ON THE SIMPSON TYPE INEQUALITIES FOR s-CONVEX AND CONVEX FUNCTIONS

MUSTAFA KARAGÖZLÜ★ AND MERVE AVCI ARDIÇ★♦

ABSTRACT. In this paper, some new inequalities of Simpson type are obtained whose fourth derivatives absolute value are s—convex and convex.

1. Introduction

We will start with the definitions of s-convex and convex functions. A function $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is called convex, if

$$(1.1) f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

for all $x, y \in I$ and $t \in [0, 1]$. (One could equivalenly take to t to be the closed interval [0, 1].) It is called strictly convex provied that the inequalities (1) is strict for $x \neq y$.

A function $f:\mathbb{R}^+\to\mathbb{R}$ where $\mathbb{R}^+=[0,\infty)$, is said to be s-convex in the second sense if

$$(1.2) f(\alpha x + \beta y) \le \alpha^s f(x) + \beta^s f(y)$$

for all $x, y \in \mathbb{R}^+$, $\alpha, \beta \ge 0$ with $\alpha + \beta = 1$ and for some fixed $s \in (0, 1]$. We denote by K_s^2 the class of s-convex function. If we choose s = 1 in this definition s-convexity reduces to the convexity in \mathbb{R}^+ .

The following inequality is well-known in the literature as Simpson inequality:

Suppose $f:[a,b]\to\mathbb{R}$ is four times continuously differentiable mapping on (a,b) and $||f^{(4)}||_{\infty} = \sup |f^{(4)}| < \infty$. The following the inequality (1.3)

$$\left| \frac{1}{3} \left[2f\left(\frac{a+b}{2}\right) + \frac{f\left(a\right) + f\left(b\right)}{2} \right] - \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx \right| \le \frac{1}{2880} \left| \left| f^{(4)} \right| \right|_{\infty} (b-a)^{4}$$

holds.

For some results, generalizations and improvements about convexity, s—convexity and Simpson inequality see the papers [2]-[10].

The main aim of this paper is to prove some new integral inequalities which are Simpson type for s-convex and convex functions.

We will use an integral identity from [1] which is emboided in the following Lemma to obtain our results.

1

¹⁹⁹¹ Mathematics Subject Classification. 26A51; 26D15.

 $Key\ words\ and\ phrases.\ s-$ convex function, convex function, Simpson inequality, Hölder inequality.

Corresponding Author.

Lemma 1. Let $f''': I \subseteq \mathbb{R} \to \mathbb{R}$ be an absolutely continuous mapping on I° , where

 $a, b \in I$ with a < b. If $f^{(4)} \in L[a, b]$ then the following equality holds:

$$\int_{a}^{b} f(x) dx - \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] = (b-a)^{5} \int_{0}^{1} p(t) f^{(4)} (tb + (1-t)a) dt$$

where

(1.5)
$$p(t) = \begin{cases} \frac{1}{24}t^3 \left(t - \frac{2}{3}\right), & 0 \le t \le \frac{1}{2} \\ \frac{1}{24} \left(t - 1\right)^3 \left(t - \frac{1}{3}\right), & \frac{1}{2} < t \le 1. \end{cases}$$

2. Main Results

We will start with the following theorem.

Theorem 1. Let $f: I \subset [0, \infty) \to \mathbb{R}$ be a mapping and let $f''': I \subseteq [0, \infty) \to \mathbb{R}$ be

an absolutely continuous mapping on I° such that $f^{(4)} \in L[a,b]$, where $a,b \in I$ with a < b. If $\left| f^{(4)} \right|^q$ is s-convex on [a,b] for some fixed $s \in (0,1]$, then the following inequality holds:

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right| \\
\leq \frac{(b-a)^{4}}{24} \left(\left(\frac{3}{2}\right)^{-1-4p} \beta_{\frac{3}{4}} (1+3p,1+p) \right)^{\frac{1}{p}} \\
\left[\left(\frac{\left| f^{(4)}(b) \right|^{q}}{2^{s+1}(s+1)} + \frac{(2^{s+1}-1)\left| f^{(4)}(a) \right|^{q}}{2^{s+1}(s+1)} \right)^{\frac{1}{q}} + \left(\frac{(2^{s+1}-1)\left| f^{(4)}(b) \right|^{q}}{2^{s+1}(s+1)} + \frac{\left| f^{(4)}(a) \right|^{q}}{2^{s+1}(s+1)} \right)^{\frac{1}{q}} \right]$$

for all $x \in [a, b]$ and q > 1, $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. From Lemma 1 and using the properties of modulus, we have

$$A = \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] \right|$$

$$\leq \frac{(b-a)^{4}}{24} \left[\int_{0}^{\frac{1}{2}} t^{3} \left(\frac{2}{3} - t \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt + \int_{\frac{1}{2}}^{1} (1-t)^{3} \left(t - \frac{1}{3} \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt \right].$$

By the Hölder inequality we can write

$$A \leq \frac{(b-a)^4}{24} \left[\left(\int_0^{\frac{1}{2}} \left[t^3 \left(\frac{2}{3} - t \right) \right]^p dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} \left| f^{(4)} \left(tb + (1-t)a \right) \right|^q dt \right)^{\frac{1}{q}} + \left(\int_{\frac{1}{2}}^1 \left[\left(t - \frac{1}{3} \right) (1-t)^3 \right]^p dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^1 \left| f^{(4)} \left(tb + (1-t)a \right) \right|^q dt \right)^{\frac{1}{q}} \right].$$

If we use the s-convexity of $|f^{(4)}|^q$, then we have

$$A \leq \frac{\left(b-a\right)^{4}}{24} \left[\left(\int_{0}^{\frac{1}{2}} \left[t^{3} \left(\frac{2}{3} - t \right) \right]^{p} dt \right)^{\frac{1}{p}} \left(\int_{0}^{\frac{1}{2}} t^{s} \left| f^{(4)} \left(b \right) \right|^{q} + (1-t)^{s} \left| f^{(4)} \left(a \right) \right|^{q} dt \right)^{\frac{1}{q}} \right. \\ \left. + \left(\int_{\frac{1}{2}}^{1} \left[\left(t - \frac{1}{3} \right) (1-t)^{3} \right]^{p} dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^{1} t^{s} \left| f^{(4)} \left(b \right) \right|^{q} + (1-t)^{s} \left| f^{(4)} \left(a \right) \right|^{q} dt \right)^{\frac{1}{q}} \right] \\ \leq \frac{\left(b-a\right)^{4}}{24} \left[\left(\left(\frac{3}{2} \right)^{-1-4p} \beta_{\frac{3}{4}} (1+3p,1+p) \right)^{\frac{1}{p}} \left(\frac{\left| f^{(4)} \left(b \right) \right|^{q}}{2^{s+1}(s+1)} + \frac{\left(2^{s+1}-1\right) \left| f^{(4)} \left(a \right) \right|^{q}}{2^{s+1}(s+1)} \right)^{\frac{1}{q}} \\ + \left(\left(\frac{3}{2} \right)^{-1-4p} \beta_{\frac{3}{4}} (1+3p,1+p) \right)^{\frac{1}{p}} \left(\frac{\left(2^{s+1}-1\right) \left| f^{(4)} \left(b \right) \right|^{q}}{2^{s+1}(s+1)} + \frac{\left| f^{(4)} \left(a \right) \right|^{q}}{2^{s+1}(s+1)} \right)^{\frac{1}{q}} \right]$$

where

$$\beta_z(a,b) = \int_0^z u^{a-1} (1-u)^{b-1} du$$

is the incomplete Beta function which is a generalization of the complete Beta function.

The proof is completed.

Corollary 1. If we choose s = 1 in Theorem 1, we have the following inequality for convex functions:

$$(2.2) \qquad \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left[\frac{1}{6} f(a) + f(b) + 4f\left(\frac{a+b}{2}\right) \right] \right|$$

$$\leq \frac{(b-a)^{4}}{24} \left(\left(\frac{3}{2}\right)^{-1-4p} \beta_{\frac{3}{4}} (1+3p,1+p) \right)^{\frac{1}{p}}$$

$$\left[\left(\frac{\left| f^{(4)}(b) \right|^{q}}{8} + \frac{3\left| f^{(4)}(a) \right|^{q}}{8} \right)^{\frac{1}{q}} + \left(\frac{3\left| f^{(4)}(b) \right|^{q}}{8} + \frac{\left| f^{(4)}(a) \right|^{q}}{8} \right)^{\frac{1}{q}} \right]$$

Theorem 2. Under the assumptions of Theorem 1, we have the following inequality

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left[\frac{1}{6} f(a) + f(b) + 4f\left(\frac{a+b}{2}\right) \right] \right| \\
\leq \frac{(b-a)^{4}}{24} \left(\frac{3p+5}{2^{3p+2}3(3p+1)(3p+2)} \right)^{\frac{1}{p}} \\
\left[\left(\frac{(s+5)}{2^{s+2}3(s+1)(s+2)} \left| f^{(4)}(b) \right|^{q} + \left[\frac{2s+1}{3(s+1)(s+2)} + \frac{1-s}{2^{s+2}3(s+1)(s+2)} \right] \left| f^{(4)}(a) \right|^{q} \right)^{\frac{1}{q}} \\
+ \left(\left[\frac{2s+1}{3(s+1)(s+2)} + \frac{1-s}{2^{s+2}3(s+1)(s+2)} \right] \left| f^{(4)}(b) \right|^{q} + \frac{(s+5)}{2^{s+2}3(s+1)(s+2)} \left| f^{(4)}(a) \right|^{q} \right)^{\frac{1}{q}} \right].$$

Proof. From Lemma 1 and using the properties of modulus, we have

$$A = \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \left[\frac{1}{6} f(a) + f(b) + 4f \left(\frac{a+b}{2} \right) \right] \right|$$

$$\leq (b-a)^{4} \int_{0}^{1} |p(t)| \left| f^{(4)} (tb + (1-t)a) \right| dt$$

$$\leq \frac{(b-a)^{4}}{24} \left[\int_{0}^{\frac{1}{2}} t^{3} \left(\frac{2}{3} - t \right) \left| f^{(4)} (tb + (1-t)a) \right| dt$$

$$+ \int_{\frac{1}{2}}^{1} (1-t)^{3} \left(t - \frac{1}{3} \right) \left| f^{(4)} (tb + (1-t)a) \right| dt \right]$$

By the Hölder inequality

$$A \leq \frac{(b-a)^4}{24} \left[\left(\int_0^{\frac{1}{2}} t^{3p} \left(\frac{2}{3} - t \right) dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} \left(\frac{2}{3} - t \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right|^q dt \right)^{\frac{1}{q}} + \left(\int_{\frac{1}{2}}^1 \left(t - \frac{1}{3} \right) \left(1 - t \right)^{3p} dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^1 \left(t - \frac{1}{3} \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right|^q dt \right)^{\frac{1}{q}} \right]$$

If we use the s-convexity of $|f^{(4)}|^q$, then we have

$$A \leq \frac{(b-a)^4}{24} \left[\left(\int_0^{\frac{1}{2}} t^{3p} \left(\frac{2}{3} - t \right) dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} \left(\frac{2}{3} - t \right) \left[t^s \left| f^{(4)} \left(b \right) \right|^q + (1-t)^s \left| f^{(4)} \left(a \right) \right|^q \right] dt \right)^{\frac{1}{q}} \right.$$

$$+ \left(\int_{\frac{1}{2}}^1 \left(t - \frac{1}{3} \right) (1-t)^{3p} dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^1 \left(t - \frac{1}{3} \right) \left[t^s \left| f^{(4)} \left(b \right) \right|^q + (1-t)^s \left| f^{(4)} \left(a \right) \right|^q \right] dt \right)^{\frac{1}{q}} \right]$$

$$\leq \frac{(b-a)^4}{24} \left[\left(\frac{3p+5}{2^{3p+2}3(3p+1)(3p+2)} \right)^{\frac{1}{p}} \right.$$

$$\times \left(\frac{\left| f^{(4)} \left(b \right) \right|^q \left(s+5 \right)}{2^{s+2}3(s+1)(s+2)} + \left[\frac{2s+1}{3(s+1)(s+2)} + \frac{1-s}{2^{s+2}3(s+1)(s+2)} \right] \left| f^{(4)} \left(a \right) \right|^q \right)^{\frac{1}{q}} \right.$$

$$+ \left(\frac{3p+5}{2^{3p+2}3(3p+1)(3p+2)} \right)^{\frac{1}{p}}$$

$$\times \left(\left[\frac{2s+1}{3(s+1)(s+2)} + \frac{1-s}{2^{s+2}3(s+1)(s+2)} \right] \left| f^{(4)} \left(b \right) \right|^q + \frac{(s+5)}{2^{s+2}3(s+1)(s+2)} \left| f^{(4)} \left(a \right) \right|^q \right)^{\frac{1}{q}} \right]$$
The proof is completed.

Corollary 2. If we choose s = 1 in Theorem 2, we have the following inequality for convex functions:

$$(2.4) \qquad \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right|$$

$$\leq \frac{(b-a)^{4}}{4608} \left[\frac{6p+10}{(3p+1)(3p+2)} \right]^{\frac{1}{p}}$$

$$\times \left[\left(4 \left| f^{(4)}(b) \right|^{q} + \left| f^{(4)}(a) \right|^{q} \right)^{\frac{1}{q}} + \left(\left| f^{(4)}(b) \right|^{q} + 4 \left| f^{(4)}(a) \right|^{q} \right)^{\frac{1}{q}} \right]$$

Following inequalities are obtained for convex functions:

Theorem 3. Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a mapping and let $f''': I \subseteq [0, \infty) \to \mathbb{R}$ be an

absolutely continuous mapping on I° such that $f^{(4)} \in L[a,b]$, where $a,b \in I$ with a < b. If $|f^{(4)}|$ is convex on [a,b], then the following inequality holds:

(2.5)
$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right| \\ \leq \frac{(b-a)^{4}}{5760} \left[\left| f^{(4)}(a) \right| + \left| f^{(4)}(b) \right| \right].$$

Proof. From Lemma 1 and using the properties of modulus, we have

$$A = \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right] \right|$$

$$\leq \frac{(b-a)^{4}}{24} \left[\int_{0}^{\frac{1}{2}} t^{3} \left(\frac{2}{3} - t \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt + \int_{\frac{1}{2}}^{1} \left(1 - t \right)^{3} \left(t - \frac{1}{3} \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt \right]$$

$$\leq \frac{(b-a)^{4}}{24} \left[\int_{0}^{\frac{1}{2}} t^{3} \left(\frac{2}{3} - t \right) t \left| f^{(4)} \left(b \right) \right| dt \right]$$

$$+ \int_{0}^{\frac{1}{2}} t^{3} \left(\frac{2}{3} - t \right) (1-t) \left| f^{(4)} \left(a \right) \right| dt$$

$$+ \int_{\frac{1}{2}}^{1} \left(1 - t \right)^{3} \left(t - \frac{1}{3} \right) t \left| f^{(4)} \left(b \right) \right| dt$$

$$+ \int_{\frac{1}{2}}^{1} \left(1 - t \right)^{3} \left(t - \frac{1}{3} \right) (1-t) \left| f^{(4)} \left(a \right) \right| dt \right].$$

If we calculate the integrals above we get the desired result.

Theorem 4. Let $f: I \subset \mathbb{R} \to \mathbb{R}$ be a mapping and let $f''': I \subseteq [0, \infty) \to \mathbb{R}$ be an

absolutely continuous mapping on I° such that $f^{(4)} \in L[a,b]$, where $a,b \in I$ with a < b. If $|f^{(4)}|^q$ is convex on [a,b], then the following inequality holds:

$$(2.6) \qquad \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right|$$

$$\leq \frac{(b-a)^{4}}{24} \left(\left(\frac{3}{2}\right)^{-1-4p} \beta_{\frac{3}{4}} (1+3p,1+p) \right)^{\frac{1}{p}}$$

$$\times \left[\left(\frac{2 \left| f^{(4)}(b) \right|^{q} + 3 \left| f^{(4)}(a) \right|^{q}}{320} \right)^{\frac{1}{q}} + \left(\frac{3 \left| f^{(4)}(b) \right|^{q} + 2 \left| f^{(4)}(a) \right|^{q}}{320} \right)^{\frac{1}{q}} \right]$$

for all $x \in [a, b]$ and q > 1, $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. From Lemma 1 and using the properties of modulus, we have

$$\left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right|$$

$$\leq (b-a)^{4} \int_{0}^{1} |p(t)| \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt$$

$$\leq \frac{(b-a)^{4}}{24} \left[\int_{0}^{\frac{1}{2}} t^{3} \left(\frac{2}{3} - t \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt + \int_{\frac{1}{2}}^{1} (1-t)^{3} \left(t - \frac{1}{3} \right) \left| f^{(4)} \left(tb + (1-t)a \right) \right| dt \right]$$

By the Hölder inequality and convexity of $|f^{(4)}|^q$, we can write

$$A \leq \frac{(b-a)^4}{24} \left[\left(\int_0^{\frac{1}{2}} t^3 \left(\frac{2}{3} - t \right)^p dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} t^3 \left| f^{(4)} \left(tb + (1-t)a \right) \right|^q dt \right)^{\frac{1}{q}} \right. \\ + \left(\int_{\frac{1}{2}}^1 (1-t)^3 \left(t - \frac{1}{3} \right)^p dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^1 (1-t)^3 \left| f^{(4)} \left(tb + (1-t)a \right) \right|^q dt \right)^{\frac{1}{q}} \right] \\ \leq \frac{(b-a)^4}{24} \left[\left(\int_0^{\frac{1}{2}} t^{3p} \left(\frac{2}{3} - t \right)^p dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} t^4 \left| f^{(4)} \left(b \right) \right|^q + (t^3 - t^4) \left| f^{(4)} \left(a \right) \right|^q dt \right)^{\frac{1}{q}} \right. \\ + \left(\int_{\frac{1}{2}}^1 (1-t)^{3p} \left(t - \frac{1}{3} \right)^p dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^1 (1-t)^3 t \left| f^{(4)} \left(b \right) \right|^q + (1-t)^4 \left| f^{(4)} \left(a \right) \right|^q dt \right)^{\frac{1}{q}} \right].$$

If we calculate the integrals above we get the desired result.

Theorem 5. Under the assumptions of Teorem 4, following inequality holds:

$$(2.7) \left| \frac{1}{b-a} \int_{a}^{b} f(x) dx - \frac{1}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \right|$$

$$\leq \frac{(b-a)^{4}}{24} \left(\frac{1}{(3p+1) 2^{3p+1}} \right)^{\frac{1}{p}}$$

$$\times \left[\left(\left| f^{(4)}(b) \right|^{q} \frac{4^{q+2} - (3q+7)}{(q+1) (q+2) 6^{q+2}} + \left| f^{(4)}(a) \right|^{q} \frac{2^{2q+1} (3q+4) - (3q+5)}{(q+1) (q+2) 6^{q+2}} \right)^{\frac{1}{q}}$$

$$+ \left(\left| f^{(4)}(b) \right|^{q} \frac{2^{2q+1} (3q+4) - (3q+5)}{(q+1) (q+2) 6^{q+2}} + \left| f^{(4)}(a) \right|^{q} \frac{4^{q+2} - (3q+7)}{(q+1) (q+2) 6^{q+2}} \right)^{\frac{1}{q}} \right]$$

Proof. From Lemma 1, using the properties of modulus, Hölder inequality and convexity of $\left|f^{(4)}\right|^q$, we can write

$$A \leq \frac{(b-a)^4}{24} \left[\left(\int_0^{\frac{1}{2}} t^{3q} dt \right)^{\frac{1}{p}} \left(\left| f^{(4)} \left(b \right) \right|^q \int_0^{\frac{1}{2}} \left(\frac{2}{3} - t \right)^q t dt + \left| f^{(4)} \left(a \right)^q \right| \int_0^{\frac{1}{2}} \left(\frac{2}{3} - t \right)^q (1-t) dt \right)^{\frac{1}{q}} + \left(\int_{\frac{1}{2}}^1 (1-t)^{3q} dt \right)^{\frac{1}{p}} \left(\left| f^{(4)} \left(b \right) \right|^q d \int_{\frac{1}{2}}^1 \left(t - \frac{1}{3} \right)^q t + \left| f^{(4)} \left(a \right) \right|^q \int_{\frac{1}{2}}^1 \left(t - \frac{1}{3} \right)^q (1-t) dt \right)^{\frac{1}{q}} \right]$$

If we calculate the integrals above, then we have

$$A \leq \frac{(b-a)^4}{24} \left(\frac{1}{(3p+1)\,2^{3p+1}}\right)^{\frac{1}{p}}$$

$$\left[\left(\left|f^{(4)}\left(b\right)\right|^q \frac{4^{q+2} - (3q+7)}{(q+1)\,(q+2)\,6^{q+2}} + \left|f^{(4)}\left(a\right)\right|^q \frac{2^{2q+1}\,(3q+4) - (3q+5)}{(q+1)\,(q+2)\,6^{q+2}}\right)^{\frac{1}{q}} + \left(\left|f^{(4)}\left(b\right)\right|^q \frac{2^{2q+1}\,(3q+4) - (3q+5)}{(q+1)\,(q+2)\,6^{q+2}} + \left|f^{(4)}\left(a\right)\right|^q \frac{4^{q+2} - (3q+7)}{(q+1)\,(q+2)\,6^{q+2}}\right)^{\frac{1}{q}}\right].$$
The proof is completed.

Remark 1. Some applications for special means and to Simpson's quadrature rule can be given. It is left to the interested reader.

References

- Alomari, M. W., (2016). An improvement inequality of Simpson's type for quasi-convex mappings with applications. Arxiv: 1603.08055v1.
- Avcı Ardıç, M., Ozdemir, M., E., (2012). Simpson Type Inequalities for Functions Whos Third Derivatives in The Absolute Value Are s—Convex and s—Concave, Arxiv: 1112.3865v2.
- [3] Ozdemir, M., E., Ekinci, A., Gürbüz, M., Akdemir, A., O., (2012). Simpson Type Inequalities for Q-Class Functions. Arxiv: 1207.2435v1.
- [4] Ozdemir, M., E., Avcı Ardıç, M., Akdemir, A., O., (2012). Simpson Type Inequalities via φ -Convexity. Arxiv: 1205.6657v2.
- [5] Pečarić, J., Varošanec, S., (2000). A Note on Simpson's Inequality for Functions of Bounded Variation, Tamkang Journal of Mathematics, Volume 31, Number:3.
- [6] Dragomir, S.,S., (1998). On Simpson's Quadrature Formula for Differentiable Mappings Whose Derivatives Belong to L_p-Spaces and Aplications, RGMIA, Vol. 1.
- [7] Roberts, A. W., and Varberg, D.E., (1973). Convex Functions, Academic Press, New York.
- [8] Matuszewska, W., and Orlicz, W., (1981). A note on the theory of s—normed spaces of φ -integrable functions, Studia Math., 21, 107-115.
- [9] Ozdemir, M., E., Kavurmacı, H., Yıldız, Ç., (2012). Fractional Integral Inequalities Via s-Convex Functions. Arxiv: 1201.4915v1.
- [10] Dragomir, S. S., Agarwal, R. P., and Cerone, P., (2000). On Simpson's inequality and applications, Journal of Inequalities and Applications, vol. 5, no. 6, pp. 533–579.
- \bigstar Adiyaman University, Faculty of Science and Arts, Department of Mathematics, Adiyaman, Turkey

E-mail address: m.karagozlu@hotmail.com

 $E ext{-}mail\ address:$ mavci@adiyaman.edu.tr