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1. Introduction 
 

  
Let f : I RR be a convex function on the interval I of real numbers and a,bI with 

ab. The inequality  
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is known as Hermite-Hadamard’s inequality for convex functions 9. 
 

In [13] and [3, p. 295],  G.H. Toader defines the m-convexity: 
 
The function   Rbf ,0:  is said to be m-convex , where  1,0m , if for every 
 byx ,0,   and  1,0t , we have  

  )()1()()1( yftmxtfytmtxf  . 
  

In [10] and [3, p. 301],  V.G.Miheşan  introduced the following class of functions: 
 

The function   Rbf ,0:  is said to be ),( m -convex , where  21,0),( m , if for 
every  byx ,0,   and  1,0t , we have  

  )()1()()1( yftmxftytmtxf   . 
  

In [4] and [3, pp.38-49], S.S. Dragomir et al. gave some trapezoid type inequalities for 
twice differentiable mappings. In [8], M.K. Bakula et al. gave some general companion 
inequalities related to Jensen’s inequality for the classes of m-convex and ),( m convex 
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functions. In [2], Rui-Fang Bai et al. deduced some Hermite-Hadamard type inequalities for 
the m- and ),( m  logarithmically convex functions.  

For several recent results concerning the Hermite-Hadamard type inequalities and 
convex functions, we refer the reader to [1,5,6,7,11,12].  

In this paper,  we give some Hermite-Hadamard-type inequalities for twice 
differentiable m-convex functions and ),( m convex functions.  Also, we write some 
applications to special means of real numbers. 
 

 
2. Main Results 

 
 Firstly, we start by the following lemma: 
 
Lemma :  Let RRIf :  be twice differentiable function on 0I with "f  integrable on 
  0, Iba  . Then we have  
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where,  
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and 0I denotes the interior of I. 
 
Proof: By integration by parts twice, we have,   
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By adding these equalities, we get 
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Hence, we obtain 
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which completes the proof. 
 

Now, we write the following results: 
 
Theorem 1: Let   ,0,: IRIf  be twice differentiable function on 0I  such that 

 baLf ," ,  ba0 . If  "f  is ),( m -convex function with  21,0),( m , then we 
have  
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Proof: Since "f  is ),( m -convex, we have, for every  byx ,0,   and  1,0t  
 

  ,)(")1()(")1(" yftmxftytmtxf    
which gives  

  ,)(")1()(")1("
m
yftmxftyttxf    for all  1,0t .                         (3) 

 From (1) and by inequality (3), it follows that 
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Where we have used the facts that, 

      





 









 




2/1

0

2/1

0
3

1

48
11

2
1,

322
1

2
1







 dttttdttt                         (4) 

 

  ,1
2

1
3

1
2
1

2
1

1
1

2
11

2
1

2
31

2
11

2/1
322 

 
 






 









 









 









  

dtttt            (5)     

   





 

1

2/1 48
111

2
1

 dtttt  and 
)2)(1(

1
2

1
)3)(2)(1(2

1
2 







 
  . 

This concludes the proof. 
 
Corollary 1: Let   ,0,: IRIf  be twice differentiable function on 0I  such that 

 baLf ," ,  ba0 . If  "f  is m-convex function with  1,0m , then we have  
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Proof: Choosing 1  in the inequality (2), we obtain (6). 
 
Remark 1: With the assumptions in Corollary 1, with the condition that  
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Also, putting 1m , we get the inequality  
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Theorem 2: Let   ,0,: IRIf  be twice differentiable function on 0I  such that 

 baLf ," ,  ba0 . If  )1/(" ppf  is ),( m -convex function with  21,0),( m , then 

we have, for p>1 and 111
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where,  
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Proof: Since qf "  is ),( m -convex, we have, for every  byx ,0,   and  1,0t ,  
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 By  (1) and from Hölder’s integral inequality, we have inequality  
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where 1/p+1/q=1. From (3), we obtain,  
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Also, using the fact that,  
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for Rbap  ,,0 , we obtain 
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Combining all these inequalities,  we deduce 
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This concludes the proof. 
 
Corollary 2: Let   ,0,: IRIf  be twice differentiable function on 0I  such that 

 baLf ," ,  ba0 . If  )1/(" ppf  is m-convex function with  1,0m , then we have, 

for p>1 and 111
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where,  ,  are given by (8). 
Proof: Choosing 1  in the inequality (7), we obtain (9). 
 
Remark 2: With the assumptions in Corollary 2, with the condition that 
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Also, putting 1m ,  for 1)2/1( /1 q ,  we get the inequality  
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Theorem 3: Let   ,0,: IRIf  be twice differentiable function on 0I  such that 

 baLf ," ,  ba0 . If  pf "  is ),( m -convex function with  21,0),( m , then we 
have, for p>1 
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where  ,  are given by (4) and (5) respectively. 
 

Proof: Since pf "  is ),( m -convex function, we have, for every  byx ,0,  ,  1,0t  and  
p>1 
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By the power-mean integral inequality, we have  inequalities  
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From inequality (11), we obtain,  
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Combining all these inequalities, we deduce 
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Hence, we have the conclusion. 
 
Corollary 3: Let   ,0,: IRIf  be twice differentiable function on 0I  such that 

 baLf ," ,  ba0 . If  pf "  is m-convex function with  1,0m , then we have, for 
p>1 
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Proof: Choosing 1  in the inequality (10), we obtain (12). 
 
Remark 3: With the assumptions in Corollary 3, with the condition that 
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Also, taking 1m , we get the inequality  
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3. Applications to Special Means 
 
 

 We shall consider the means for arbitrary real numbers ,,. We     take 
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  nZ\{-1,0}, ,R,  ,  (generalized log-mean) 

 
Now, using the results of Section 2, we give some applications to special  

means of real  numbers. 
 

Proposition 1: Let baba  ),,0[, and 2,   nZn . Then we have 
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Proof: The assertion follows from Corollary 1 applied to the 1-convex function 
Rfxxf n  ),0[:,)( . 

 
Proposition 2: Let baba  ),,0(,  Then we have 
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Proof: The assertion follows from Corollary 1 applied to the 1-convex function 
Rfxxf  ),0(:),1ln()( . 

 
Proposition 3: Let baba  ),,0[, and 2,   nZn . Then we have, for all q>1 
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Proof: The assertion follows from Corollary 2 applied to the 1-convex function 
Rfxxf n  ),0[:,)( . 

 
Proposition 4: Let baba  ),,0[, . Then we have, for all q>1 
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where bbaabbaa cosh,cosh,sinh,sinh 2211  . 
 
Proof: The assertion follows from Corollary 2 applied to the 1-convex function 

.),0[:,cosh)(  Rfxxf  
 
Proposition 5: Let baba  ),,0[, and 2,   nZn . Then we have, for all p>1 
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Proof: The assertion follows from Corollary 3 applied to the 1-convex function 
Rfxxf n  ),0[:,)( . 

 
Proposition 6: Let baba  ),,0[, . Then we have, for all p>1 
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Proof: The assertion follows from Corollary 3 applied to the 1-convex function 

Rfexf x  ),0[:,)( . 
 
Proposition 7: Let baba  ),,0[, . Then we have, for all p>1 
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function (see [8] and [11]). The assertion follows from Corollary 3 applied to the 
function )(xf . 
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