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ON THE SIMPSON TYPE INEQUALITIES FOR s—CONVEX
AND CONVEX FUNCTIONS

MUSTAFA KARAGOZLU* AND MERVE AVCI ARDIC**

ABSTRACT. In this paper, some new inequalities of Simpson type are obtained
whose fourth derivatives absolute value are s—convex and convex.

1. INTRODUCTION

We will start with the definitions of s—convex and convex functions.
A function f: I CR — R is called convex, if

(1.1) fltz+ (1 =t)y) <tf(z)+ (1 —-t)f(y)

for all x,y € I and t € [0,1]. (One could equivalenly take to ¢ to be the closed
interval [0,1].) Tt is called strictly convex provied that the inequalities (1) is strict

for z # y.

A function f: RT — R where R = [0, 00), is said to be s—convex in the second
sense if
(1.2) flaz + By) < o f(x) + B f(y)

for all z,y € R", a, 3 >0 with a+ 3 = 1 and for some fixed s€ (0, 1] . We denote by
K2 the class of s—convex function. If we choose s = 1 in this definition s—convexity
reduces to the convexity in RY.

The following inequality is well-known in the literature as Simpson inequality:

Suppose f : [a,b] — R is four times continously diferrentiable mapping on (a, b)
and ||f(4) \ |C>o = sup |f(4)| < 0. The following the inequality

(1.3)

1 a+b\  f(a)+ f(b) 1P 1

3[2f< 2 >+ 2 ]_b—a/af(x)dx < 5555 |/, 0 -
holds.

For some results, generalizations and improvements about convexity, s—convexity
and Simpson inequality see the papers [2]-[10].

The main aim of this paper is to prove some new integral inequalities which are
Simpson type for s—convex and convex functions.

We will use an integral identity from [1] which is emboided in the following
Lemma to obtain our results.
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Lemma 1. Let f"” : I CR — R be an absolutely continuous mapping on I°, where

a,b e I with a <b. If f*) € La,b] then the following equality holds:

(1.4
[ 1@l Trwar (“5) + 1o =00 [0 s @ a-poa

where

N[ =

(1.5) p(t) =

=

L-1° (-1, <t<

[\v]

2. MAIN RESULTS

We will start with the following theorem.

Theorem 1. Let f: 1 C[0,00) — R be a mapping and let " : I C [0,00) — R be

an absolutely continuous mapping on I° such that f* € L [a,b], where a,b € I with
a <b If |f(4)|q is s—convex on [a,b] for some fized s € (0,1], then the following
inequality holds:

(2.1)

@ [f(a)+4f("§b)+f<b>]|

< (b;4a) ((3)‘ _p62(1+3p71—|—p)>
[( PG @ -] (a),q>3+<(25+11)|f<4> o, 159 @] )]
23—}-1(54—1) 28+1(S+1) 23+1(8+1) 2S+1(8+1)

=1

8=

for all x € [a,b] and g > 1, %+é

Proof. From Lemma 1 and using the properties of modulus, we have

e [f(a)+4f(“;b)+f<b)}|

S ) e o

+/11(1—t)3 (t— ;) R (tb—&-(l—t)a)’dt] .

A:

IN
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By the Holder inequality we can write

4= (b;4a)4 {(/0 {t?’ (g—tﬂpdt); (/0 IR (tb+(1—t)a)‘th>}l
(L les)eoTa) (f

If we use the s—convexity of |f(4) |q7 then we have

(G (1 oofs)
—|—</;Kt—;> (1—t)3]pdt>; </;ts f(4)(a)‘th)1

_ o)t ~1-4p » 1) (1|9 s+1 @ (g)|9\ @
b-q) [<<3> Bi(1+3p,1+p)> (’f ©) +(2+ Dl ()|>

FO b+ (1 - t)a)‘th> } :

£ (b)

’q+(1—t)s

@ ()

(q+ (1—1)°

< LG 2D T PTG
R L (251 — 1) \f(4) (b)|q |f(4) (a)}q a
I <<2> 52(1+3p,1+p)> < 251 (s + 1) + 25t (s +1)
where

B, (a,b) = /OZ w11 —u)’ ldu

is the incomplete Beta function which is a generalization of the complete Beta
function.
The proof is completed. O

Corollary 1. If we choose s = 1 in Theorem 1, we have the following inequality
for convex functions:

(2.2) ‘bia/abf(z)da: Ef(a)+f(b)+4f (a;b)H

4 —1—4dp 7
< b ;f) <<g) 63(1+3p,1+p)>

Kuﬂgm +Mﬂ@wﬂ)q+<wﬂ@wﬂﬁjﬂ@mﬂ>

8 8 8

|
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Theorem 2. Under the assumptions of Theorem 1, we have the following inequality

bia/if cm—[.ﬂ@+fw%ww(“§bﬂ‘

(b—a) 3p+5 ,
Y (23P+23(3p+1)(3p+2)>
(s+5) @ |7 25 +1 1—s ] )¢
<25+23(8+1)(8+2) ‘f4 (b)] + {3(84—1)(5-&-2) +25+23(S+1 s+ 2 ’f‘l

(S + 5 ’f 4)
2s+23(s +1)(s+2)

+<[ 2541 n 1-s Mf@l
s+ 1)(s+2) 25t23(s+1)(s+2

Proof. From Lemma 1 and using the properties of modulus, we have

bia/abf(x)dx— {éf(a)+f(b)+4f(a;b)H

<wwaUwMﬂ“w+u—wMﬁ

< (b;4a)4 V:t?’ (3—75) ‘f<4> (tb+(1—t)a)‘dt

+A?L¢PQ—;ﬂﬂ®w+u—wwwﬂ

By the Holder inequality

IN

1

A < (b;4a)4 {(/jt”(i—t)dt)li(/j (3—75)‘f(4)(tb+(l—t)a)‘th>q
+</11 <t—;> (1—1&)3?%11&);)([1 (t—;) ‘f(4)(tb+(1—t)a)‘th> ]

Q=

)1

Q=
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If we use the s—convexity of |f®* |q7 then we have

e (G (L
+</; (t—;) (1—t)3pdt>p (/; (t—;) {ts

(b - a)* ( 3p+5 > »
24 23023(3p + 1)(3p + 2)

><< £@ )] (s +5) +{3( 2s+1 1—s ]‘f(4)(a)

1
q

FO ()

‘q+(1—t)s

f(4) (a)ﬂ dt)

) (a)m dt) ]
3p+5

+ (23p+23(3p NI 2))

8 ([3(8 —381;514— 2) * 25+23(sl—|—_16;(8 + 2)} ‘f(4) (b))q + 25+23(is—:—15))(3 +2) ‘f(4) (a)‘q) q]

The proof is completed. O

FOw| +a-or

IN

25123(s + 1) (s + 2) s+1)(s+2) * 25123(s +1)(s +2)

Corollary 2. If we choose s = 1 in Theorem 2, we have the following inequality
for convex functions:

bfa/abﬂx)dx—é [f<a>+4f<“j”)+f<b>“

(b—a)! 6p + 10 v
= 1608 [(3]9 1) Bp+ 2)]

Jajeow ) k(o] sl @)

Following inequalities are obtained for convex functions:

(2.4)

i@

Theorem 3. Let f: I C R — R be a mapping and let " : T C [0,00) — R be an

absolutely continuous mapping on I° such that f* € L [a,b], where a,b € T with
a<b If |f(4)| is convex on [a,b], then the following inequality holds:

(2.5)

bia/abf(a:)dx_(li [f(a)+4f <a_2|_b>+f(b)H

(b—a)’

= 5760 wa (“)’J“‘fw (b>H'
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Proof. From Lemma 1 and using the properties of modulus, we have

4 = bia/f as— ¢ 1)+ 4f(a+b>+f(b)H
< (b;; VO t3(§ )‘f(‘l (th+ (1 —t)a )‘dt+/;(1—t)3<t—;) ‘f<4>(tb+(1—t)a))dt1
< (b;4a)4 l/jt?’ (z—t>t‘f(4)(b)‘dt
%%3 (3-0) a-n]s w]a
+/§ (=0 (1= 3 ) e[ )] a
+/l 1-1? (t—é) (1-1) ‘f‘*’ ‘dt]
If we calculate the integrals above we get the desired result. U

Theorem 4. Let f: I C R — R be a mapping and let f"” : T C[0,00) — R be an

absolutely continuous mapping on I° such that f* € L [a,b] , where a,b € I with
a<b. If |f(4) |q is convez on [a,b], then the following inequality holds:

bia/jm)dx—é @ (50) + 1)
< 05 () )

2@ @)+ 35O @["\* (3O O+ 2 @]
x 330 + 320

=1

(2.6)

for all x € [a,b] and g > 1, —&—%

Proof. From Lemma 1 and using the properties of modulus, we have

bfa/abfu)dxé [f<a>+4f(“§b)+f<b>}|

-0 [ @] @+ - o

< (b;4‘l)4 Volﬁ( )‘f<4> (th+ (1 —t)a )‘dt—s—/;(l—t)g (t—;> ‘f(‘”(thr(l—t)a)‘dt}

IN
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By the Holder inequality and convexity of | f@ ]q , We can write

A (b;4a)4 [(/jt?’ (g—t>pdt>; (/Oét?”f(“) (tb+(1—zt)a)‘qdlt>é
+</1 (1-1)° (t—;)pdt>; (/11(1_t)3‘f<4> (tb+(1—t)a)‘th>é]

2

IN

-

. L . 1 L 1
— 2 2 P 2 4
S (b a) / t3p 2y dt / t4 ‘f(4) (b)‘q + (t?, _ t4) ‘f(4) (a)‘th
24 0 3 0
1 1
1 3 1 p P 1 q q q
+ / (1— )% (t - 3) dt / (1— )% ‘f(“) (b)( 41—ty ‘f(“) (a)‘ ) | .
1 1
3 3
If we calculate the integrals above we get the desired result. ([l

Theorem 5. Under the assumptions of Teorem 4, following inequality holds:

(2.7

1@ x—[f<a>+4f(“;b)+f<b>}|

S =)

B |7 49— (3¢ +7)
" W 'O G D pee
+(jr

IN

g 920+ (3q—|—4)—(3q+5)>‘11
(g+1)(g+2)69+2

G 4942 (304 7) >3
(g+1) (g +2)69+2

+19 (@

a 224t1 (3¢ 4+ 4) — (3¢ +5)
(g+1) (g +2)69+2

+ |19 (@

Proof. From Lemma 1,using the properties of modulus, Hélder inequality and con-
vexity of ‘f(4) |q , We can write

A < (b;4a)4 {(/O%tf‘th); (‘f(‘l) (b)‘q/j (;-t)qtdt—i—‘f(‘l) (a)q‘/j @—t)q(l—t)dt)
+</;( )3"dt> <f<4 d/ <t—> t+‘f4> ‘/<t—> 1—t)d>]

Q=
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If we calculate the integrals above, then we have

(b-a)' ! »
A= T ((3p +1) 23p+1)
@ |7 47— (3¢ +7) @) A9 227 (3¢ +4) — (3¢ +5) > v
(‘f O Grvarges Ol = i e
@ PP Ba )~ Ba+5) w7 AT Ba+T) ) z
+<’f ®) (¢ +1) (g +2)6e+2 +‘f (@ (¢+1)(q+2)69+2
The proof is completed. O

Remark 1. Some applications for special means and to Simpson’s quadrature rule
can be given. It is left to the interested reader.

JEAS)

[9]

[10]
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