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Abstract. Several Hermite-Hadamard type inequalities will be given in this

paper for different types of convexity for fractional integrals.

1. Introduction

The inequality of Hermite-Hadamard type has been considered very useful in
mathematical analysis being extended and generalized in many directions by many
authors, see [22, 6, 5, 9, 1, 13, 17, 23, 11] and the references therein.

Many papers study the Riemann-Liouville fractionals integrals and give new and
interesant generalizations of Hermite-Hadamard type inequalities using these kind
of integrals, see for example [8, 7, 9, 10, 11, 18, 15, 17, 13, 22, 23, 24, 25, 26].

We begin by recalling below the classical definition for the convex functions.

Definition 1. A function f : I ⊂ R → R is said to be convex on an interval I if
the inequality

(1) f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)

holds for all x, y ∈ I and t ∈ [0, 1]. The function f is said to be concave on I if the
inequality (1) takes place in reversed direction.

It is necessary to recall below also other kind of convexity and the definition of
fractionals integrals, see [8, 10, 9, 18, 19, 24]. For other type of convexity see also
[20, 16].

Definition 2. A function f : [a, b]→ R is said to be quasi-convex onl [a, b] if

f(tx+ (1− t)y) ≤ sup{f(x), f(y)}
holds for all x, y ∈ [a, b] and t ∈ [0, 1].

Definition 3. A function f : I → R is said to be P-convex on [a, b] if it is nonneg-
ative and for all x, y ∈ I and λ ∈ [9, 1]

f(tx+ (1− t)y) ≤ f(x) + f(y).

Date: May 2, 2017.

2000 Mathematics Subject Classification. 26D20.
Key words and phrases. Hermite-Hadamard inequality, convex functions, Holder’s inequality,

power mean inequality .

1

e5011831
Typewritten Text
Received 08/05/17

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 20 (2017), Art. 45, 9 pp.



2 LOREDANA CIURDARIU

Definition 4. A function f : I ⊂ R+ → R+ is said to be s-convex in the first sense
on an interval I if the inequality

f(tx+ (1− t)y) ≤ tsf(x) + (1− ts)f(y)

holds for all x, y ∈ I, t ∈ [0, 1] and for some fixed s ∈ (0, 1].

Definition 5. A function f : I ⊂ R+ → R+ is said to be s-Godunova-Levin
functions of second kind on an interval I if the inequality

f(tx+ (1− t)y) ≤ 1

ts
f(x) +

1

(1− t)s
f(y)

holds for all x, y ∈ I, t ∈ (0, 1) and for some fixed s ∈ [0, 1].

It is easy to see that for s = 0 s-Godunova-Levin functions of second kind are
functions P-convex.

The classical Hermite-Hadamard’s inequality for convex functions is

(2) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
.

Moreover, if the function f is concave then the inequality (2) hold in reversed
direction.

Definition 6. Let f ∈ L[a, b]. The Riemann-Liouville integrals Jαa+ f and Jαb− f of
order α > 0 with α ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b,

respectively, where Γ(α) is the Gamma function defined by Γ(α) =
∫∞
0
e−ttα−1dt

and J0
a+f(x) = J0

b−f(x) = f(x).

In this paper, two new identities are established and then by making use of these
equalities the author give new estimations of Hermite-Hadamard type inequalities
for functions whose the n-time derivative iin absolute value of certain powers satis-
fies different type of convexities via Riemann-Liouville fractional integrals.

2. Main results

The following result is a generalization of Lemma 1 from [4] when α > n−1 and
n ∈ N.
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Lemma 1. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists on
the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b. Then
for any x ∈ [a, b], we have:

I(f, x, a, b, α, n) = (x−a)

∫ 1

0

tαf (n)(tx+(1−t)a)dt+(b−x)

∫ 1

0

(1−t)αf (n)(tb+(1−t)x)dt =

=

n∑
k=2

α(α− 1)...(α− k + 2)f (n−k)(x)

(
(−1)k−1

(x− a)k−1
− 1

(b− x)k−1

)
+

+Γ(α+ 1)[
(−1)n

(x− a)α
Jα−n+1
x− f(a) +

1

(b− x)α
Jα−n+1
x+ f(b)],

where α > n− 1.

Proof. By integration by parts and calculus we have,∫ 1

0

tαf
′′
(tx+ (1− t)a)dt =

f
′
(x)

x− a
− αf(x)

(x− a)2
+

Γ(α+ 1)

(x− a)α+1
Jα−1x− f(a)

and from here by induction we get:

I1 =

∫ 1

0

tαf (n)(tx+(1−t)a)dt =

n∑
k=2

(−1)k−1
α(α− 1)...(α− k + 2)

(x− a)k
f (n−k)(x)+

f (n−1)(x)

x− a
+

+(−1)n
Γ(α+ 1)

(x− a)α+1
Jα−n+1
x− f(a).

Similarly, for I2 =
∫ 1

0
(1− t)αf (n)(tb+ (1− t)x)dt we will obtain:

I2 = −
n∑
k=2

α(α− 1)...(α− k + 2)

(b− x)k
f (n−k)(x)− f (n−1)(x)

b− x
+

Γ(α+ 1)

(b− x)α+1
Jα−n+1
x+ f(b).

Now, multiplying I1 by x− a and I2 by b− x and adding the resulting identities
we have the desired result.

Remark 1. Under conditions of Lemma 1, for n = 2, we obtain the following
equality:

I(f, x, a, b, α, 2) = (x−a)

∫ 1

0

tαf
′′
(tx+(1−t)a)dt+(b−x)

∫ 1

0

(1−t)αf
′′
(tb+(1−t)x)dt =

= Γ(α+ 1)[
1

(x− a)α
Jα−1x− f(a) +

1

(b− x)α
Jα−1x+ f(b)]− b− a

(x− a)(b− x)
f(x)

Theorem 1. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and t f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b. If
|f (n)|q is convex on [a, b] for some fixed q ≥ 1, where 1

p + 1
q = 1 then the following

inequality takes place:

|I(f, x, a, b, α, n)| = |
n∑
k=2

α(α−1)...(α−k+2)f (n−k)(x)

(
(−1)k−1

(x− a)k−1
− 1

(b− x)k−1

)
+
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+Γ(α+ 1)[
(−1)n

(x− a)α
Jα−n+1
x− f(a) +

1

(b− x)α
Jα−n+1
x+ f(b)]| ≤

≤ 1

2
1
q (αp+ 1)

1
p

{(x−a)
(
|f (n)(x)|q + |f (n)(a)|q

) 1
q

+(b−x)
(
|f (n)(b)|q + |f (n)(x)|

) 1
q }

Proof. From Lemma 1 using the property of the modulus and the power mean
inequality we obtain:

|I(f, x, a, b, α, n)| ≤ (x− a)

(∫ 1

0

tαpdt

) 1
p
(∫ 1

0

|f (n)(tx+ (1− t)a)|qdt
) 1

q

+

+(b− x)

(∫ 1

0

(1− t)αpdt
) 1

p
(∫ 1

0

|f (n)(tb+ (1− t)x)|qdt
) 1

q

.

If we take into account that |f (n)|q is convex we obtain the inequality from below:

|I(f, x, a, b, α, n)| ≤ 1

2
1
q (αp+ 1)

1
p

{(x−a)

(∫ 1

0

[t|f (n)(x)|q + (1− t)|f (n)(a)|q]dt
) 1

q

+

+(b− x)

(∫ 1

0

[t|f (n)(b)|q + (1− t)|f (n)(x)|q]dt
) 1

q

}

which by calculus leads to desired inequality.

Theorem 2. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b.
If |f (n)|q is quasi-convex on [a, b] for some fixed q ≥ 1, where 1

p + 1
q = 1 then the

following inequality holds:

|I(f, x, a, b, α, n)| = |
n∑
k=2

α(α−1)...(α−k+2)f (n−k)(x)

(
(−1)k−1

(x− a)k−1
− 1

(b− x)k−1

)
+

+Γ(α+ 1)[
(−1)n

(x− a)α
Jα−n+1
x− f(a) +

1

(b− x)α
Jα−n+1
x+ f(b)]| ≤

≤ 1

(αp+ 1)
1
p

{(x− a) sup{|f (n)(x)|, |f (n)(a)|}+ (b− x) sup{|f (n)(b)|, |f (n)(x)|}}

Proof. We will use the property of the modulus, the power mean inequality and
then the definition of quasi-convex functions like before.

Next result is also a generalization of Lemma 4 from [3].

Lemma 2. Let n ∈ N∗, n ≥ 2 and f : I ⊂ R → R be o function such that f (n)

exists on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a <
b, x ∈ [a, b], λ ∈ (0, 1). Then the following identity holds:

I(f, x, a, b, λ, α, n) = (1− λ)(x− a)

∫ 1

0

tαf (n)(t(λa+ (1− λ)x) + (1− t)a)dt+

+λ(x− a)

∫ 1

0

(1− t)αf (n)(tx+ (1− t)(λa+ (1− λ)x))dt+
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+(1− λ)(b− x)

∫ 1

0

tαf (n)(t(λx+ (1− λ)b) + (1− t)x)dt+

+λ(b− x)

∫ 1

0

(1− t)αf (n)(tb+ (1− t)(λx+ (1− λ)b))dt =

=

n∑
k=2

α(α− 1)...(α− k + 2)[(
(−1)k−1

(1− λ)k−1
− 1

λk−1
)(
f (n−k)(λa+ (1− λ)x)

(x− a)k−1
+

+
f (n−k)(λx+ (1− λ)b)

(b− x)k−1
)] + Γ(α+ 1){ (−1)n

(1− λ)α(x− a)α
Jα−n+1
(λa+(1−λ)x)−f(a)+

+
1

λα(b− x)α
Jα−n+1
(λx+(1−λ)b)+f(b) +

1

λα(x− a)α
Jα−n+1
(λa+(1−λ)x)+f(x)+

+
(−1)n

(1− λ)α(b− x)α
Jα−n+1
(λx+(1−λ)b)−f(x)},

where α > n− 1.

Proof. By integration by parts and then using the substitution u = t(λa + (1 −
λ)x) + (1− t)a we get∫ 1

0

tαf
′′
(t(λa+(1−λ)x)+(1− t)a))dt =

f
′
(λa+ (1− λ)x)

(1− λ)(x− a)
− αf(λa+ (1− λ)x)

(1− λ)2(x− a)2
+

+
Γ(α+ 1)

(1− λ)α+1(x− a)α+1
Jα−1(λa+(1−λ)x)−f(a).

Then we check easily by induction that

I1 =

∫ 1

0

tαf (n)(t(λa+ (1− λ)x) + (1− t)a))dt =

=

n∑
k=2

(−1)k−1
α(α− 1)...(α− k + 2)

(1− λ)k(x− a)k
f (n−k)(λa+(1−λ)x)+

f (n−1)(λa+ (1− λ)x)

(1− λ)(x− a)
+

+
(−1)nΓ(α+ 1)

(1− λ)α+1(x− a)α+1
Jα−n+1
(λa+(1−λ)x)−f(a).

Analogously we obtain

I3 =

∫ 1

0

tαf (n)(t(λx+ (1− λ)b) + (1− t)x))dt =

=

n∑
k=2

(−1)k−1
α(α− 1)...(α− k + 2)

(1− λ)k(b− x)k
f (n−k)(λx+(1−λ)b)+

f (n−1)(λx+ (1− λ)b)

(1− λ)(b− x)
+

+
(−1)nΓ(α+ 1)

(1− λ)α+1(b− x)α+1
Jα−n+1
(λx+(1−λ)b)−f(x).,

I2 =

∫ 1

0

(1− t)αf (n)(tx+ (1− t)(λa+ (1− λ)x))dt =

= −
n∑
k=2

α(α− 1)...(α− k + 2)

λk(x− a)k
f (n−k)(λa+ (1− λ)x)− f (n−1)(λa+ (1− λ)x)

λ(x− a)
+

+
Γ(α+ 1)

λα+1(x− a)α+1
Jα−n+1
(λa+(1−λ)x)+f(x).

and
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I4 =

∫ 1

0

(1− t)αf (n)(tb+ (1− t)(λx+ (1− λ)b))dt =

=

n∑
k=2

α(α− 1)...(α− k + 2)

λk(b− x)k
f (n−k)(λx+ (1− λ)b)− f (n−1)(λx+ (1− λ)b)

λ(b− x)
+

+
Γ(α+ 1)

λα+1(b− x)α+1
Jα−n+1
(λx+(1−λ)b)+f(b).

Multiplying now I1 by (1− λ)(x− a), I2 by λ(x− a), I − 3 by (1− λ)(b− x) and
I4 by λb− x) and summing then these expressions we find by calculus the desired
equality.

Theorem 3. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b, λ ∈
(0, 1), x ∈ [a, b]. If |f (n)|q is convex on [a, b] for some fixed q ≥ 1, where 1

p + 1
q = 1

then the following inequality holds:

I(f, x, a, b, λ, α, n) ≤ 1

2
1
q (αp+ 1)

1
p

{(1−λ)(x−a)(|f (n)(λa+(1−λ)x)|q+|f (n)(a)|q)
1
q +

+λ(x− a)(|f (n)(x)|q + |f (n)(λa+ (1− λ)x)|q)
1
q +

+(1− λ)(b− x)(|f (n)(λx+ (1− λ)b)|q + |f (n)(x)|q)
1
q +

+λ(b− x)(|f (n)(b)|q + |f (n)(λx+ (1− λ)b)|q)
1
q },

where α > n− 1.

Proof. We use the power mean inequality and the definition of convex functions as
in previous theorem.

Theorem 4. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b, λ ∈
(0, 1), x ∈ [a, b]. If |f (n)|q is convex on [a, b] then the following inequality holds:

I(f, x, a, b, λ, α, n) ≤ 1

(α+ 2)
1
q

{(1−λ)(x−a)(|f (n)(λa+(1−λ)x)|q+ 1

α+ 1
|f (n)(a)|q)

1
q +

+λ(x− a)(
1

α+ 1
|f (n)(x)|q + |f (n)(λa+ (1− λ)x)|q)

1
q +

+(1− λ)(b− x)(|f (n)(λx+ (1− λ)b)|q +
1

α+ 1
|f (n)(x)|q)

1
q +

+λ(b− x)(
1

α+ 1
|f (n)(b)|q + |f (n)(λx+ (1− λ)b)|q)

1
q },

where α > n− 1.

Proof. In this case we will use the Holder’s inequality and then the definition of
convex functions.
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Theorem 5. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b, λ ∈
(0, 1), x ∈ [a, b]. If |f (n)|q is P-convex on [a, b] then the following inequality holds:

I(f, x, a, b, λ, α, n) ≤ 1

(αp+ 1)
1
p

{(1−λ)(x−a)(|f (n)(λa+(1−λ)x)|q+|f (n)(a)|q)
1
q +

+λ(x− a)(|f (n)(x)|q + |f (n)(λa+ (1− λ)x)|q)
1
q +

+(1− λ)(b− x)(|f (n)(λx+ (1− λ)b)|q + |f (n)(x)|q)
1
q +

+λ(b− x)(|f (n)(b)|q + |f (n)(λx+ (1− λ)b)|q)
1
q },

where α > n− 1.

Proof. In this case we will use the power mean inequality and then the definition
of P-convex functions.

Theorem 6. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b, λ ∈
(0, 1), x ∈ [a, b]. If |f (n)|q is quasi-convex on [a, b] then the following inequality
holds:

I(f, x, a, b, λ, α, n) ≤ 1

(αp+ 1)
1
p

{(1−λ)(x−a) sup{|f (n)(λa+(1−λ)x)|, |f (n)(a)|}+

+λ(x− a) sup{|f (n)(x)|, |f (n)(λa+ (1− λ)x)|}+

+(1− λ)(b− x) sup{|f (n)(λx+ (1− λ)b)|, |f (n)(x)|}+

+λ(b− x) sup{|f (n)(b)|, |f (n)(λx+ (1− λ)b)|}},
where α > n− 1.

Proof. In this case we will use the power mean inequality and then the definition
of quasi-convex functions.

Theorem 7. Let n ∈ N∗ and f : I ⊂ R → R be o function such that f (n) exists
on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 < a < b, λ ∈
(0, 1), x ∈ [a, b]. If |f (n)|q is s-convex in the first sense on [a, b] and α > n − 1.
then the following inequality takes place:

I(f, x, a, b, λ, α, n) ≤ 1

(αp+ 1)
1
p (s+ 1)

1
q

{(1−λ)(x−a)(|f (n)(λa+(1−λ)x)|q+|f (n)(a)|q)
1
q +

+λ(x− a)(|f (n)(x)|q + |f (n)(λa+ (1− λ)x)|q)
1
q +

+(1− λ)(b− x)(|f (n)(λx+ (1− λ)b)|q + |f (n)(x)|q)
1
q +

+λ(b− x)(|f (n)(b)|q + |f (n)(λx+ (1− λ)b)|q)
1
q }.

Proof. In this case we will use the power mean inequality and then the definition
of s-convex functions in the first sense.
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Theorem 8. Let n ∈ N∗ and f : I ⊂ R → R be o nonnegative function such that
f (n) exists on the interior I0 of an interval I and f (n) ∈ L[a, b] with a, b ∈ I0, 0 <
a < b, λ ∈ (0, 1), x ∈ [a, b]. If |f (n)|q is s-Godunova-Levin functiono of second kind
on [a, b] and α > n− 1. then the following inequality takes place:

I(f, x, a, b, λ, α, n) ≤ 1

(αp+ 1)
1
p (1− s)

1
q

{(1−λ)(x−a)(|f (n)(λa+(1−λ)x)|q+|f (n)(a)|q)
1
q +

+λ(x− a)(|f (n)(x)|q + |f (n)(λa+ (1− λ)x)|q)
1
q +

+(1− λ)(b− x)(|f (n)(λx+ (1− λ)b)|q + |f (n)(x)|q)
1
q +

+λ(b− x)(|f (n)(b)|q + |f (n)(λx+ (1− λ)b)|q)
1
q }.
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