(z—a)(| /™ Aa+(1=N)z)|*+]|f(a)|") 7+
(ap+1)7

Az — a)(|f @)+ | F (A + (1 — N)x)|9)7+
(1= A)(b—2)(|f Az + (1= A7+ £ ()] 9)5+
HFAD = 2) ([P B+ | Az + (1= A\)b)|9) 7},

where ae > n — 1.

Proof. In this case we will use the power mean inequality and then the definition
of P-convex functions. i

Theorem 6. Let n € N* and f : I C R = R be o function such that f) exists
on the interior 19 of an interval I and f € Lla,b] with a,b€ I°, 0 <a <b, A€
0,1), x € [a,b]. If |f™|9 is quasi-convex on [a,b] then the following inequality
holds:

1

I(f,x,0,b, A 0,n) < ————{(1=A)(z—a) sup{| f™ (Aa+ (1= N)2)|,| /™) (a) [} +
(ap +1)»
+A( = a)sup{| S ()], [ (Na + (1 = A)z)[}+
(1= N0 = 2)sup{| f™ Oz + (1 = M), |f ™ (@)} +
+A0 = 2)sup{| f )], 1F" (A + (1= N)p) [},

where o >n — 1.

Proof. In this case we will use the power mean inequality and then the definition
of quasi-convex functions. i

Theorem 7. Let n € N* and f : I C R — R be o function such that f™ exists
on the interior I° of an interval I and f € Lla,b] with a,b € I°, 0 < a <b, A\ €
(0,1), = € [a,b]. If |f™|9 is s-convex in the first sense on [a,b] and a > n — 1.
then the following inequality takes place:

1
(ap+1)7(s+1)

I(f>$7a7 ba )" a7n) < {(1—)\)(:C—a)(‘f(n)()\a—l—(l—)\)xﬂq—‘r‘f(n) (a)‘q)%_;'_

Q=

A = 2)(If PO + £ Az + (1= 2)p)|9) 7}

Proof. In this case we will use the power mean inequality and then the definition
of s-convex functions in the first sense. 1
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Theorem 8. Letn € N* and f : I C R — R be o nonnegative function such that
) exists on the interior I° of an interval I and f) € Lla,b] with a,b € I°, 0 <
a<b, A€ (0,1), x € [a,b]. If|f™|9 is s-Godunova-Levin functiono of second kind
on [a,b] and o > n — 1. then the following inequality takes place:

1

(ap + 1)%(1 — s)%

I(f,2,a,b,\ a,n) < {(@-N)(z—a)(|f™ Aa+(1-N)z) |1+ f (a)|7) 7 +

XD — 2)([FM )+ F™ x4 (1= A)b)[9)7 )
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