
OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES FOR
RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF

ABSOLUTELY CONTINUOUS FUNCTIONS WITH BOUNDED
DERIVATIVES

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some Ostrowski and trapezoid type
inequalities for the Riemann-Liouville fractional integrals of absolutely con-
tinuous functions with bounded derivatives. Applications for mid-point and
trapezoid inequalities are provided as well. They generalize the know results
holding for the classical Riemann integral.

1. Introduction

In 2002 [12], we proved the following Ostrowski type inequality for convex func-
tions f : [a; b]! R and x 2 (a; b)
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In particular, we have the mid-point inequalities
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with the constant 18 as best possible in both inequalities.
In the same year [13], we also obtained the following generalized trapezoid type

inequality for convex functions f : [a; b]! R and x 2 (a; b)
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In particular, we have the trapezoid inequality

(1.4)
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with the constant 18 as best possible in both inequalities.
These results were generalized in the following manner:

Theorem 1 (Dragomir, 2003 [14]). Let f : [a; b] ! R be an absolutely continuous
function on [a; b] and x 2 [a; b]. Suppose that there exist the functions mi, Mi :
[a; b]! R

�
i = 1; 2

�
with the properties:

(1.5) m1 (x) � f 0 (t) �M1 (x) for a.e. t 2 [a; x]
and

(1.6) m2 (x) � f 0 (t) �M2 (x) for a.e. t 2 (x; b] :
Then we have the inequalities:

(1.7)
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The constant 12 is sharp on both sides.

If we assume global bounds for the derivative, then we have:

Corollary 1 (Dragomir, 2003 [14]). If f : [a; b] ! R is absolutely continuous on
[a; b] and the derivative f 0 : [a; b]! R is bounded above and below, that is,
(1.8) �1 < m � f 0 (t) �M <1 for a.e. t 2 [a; b] ;
then we have the inequality
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for all x 2 [a; b]. The constant 12 is the best in both inequalities.
In particular, we have

(1.10)
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with 1
8 as the best possible constant.

In order to extend these results for fractional integrals we need the following
de�nitions.
Let f : [a; b]! C be a complex valued Lebesgue integrable function on the real

interval [a; b] : The Riemann-Liouville fractional integrals are de�ned for � > 0 by

J�a+f (x) =
1

� (�)

Z x

a

(x� t)��1 f (t) dt



OSTROWSKI AND TRAPEZOID TYPE INEQUALITIES 3

for a < x � b and

J�b�f (x) =
1

� (�)

Z b

x

(t� x)��1 f (t) dt

for a � x < b; where � is the Gamma function. For � = 0; they are de�ned as

J0a+f (x) = J
0
b�f (x) = f (x) for x 2 (a; b) :

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [1]-[6], [19]-[29] and the references therein.
Motivated by the above results, we obtain in this paper some inequalities for

the Riemann-Liouville fractional integrals of absolutely continuous functions with
bounded derivatives and of convex functions. Applications for mid-point and trape-
zoid inequalities are provided as well.

2. Some Identities

We have the following representation:

Lemma 1. Let f : [a; b]! C be an absolutely continuous function on [a; b] :
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Proof. (i) Since f : [a; b] ! C is an absolutely continuous function on [a; b] ; then
the Lebesgue integralsZ x
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for a < x � b and
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From (2.3) we have
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for a � x < b; which by addition give (2.1).
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From (2.5) we have
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Corollary 2. Let f : [a; b] ! C be a function of bounded variation on [a; b] : We
have the midpoint equalities
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and the trapezoid equality
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2
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Proof. Equality (2.9) follows by (2.1) for x = a+b
2 while the equality (2.10) follows

by (2.2).
For x = b in (2.7) we have
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3. Inequalities for Functions with Bounded Derivatives

We have:

Theorem 2. Let f : [a; b] ! R be an absolutely continuous function on [a; b] : If
x 2 (a; b) and there exists the real numbers m1 (x) ; M1 (x) ; m2 (x) ; M2 (x) such
that

(3.1) m1 (x) � f 0 (t) �M1 (x) for a.e. t 2 (a; x)
and

(3.2) m2 (x) � f 0 (t) �M2 (x) for a.e. t 2 (x; b)
then

1
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h
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i
(3.3)
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� (�+ 1)
[(x� a)� f (a) + (b� x)� f (b)]� J�a+f (x)� J�b�f (x)

� 1

� (�+ 2)

h
M2 (x) (b� x)�+1 �m1 (x) (x� a)�+1

i
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i
:

Proof. We have
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=
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(t� x)� f 0 (t) dt�
Z x

a

(x� t)� f 0 (t) dt
#

for any x 2 (a; b) :
Using the conditions (3.1) and (3.2) we have
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1
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These imply that

1

�+ 1

h
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i
�
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x

(t� x)� f 0 (t) dt�
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a

(x� t)� f 0 (t) dt
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M2 (x) (b� x)�+1 �m1 (x) (x� a)�+1

i
that is equivalent to

1

� (�+ 2)

h
m2 (x) (b� x)�+1 �M1 (x) (x� a)�+1

i
� 1

� (�+ 1)

"Z b

x

(t� x)� f 0 (t) dt�
Z x

a

(x� t)� f 0 (t) dt
#

� 1

� (�+ 2)

h
M2 (x) (b� x)�+1 �m1 (x) (x� a)�+1

i
:

By using the equality (3.5) we get (3.3).
From (2.2) we have

J�x�f (a) + J
�
x+f (b)�

1

� (�+ 1)
[(x� a)� + (b� x)�] f (x)(3.6)

=
1

� (�+ 1)

"Z b

x

(b� t)� f 0 (t) dt�
Z x

a

(t� a)� f 0 (t) dt
#
:

In a similar way, we have

1

�+ 1
m2 (x) (b� x)�+1 �

Z b

x

(b� t)� f 0 (t) dt � 1

�+ 1
M2 (x) (b� x)�+1
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1
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m1 (x) (x� a)�+1 �

Z x

a

(t� a)� f 0 (t) dt � 1

�+ 1
M1 (x) (x� a)�+1 ;

which implies that

1

� (�+ 2)

h
m2 (x) (b� x)�+1 �M1 (x) (x� a)�+1

i
� 1

� (�+ 1)

"Z b

x

(b� t)� f 0 (t) dt�
Z x

a

(t� a)� f 0 (t) dt
#

� 1
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h
M2 (x) (b� x)�+1 �m1 (x) (x� a)�+1

i
and by (3.6) we get (3.4). �
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Remark 1. If we take � = 1 in (3.3), then we get

(3.7)
1

2

h
m2 (x) (b� x)2 �M1 (x) (x� a)2

i
� (x� a) f (a) + (b� x) f (b)�

Z b

a

f (t) dt

� 1

2

h
M2 (x) (b� x)2 �m1 (x) (x� a)2

i
for any x 2 (a; b). If we take � = 1 in (3.4), then we get (1.7).

Corollary 3. Let f : [a; b] ! R be an absolutely continuous function on [a; b] : If
there exists the real numbers m1; M1; m2; M2 such that

(3.8) m1 � f 0 (t) �M1 for a.e. t 2
�
a;
a+ b

2

�
and

(3.9) m2 � f 0 (t) �M2 for a.e. t 2
�
a+ b

2
; b

�
then

1

2�+1� (�+ 2)
(b� a)�+1 (m2 �M1)(3.10)

� 1

2��1� (�+ 1)

f (a) + f (b)

2
(b� a)� � J�a+f

�
a+ b

2

�
� J�b�f

�
a+ b

2

�
� 1

2�+1� (�+ 2)
(b� a)�+1 (M2 �m1)

and
1

2�+1� (�+ 2)
(b� a)�+1 (m2 �M1)(3.11)

� J�a+b
2 �f (a) + J

�
a+b
2 +

f (b)� 1

2��1� (�+ 1)
f

�
a+ b

2

�
(b� a)�

� 1

2�+1� (�+ 2)
(b� a)�+1 (M2 �m1) :

In particular, we have the simpler inequalities:

Corollary 4. Let f : [a; b] ! R be an absolutely continuous function on [a; b] : If
there exists the real numbers m; M; such that m � f 0 (t) � M for a.e. t 2 (a; b),
then ���� 1

2��1� (�+ 1)

f (a) + f (b)

2
(b� a)� � J�a+f

�
a+ b

2

�
� J�b�f

�
a+ b

2

�����(3.12)

� 1

2�+1� (�+ 2)
(b� a)�+1 (M �m)

and ����J�a+b
2 �f (a) + J

�
a+b
2 +

f (b)� 1

2��1� (�+ 1)
f

�
a+ b

2

�
(b� a)�

����(3.13)

� 1

2�+1� (�+ 2)
(b� a)�+1 (M �m) :
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Remark 2. If we take � = 1 in (3.12), then we get

(3.14)

�����f (a) + f (b)2
(b� a)�

Z b

a

f (t) dt

����� � 1

8
(b� a)2 (M �m)

while from (3.13) we get (1.10).

We also have the following trapezoid type result:

Theorem 3. Let f : [a; b] ! R be an absolutely continuous function on [a; b] : If
there exists the real numbers m; M; such that m � f 0 (t) � M for a.e. t 2 (a; b),
then ���� 1

� (�+ 1)

f (b) + f (a)

2
(b� a)� �

J�b�f (a) + J
�
a+f (b)

2

����(3.15)

� 2� � 1
2�+1� (�+ 2)

(M �m) (b� a)�+1 :

Proof. We have by (2.11) that

1

� (�+ 1)

f (b) + f (a)

2
(b� a)� �

J�b�f (a) + J
�
a+f (b)

2

=
1

� (�+ 1)

Z b

a

(t� a)� � (b� t)�

2
f 0 (t) dt:

Observe also thatZ b

a

(t� a)� � (b� t)�

2

�
f 0 (t)� m+M

2

�
dt

=

Z b

a

(t� a)� � (b� t)�

2
f 0 (t) dt� m+M

2

Z b

a

(t� a)� � (b� t)�

2
dt

and since Z b

a

[(t� a)� � (b� t)�] dt = (b� a)�+1

�+ 1
� (b� a)

�+1

�+ 1
= 0;

then we have the following identity of interest

1

� (�+ 1)

f (b) + f (a)

2
(b� a)� �

J�b�f (a) + J
�
a+f (b)

2
(3.16)

=
1

� (�+ 1)

Z b

a

(t� a)� � (b� t)�

2

�
f 0 (t)� m+M

2

�
dt:

By taking the modulus in (3.16), we get���� 1

� (�+ 1)

f (b) + f (a)

2
(b� a)� �

J�b�f (a) + J
�
a+f (b)

2

����(3.17)

� 1

� (�+ 1)

Z b

a

���� (t� a)� � (b� t)�2

���� ����f 0 (t)� m+M2
���� dt

� 1

4
(M �m) 1

� (�+ 1)

Z b

a

j(b� t)� � (t� a)�j dt:
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The function h : [a; b] ! [0;1); h (t) = j(b� t)� � (t� a)�j is symmetric on
[a; b] ; then Z b

a

j(b� t)� � (t� a)�j dt

= 2

Z a+b
2

a

[(b� t)� � (t� a)�] dt

= 2

24� (b� t)�+1

�+ 1

�����
a+b
2

a

� (t� a)�+1

�+ 1

�����
a+b
2

a

35
= 2

"
�
�
b� a+b

2

��+1
�+ 1

+
(b� a)�+1

�+ 1
�
�
a+b
2 � a

��+1
�+ 1

#

= 2

"
(b� a)�+1

�+ 1
� (b� a)

�+1

2� (�+ 1)

#
=

2� � 1
2��1 (�+ 1)

(b� a)�+1 :

�

4. Inequalities for Convex Functions

We have the following result for convex functions:

Theorem 4. Let f : [a; b] ! R be a convex function and x 2 (a; b) ; then we have
the inequalities

1

� (�+ 2)

h
f 0+ (x) (b� x)

�+1 � f 0� (x) (x� a)
�+1

i
(4.1)

� 1

� (�+ 1)
[(x� a)� f (a) + (b� x)� f (b)]� J�a+f (x)� J�b�f (x)

� 1

� (�+ 2)

h
f 0� (b) (b� x)

�+1 � f 0+ (a) (x� a)
�+1

i
and

1

� (�+ 2)

h
f 0+ (x) (b� x)

�+1 � f 0� (x) (x� a)
�+1

i
(4.2)

� J�x�f (a) + J�x+f (b)�
1

� (�+ 1)
[(x� a)� + (b� x)�] f (x)

� 1

� (�+ 2)

h
f 0� (b) (b� x)

�+1 � f 0+ (a) (x� a)
�+1

i
;

where f 0� (�) are the lateral derivatives of f:

Proof. Since f is convex, then the derivative f 0 exists almost everywhere on [a; b]
and

f 0+ (a) � f 0 (t) � f 0� (x) for a.e. t 2 (a; x)
and

f 0+ (x) � f 0 (t) � f 0� (b) for a.e. t 2 (x; b) :
Now, writing the inequalities (3.3) and (3.4) for m1 (x) = f

0
+ (a) ; M1 (x) = f

0
� (x) ;

m2 (x) = f
0
+ (x) and M2 (x) = f

0
� (b) we get the desired results (4.1) and (4.2). �
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Remark 3. If we take � = 1 in (4.1) and (4.2), then we recapture (1.3) and (1.1)
that hold for convex functions.

Corollary 5. Let f : [a; b]! R be a convex function, then we have the inequalities

0 � 1

2�+1� (�+ 2)

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
(b� a)�+1(4.3)

� 1

2��1� (�+ 1)

f (a) + f (b)

2
(b� a)� � J�a+f

�
a+ b

2

�
� J�b�f

�
a+ b

2

�
� 1

2�+1� (�+ 2)

�
f 0� (b)� f 0+ (a)

�
(b� a)�+1 ;

0 � 1

2�+1� (�+ 2)

�
f 0+

�
a+ b

2

�
� f 0�

�
a+ b

2

��
(b� a)�+1(4.4)

� J�a+b
2 �f (a) + J

�
a+b
2 +

f (b)� 1

2��1� (�+ 1)
f

�
a+ b

2

�
(b� a)�

� 1

2�+1� (�+ 2)

�
f 0� (b)� f 0+ (a)

�
(b� a)�+1 ;

and

0 � 1

� (�+ 1)

f (b) + f (a)

2
(b� a)� �

J�b�f (a) + J
�
a+f (b)

2
(4.5)

� 2� � 1
2�+1� (�+ 2)

�
f 0� (b)� f 0+ (a)

�
(b� a)�+1 :

If we take � = 1 in (4.3) and (4.4), then we recapture the midpoint and trapezoid
inequalities for convex functions mentioned in the introduction.
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