
TRAPEZOID TYPE INEQUALITIES FOR GENERALIZED
RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF

FUNCTIONS WITH BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some trapezoid type inequalities for the
Riemann-Liouville fractional integrals of functions of bounded variation and
of Hölder continuous functions. Applications for the g-mean of two numbers
are provided as well. Some particular cases for Hadamard fractional integrals
are also provided.

1. Introduction

Let (a; b) with �1 � a < b � 1 be a �nite or in�nite interval of the real line
R and � a complex number with Re (�) > 0: Also let g be a strictly increasing
function on (a; b) ; having a continuous derivative g0 on (a; b) : Following [18, p.
100], we introduce the generalized left- and right-sided Riemann-Liouville fractional
integrals of a function f with respect to another function g on [a; b] by

(1.1) I�a+;gf(x) :=
1

� (�)

Z x

a

g0 (t) f (t) dt

[g (x)� g (t)]1��
; a < x � b

and

(1.2) I�b�;gf(x) :=
1

� (�)

Z b

x

g0 (t) f (t) dt

[g (t)� g (x)]1��
; a � x < b:

For g (t) = t we have the classical Riemann-Liouville fractional integrals

(1.3) J�a+f(x) :=
1

� (�)

Z x

a

f (t) dt

(x� t)1��
; a < x � b

and

(1.4) J�b�f(x) :=
1

� (�)

Z b

x

f (t) dt

(t� x)1��
; a � x < b;

while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [18, p. 111]

(1.5) H�
a+f(x) :=

1

� (�)

Z x

a

h
ln
�x
t

�i��1 f (t) dt
t

; 0 � a < x � b

and

(1.6) H�
b�f(x) :=

1

� (�)

Z b

x

�
ln

�
t

x

����1
f (t) dt

t
; 0 � a < x < b:
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2 S. S. DRAGOMIR

One can consider the function g (t) = �t�1 and de�ne the "Harmonic fractional
integrals" by

(1.7) R�a+f(x) :=
x1��

� (�)

Z x

a

f (t) dt

(x� t)1�� t�+1
; 0 � a < x � b

and

(1.8) R�b�f(x) :=
x1��

� (�)

Z b

x

f (t) dt

(t� x)1�� t�+1
; 0 � a < x < b:

Also, for g (t) = exp (�t) ; � > 0; we can consider the "�-Exponential fractional
integrals"

(1.9) E�a+;�f(x) :=
�

� (�)

Z x

a

exp (�t) f (t) dt

[exp (�x)� exp (�t)]1��
; a < x � b

and

(1.10) E�b�;�f(x) :=
�

� (�)

Z b

x

exp (�t) f (t) dt

[exp (�t)� exp (�x)]1��
; a � x < b:

In the recent paper [14] we obtained the following Ostrowski type inequalities
for functions of bounded variation:

Theorem 1. Let f : [a; b] ! C be a function of bounded variation on [a; b] and
g be a strictly increasing function on (a; b) ; having a continuous derivative g0 on
(a; b) : For any x 2 (a; b) we have the inequalities

����I�a+;gf(x) + I�b�;gf(x)� 1

� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�) f (x)

����
� 1

� (�)

"Z x

a

g0 (t)
Wx
t (f) dt

[g (x)� g (t)]1��
+

Z b

x

g0 (t)
Wt
x (f) dt

[g (t)� g (x)]1��

#

� 1

� (�+ 1)

"
[g (x)� g (a)]�

x_
a

(f) + [g (b)� g (x)]�
b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i�Wba (f) ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p

�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

((g (x)� g (a))� + (g (b)� g (x))�)
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i ;
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and����I�x�;gf(a) + I�x+;gf(b)� 1

� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�) f (x)

����
� 1

� (�)

"Z x

a

g0 (t)
Wx
t (f) dt

[g (t)� g (a)]1��
+

Z b

x

g0 (t)
Wt
x (f) dt

[g (b)� g (t)]1��

#

� 1

� (�+ 1)

"
[g (x)� g (a)]�

x_
a

(f) + [g (b)� g (x)]�
b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i�Wba (f) ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p

�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

((g (x)� g (a))� + (g (b)� g (x))�)
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i :
If g is a function which maps an interval I of the real line to the real numbers,

and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I as

Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.
The following particular case for g-mean is of interest [14].

Corollary 1. With the assumptions of Theorem 1 we have

����I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))�

[g (b)� g (a)]�

2��1� (�+ 1)
f (Mg (a; b))

����
� 1

� (�)

"Z Mg(a;b)

a

g0 (t)
WMg(a;b)
t (f) dt

[g (Mg (a; b))� g (t)]1��
+

Z b

Mg(a;b)

g0 (t)
Wt
Mg(a;b)

(f) dt

[g (t)� g (Mg (a; b))]
1��

#

� 1

2�� (�+ 1)
(g (b)� g (a))�

b_
a

(f) ;
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and����I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b)� [g (b)� g (a)]
�

2��1� (�+ 1)
f (Mg (a; b))

����
� 1

� (�)

"Z Mg(a;b)

a

g0 (t)
WMg(a;b)
t (f) dt

[g (t)� g (a)]1��
+

Z b

Mg(a;b)

g0 (t)
Wt
x (f) dt

[g (b)� g (t)]1��

#

� 1

2�� (�+ 1)
(g (b)� g (a))�

b_
a

(f) :

Remark 1. If we take in Theorem 1 x = a+b
2 ; then we obtain similar mid-point

inequalities, however the details are not presented here. Some applications for the
Hadamard fractional integrals are also provided in [14].

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [1]-[5], [16]-[27] and the references therein.
Motivated by the above results, in this paper we establish some trapezoid type

inequalities for the generalized Riemann-Liouville fractional integrals of functions
of bounded variation and of Hölder continuous functions. Applications for the g-
mean of two numbers are provided as well. Some particular cases for Hadamard
fractional integrals are also provided.

2. Some Identities

We have:

Lemma 1. Let f : [a; b] ! C be Lebesgue integrable on [a; b], g be a strictly
increasing function on (a; b) ; having a continuous derivative g0 on (a; b) and �; �
some complex parameters:
(i) For any x 2 (a; b) we have the representation

(2.1) I�a+;gf(x) + I
�
b�;gf(x) =

1

� (�+ 1)
(� [g (x)� g (a)]� + � [g (b)� g (x)]�)

+
1

� (�)

"Z x

a

g0 (t) [f (t)� �] dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) [f (t)� �] dt
[g (t)� g (x)]1��

#
and

(2.2) I�x�;gf(a) + I
�
x+;gf(b) =

1

� (�+ 1)
(� [g (x)� g (a)]� + � [g (b)� g (x)]�)

+
1

� (�)

"Z x

a

g0 (t) [f (t)� �] dt
[g (t)� g (a)]1��

+

Z b

x

g0 (t) [f (t)� �] dt
[g (b)� g (t)]1��

#
:

(ii) We have

(2.3)
I�b�;gf(a) + I

�
a+;gf(b)

2
=

1

� (�+ 1)
[g (b)� g (a)]� �+ �

2

+
1

2� (�)

"Z b

a

g0 (t) [f (t)� �] dt
[g (b)� g (t)]1��

+

Z b

a

g0 (t) [f (t)� �] dt
[g (t)� g (a)]1��

#
:
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Proof. (i) We observe that

1

� (�)

Z x

a

g0 (t) [f (t)� �] dt
[g (x)� g (t)]1��

(2.4)

= I�a+;gf(x)� �
1

� (�)

Z x

a

g0 (t) dt

[g (x)� g (t)]1��

= I�a+;gf(x)�
[g (x)� g (a)]�

�� (�)
� = I�a+;gf(x)�

[g (x)� g (a)]�

� (�+ 1)
�

for a < x � b and, similarly,

(2.5)
1

� (�)

Z b

x

g0 (t) [f (t)� �] dt
[g (t)� g (x)]1��

= I�b�;gf(x)�
[g (b)� g (x)]�

� (�+ 1)
�

for a � x < b:
If x 2 (a; b), then by adding the equalities (2.4) and (2.5) we get the representa-

tion (2.1).
By the de�nition of fractional integrals we have

I�x+;gf(b) :=
1

� (�)

Z b

x

g0 (t) f (t) dt

[g (b)� g (t)]1��
; a � x < b

and

I�x�;gf(a) :=
1

� (�)

Z x

a

g0 (t) f (t) dt

[g (t)� g (a)]1��
; a < x � b:

Then

(2.6)
1

� (�)

Z b

x

g0 (t) [f (t)� �] dt
[g (b)� g (t)]1��

= I�x+;gf(b)�
[g (b)� g (x)]�

� (�+ 1)
�

for a � x < b and

(2.7)
1

� (�)

Z x

a

g0 (t) [f (t)� �] dt
[g (t)� g (a)]1��

= I�x�;gf(a)�
[g (x)� g (a)]�

� (�+ 1)
�

for a < x � b:
If x 2 (a; b), then by adding the equalities (2.6) and (2.7) we get the representa-

tion (2.1).
If we take x = b in (2.4) we get

(2.8)
1

� (�)

Z b

a

g0 (t) [f (t)� �] dt
[g (b)� g (t)]1��

= I�a+;gf(b)�
[g (b)� g (a)]�

� (�+ 1)
�

while from x = a in (2.5) we get

(2.9)
1

� (�)

Z b

a

g0 (t) [f (t)� �] dt
[g (t)� g (a)]1��

= I�b�;gf(a)�
[g (b)� g (a)]�

� (�+ 1)
�:

If we add (2.8) with (2.9) and divide by 2 we get (2.3). �
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Remark 2. If we take in (2.1) and (2.2) x =Mg (a; b) = g
�1
�
g(a)+g(b)

2

�
; then we

get

(2.10) I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))

=
1

2��1� (�+ 1)
[g (b)� g (a)]�

�
�+ �

2

�
+

1

� (�)

"Z Mg(a;b)

a

g0 (t) [f (t)� �] dt
[g (Mg (a; b))� g (t)]1��

+

Z b

Mg(a;b)

g0 (t) [f (t)� �] dt
[g (t)� g (Mg (a; b))]

1��

#

and

(2.11) I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b) =
1

2��1� (�+ 1)
[g (b)� g (a)]�

�
�+ �

2

�
+

1

� (�)

"Z Mg(a;b)

a

g0 (t) [f (t)� �] dt
[g (t)� g (a)]1��

+

Z b

Mg(a;b)

g0 (t) [f (t)� �] dt
[g (b)� g (t)]1��

#
:

The above lemma provides various identities of interest by taking particular
values for the parameters � and �, out of which we give only a few:

Corollary 2. With the assumptions of Lemma 1 we have:
(i) For any x 2 (a; b) ;

(2.12) I�a+;gf(x) + I
�
b�;gf(x) =

1

� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�) f (x)

+
1

� (�)

"Z x

a

g0 (t) [f (t)� f (x)] dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) [f (t)� f (x)] dt
[g (t)� g (x)]1��

#

and

(2.13) I�x�;gf(a) + I
�
x+;gf(b) =

1

� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�) f (x)

+
1

� (�)

"Z x

a

g0 (t) [f (t)� f (x)] dt
[g (t)� g (a)]1��

+

Z b

x

g0 (t) [f (t)� f (x)] dt
[g (b)� g (t)]1��

#
:

(ii) For any x 2 [a; b] ;

(2.14)
I�b�;gf(a) + I

�
a+;gf(b)

2
=

1

� (�+ 1)
[g (b)� g (a)]� f (x)

+
1

2� (�)

"Z b

a

g0 (t) [f (t)� f (x)] dt
[g (b)� g (t)]1��

+

Z b

a

g0 (t) [f (t)� f (x)] dt
[g (t)� g (a)]1��

#
:

The proof is obvious by taking � = � = f (x) in Lemma 1. These identities were

obtained in [14]. If we take in (2.12)-(2.14) x = Mg (a; b) = g
�1
�
g(a)+g(b)

2

�
; then

we get the corresponding identities were obtained in [14].
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Corollary 3. With the assumptions of Lemma 1 we have:

(2.15) I�a+;gf(x) + I
�
b�;gf(x)

=
1

� (�+ 1)
([g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b))

+
1

� (�)

"Z x

a

g0 (t) [f (t)� f (a)] dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) [f (t)� f (b)] dt
[g (t)� g (x)]1��

#
and

(2.16) I�x�;gf(a) + I
�
x+;gf(b)

=
1

� (�+ 1)
([g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b))

+
1

� (�)

"Z x

a

g0 (t) [f (t)� f (a)] dt
[g (t)� g (a)]1��

+

Z b

x

g0 (t) [f (t)� f (b)] dt
[g (b)� g (t)]1��

#
;

for any x 2 (a; b)
(ii) We also have

(2.17)
I�b�;gf(a) + I

�
a+;gf(b)

2
=

1

� (�+ 1)
[g (b)� g (a)]� f (b) + f (a)

2

+
1

2� (�)

"Z b

a

g0 (t) [f (t)� f (b)] dt
[g (b)� g (t)]1��

+

Z b

a

g0 (t) [f (t)� f (a)] dt
[g (t)� g (a)]1��

#
:

The proof of (2.15) and (2.16) are obvious by taking � = f (a) ; � = f (b)
in Lemma 1. The proof of (2.17) follows by Lemma 1 on taking � = f (b) and
� = f (a) :

Remark 3. If we take in (2.15) and (2.16) x =Mg (a; b) = g
�1
�
g(a)+g(b)

2

�
; then

we get

(2.18) I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))

=
1

2��1� (�+ 1)
[g (b)� g (a)]�

�
f (a) + f (b)

2

�
+

1

� (�)

"Z Mg(a;b)

a

g0 (t) [f (t)� f (a)] dt
[g (Mg (a; b))� g (t)]1��

+

Z b

Mg(a;b)

g0 (t) [f (t)� f (b)] dt
[g (t)� g (Mg (a; b))]

1��

#
and

(2.19) I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b)

=
1

2��1� (�+ 1)
[g (b)� g (a)]�

�
f (a) + f (b)

2

�
+

1

� (�)

"Z Mg(a;b)

a

g0 (t) [f (t)� f (a)] dt
[g (t)� g (a)]1��

+

Z b

Mg(a;b)

g0 (t) [f (t)� f (b)] dt
[g (b)� g (t)]1��

#
:
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3. Inequalities for Bounded Functions

Now, for �; � 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions, see for instance [15]

�U[a;b] (�;�)

:=
n
f : [a; b]! CjRe

h
(�� f (t))

�
f (t)� �

�i
� 0 for almost every t 2 [a; b]

o
and

��[a;b] (�;�) :=

�
f : [a; b]! Cj

����f (t)� �+�2
���� � 1

2
j�� �j for a.e. t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 1. For any �; � 2 C, � 6= �; we have that �U[a;b] (�;�) and ��[a;b] (�;�)
are nonempty, convex and closed sets and

(3.1) �U[a;b] (�;�) = ��[a;b] (�;�) :

Proof. We observe that for any z 2 C we have the equivalence����z � �+�2
���� � 1

2
j�� �j

if and only if
Re [(�� z) (�z � �)] � 0:

This follows by the equality

1

4
j�� �j2 �

����z � �+�2
����2 = Re [(�� z) (�z � �)]

that holds for any z 2 C.
The equality (3.1) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 4. For any �;� 2 C, � 6= �;we have that
�U[a;b] (�;�) = ff : [a; b]! C j (Re�� Re f (t)) (Re f (t)� Re�)(3.2)

+(Im�� Im f (t)) (Im f (t)� Im�) � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

�S[a;b] (�;�) := ff : [a; b]! C j Re (�) � Re f (t) � Re (�)(3.3)

and Im (�) � Im f (t) � Im (�) for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (�;�) is closed, convex and

(3.4) ; 6= �S[a;b] (�;�) � �U[a;b] (�;�) :

We have:

Theorem 2. Let f : [a; b] ! C be a complex valued Lebesgue integrable function
on the real interval [a; b] ; g be a strictly increasing function on (a; b) ; having a
continuous derivative g0 on (a; b) and �; � 2 C, � 6= � such that f 2 ��[a;b] (�;�) :
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(i) For any x 2 (a; b),����I�a+;gf(x) + I�b�;gf(x)� �+�

2� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�)

����(3.5)

� 1

2
j�� �j 1

� (�+ 1)
[[g (x)� g (a)]� + [g (b)� g (x)]�]

and ����I�x�;gf(a) + I�x+;gf(b)� �+�

2� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�)

����(3.6)

� 1

2
j�� �j 1

� (�+ 1)
[[g (x)� g (a)]� + [g (b)� g (x)]�] :

(ii) We have����I�b�;gf(a) + I�a+;gf(b)2
� 1

� (�+ 1)
[g (b)� g (a)]� �+�

2

����(3.7)

� 1

2
j�� �j 1

� (�+ 1)
j�� �j [g (b)� g (a)]� :

Proof. Using the identity (2.1) for � = � = �+�
2 ; we have

(3.8) I�a+;gf(x) + I
�
b�;gf(x)

� 1

� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�) �+�

2

=
1

� (�)

24Z x

a

g0 (t)
h
f (t)� �+�

2

i
dt

[g (x)� g (t)]1��
+

Z b

x

g0 (t)
h
f (t)� �+�

2

i
dt

[g (t)� g (x)]1��

35
for any x 2 (a; b) :
Taking the modulus in (3.8), then we get����I�a+;gf(x) + I�b�;gf(x)� 1

� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�) �+�

2

����
� 1

� (�)

24Z x

a

g0 (t)
���f (t)� �+�

2

��� dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t)
���f (t)� �+�

2

��� dt
[g (t)� g (x)]1��

35
� 1

2
j�� �j 1

� (�)

"Z x

a

g0 (t) dt

[g (x)� g (t)]1��
+

Z b

x

g0 (t) dt

[g (t)� g (x)]1��

#

=
1

2
j�� �j 1

� (�+ 1)
[[g (x)� g (a)]� + [g (b)� g (x)]�]

for any x 2 (a; b) ; which proves (3.5).
The inequality (3.6) follows in a similar manner from the identity (2.2).
The inequality (3.7) follows by (2.3) for � = � = �+�

2 : �
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Corollary 5. With the assumptions of Theorem 2 we have����I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))�

�+�

2�� (�+ 1)
[g (b)� g (a)]�

����(3.9)

� 1

2�
j�� �j 1

� (�+ 1)
[g (b)� g (a)]�

and ����I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b)� �+�

2�� (�+ 1)
[g (b)� g (a)]�

����(3.10)

� 1

2�
j�� �j 1

� (�+ 1)
[g (b)� g (a)]� :

Remark 4. If the function f : [a; b] ! R is measurable and there exists the con-
stants m; M such that m � f (t) �M for a.e. t 2 [a; b] ; then for any x 2 (a; b) we
have by (3.5) and (3.6) that����I�a+;gf(x) + I�b�;gf(x)� m+M

2� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�)

����(3.11)

� 1

2
(M �m) 1

� (�+ 1)
[[g (x)� g (a)]� + [g (b)� g (x)]�]

and ����I�x�;gf(a) + I�x+;gf(b)� m+M

2� (�+ 1)
([g (x)� g (a)]� + [g (b)� g (x)]�)

����(3.12)

� 1

2
(M �m) 1

� (�+ 1)
[[g (x)� g (a)]� + [g (b)� g (x)]�] :

In particular,����I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))�

m+M

2�� (�+ 1)
[g (b)� g (a)]�

����(3.13)

� 1

2�
(M �m) 1

� (�+ 1)
[g (b)� g (a)]�

and ����I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b)� m+M

2�� (�+ 1)
[g (b)� g (a)]�

����(3.14)

� 1

2�
(M �m) 1

� (�+ 1)
[g (b)� g (a)]� :

4. Trapezoid Inequalities for Functions of Bounded Variation

We have:

Theorem 3. Let f : [a; b]! C be a complex valued function of bounded variation
on the real interval [a; b] ; and g be a strictly increasing function on (a; b) ; having
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a continuous derivative g0 on (a; b) : Then we have the inequalities

(4.1)

����I�a+;gf(x) + I�b�;gf(x)� [g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b)� (�+ 1)

����
� 1

� (�)

"Z x

a

g0 (t)
Wt
a (f) dt

[g (x)� g (t)]1��
+

Z b

x

g0 (t)
Wb
t (f) dt

[g (t)� g (x)]1��

#

� 1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i�Wba (f) ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p

�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

((g (x)� g (a))� + (g (b)� g (x))�)
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
and

(4.2)

����I�x�;gf(a) + I�x+;gf(b)� [g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b)� (�+ 1)

����
� 1

� (�)

"Z x

a

g0 (t)
Wt
a (f) dt

[g (t)� g (a)]1��
+

Z b

x

g0 (t)
Wb
t (f) dt

[g (b)� g (t)]1��

#

� 1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i�Wba (f) ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p

�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;

((g (x)� g (a))� + (g (b)� g (x))�)
h
1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 (a; b)
(ii) We also have

(4.3)

����I�b�;gf(a) + I�a+;gf(b)2
� 1

� (�+ 1)
[g (b)� g (a)]� f (b) + f (a)

2

����
� 1

2� (�)

"Z b

a

g0 (t)
Wb
t (f) dt

[g (b)� g (t)]1��
+

Z b

a

g0 (t)
Wt
a (f) dt

[g (t)� g (a)]1��

#

� 1

� (�+ 1)
[g (b)� g (a)]�

b_
a

(f) :
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Proof. Using the identity (2.15) and the properties of the modulus, we have

����I�a+;gf(x) + I�b�;gf(x)� [g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b)� (�+ 1)

����
� 1

� (�)

"Z x

a

g0 (t) jf (t)� f (a)j dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) jf (t)� f (b)j dt
[g (t)� g (x)]1��

#
=: B (x)

for any x 2 (a; b) :
Since f is of bounded variation on [a; b] ; then we have

jf (t)� f (a)j �
t_
a

(f) �
x_
a

(f) for a � t � x

and

jf (t)� f (b)j �
b_
t

(f) �
b_
x

(f) for x � t � b:

Therefore

B (x) � 1

� (�)

"Z x

a

g0 (t)
Wt
a (f) dt

[g (x)� g (t)]1��
+

Z b

x

g0 (t)
Wb
t (f) dt

[g (t)� g (x)]1��

#

� 1

� (�)

"
x_
a

(f)

Z x

a

g0 (t) dt

[g (x)� g (t)]1��
+

b_
x

(f)

Z b

x

g0 (t) dt

[g (t)� g (x)]1��

#

=
1

� (�)

"
(g (x)� g (a))�

�

x_
a

(f) +
(g (b)� g (x))�

�

b_
x

(f)

#

=
1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#
;

which proves the �rst two inequalities in (4.1).
The last part of (4.1) is obvious by making use of the elementary Hölder type

inequalities for positive real numbers c; d; m; n � 0

mc+ nd �

8<:
max fm;ng (c+ d) ;

(mp + np)
1=p
(cq + dq)

1=q with p; q > 1; 1
p +

1
q = 1:

The inequality (4.2) follows in a similar way by utilising the equality (2.16).
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From the equality (2.17) we have����I�b�;gf(a) + I�a+;gf(b)2
� 1

� (�+ 1)
[g (b)� g (a)]� f (b) + f (a)

2

����
� 1

2� (�)

"Z b

a

g0 (t) jf (t)� f (b)j dt
[g (b)� g (t)]1��

+

Z b

a

g0 (t) jf (t)� f (a)j dt
[g (t)� g (a)]1��

#

� 1

2� (�)

"Z b

a

g0 (t)
Wb
t (f) dt

[g (b)� g (t)]1��
+

Z b

a

g0 (t)
Wt
a (f) dt

[g (t)� g (a)]1��

#

� 1

2� (�)

"
b_
a

(f)

Z b

a

g0 (t) dt

[g (b)� g (t)]1��
+

b_
a

(f)

Z b

a

g0 (t) dt

[g (t)� g (a)]1��

#

=
1

2� (�)

"
b_
a

(f)
[g (b)� g (a)]�

�
+

b_
a

(f)
[g (b)� g (a)]�

�

#

=
1

� (�+ 1)
[g (b)� g (a)]�

b_
a

(f) ;

which proves (4.3). �

Corollary 6. With the assumptions of Theorem 3 we have

(4.4)

����I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))�

f (a) + f (b)

2�� (�+ 1)
[g (b)� g (a)]�

����
� 1

� (�)

"Z Mg(a;b)

a

g0 (t)
Wt
a (f) dt

[g (Mg (a; b))� g (t)]1��
+

Z b

Mg(a;b)

g0 (t)
Wb
t (f) dt

[g (t)� g (Mg (a; b))]
1��

#

� 1

2�� (�+ 1)
(g (b)� g (a))�

b_
a

(f)

and

(4.5)

����I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b)� f (a) + f (b)
2�� (�+ 1)

[g (b)� g (a)]�
����

� 1

� (�)

"Z Mg(a;b)

a

g0 (t)
Wt
a (f) dt

[g (t)� g (a)]1��
+

Z b

Mg(a;b)

g0 (t)
Wb
t (f) dt

[g (b)� g (t)]1��

#

� 1

2�� (�+ 1)
(g (b)� g (a))�

b_
a

(f) :

5. Inequalities for Hölder�s Continuous Functions

We say that the function f : [a; b] ! C is r-H-Hölder continuous on [a; b] with
r 2 (0; 1] and H > 0 if

(5.1) jf (t)� f (s)j � H jt� sjr

for any t; s 2 [a; b] : If r = 1 and H = L we call the function L-Lipschitzian on
[a; b] :
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Theorem 4. Assume that f : [a; b] ! C is r-H-Hölder continuous on [a; b] with
r 2 (0; 1] and H > 0; and g be a strictly increasing function on (a; b) ; having a
continuous derivative g0 on (a; b) : Then

(5.2)

����I�a+;gf(x) + I�b�;gf(x)� [g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b)� (�+ 1)

����
� H

� (�)

"Z x

a

g0 (t) (t� a)r dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) (b� t)r dt
[g (t)� g (x)]1��

#

� H

� (�+ 1)
[(g (x)� g (a))� (x� a)r + (g (b)� g (x))� (b� x)r]

� H

� (�+ 1)

8>>>><>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i� [(x� a)r + (b� x)r] ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p ((x� a)rq + (b� x)rq)1=q
with p; q > 1; 1

p +
1
q = 1;

((g (x)� g (a))� + (g (b)� g (x))�)
�
1
2 (b� a) +

��x� a+b
2

���r
and

(5.3)

����I�x�;gf(a) + I�x+;gf(b)� [g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b)� (�+ 1)

����
� H

� (�)

"Z x

a

g0 (t) (t� a)r dt
[g (t)� g (a)]1��

+

Z b

x

g0 (t) (b� t)r dt
[g (b)� g (t)]1��

#

� H

� (�+ 1)
[(g (x)� g (a))� (x� a)r + (g (b)� g (x))� (b� x)r]

� H

� (�+ 1)

8>>>><>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i� [(x� a)r + (b� x)r] ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p ((x� a)rq + (b� x)rq)1=q
with p; q > 1; 1

p +
1
q = 1;

((g (x)� g (a))� + (g (b)� g (x))�)
�
1
2 (b� a) +

��x� a+b
2

���r
for any x 2 (a; b)
(ii) We also have

(5.4)

����I�b�;gf(a) + I�a+;gf(b)2
� 1

� (�+ 1)
[g (b)� g (a)]� f (b) + f (a)

2

����
� H

2� (�)

"Z b

a

g0 (t) (b� t)r dt
[g (b)� g (t)]1��

+

Z b

a

g0 (t) (t� a)r dt
[g (t)� g (a)]1��

#

� H

� (�+ 1)
[g (b)� g (a)]� (b� a)r :

Proof. Using the identity (2.15) and the properties of the modulus, we have����I�a+;gf(x) + I�b�;gf(x)� [g (x)� g (a)]� f (a) + [g (b)� g (x)]� f (b)� (�+ 1)

����
� 1

� (�)

"Z x

a

g0 (t) jf (t)� f (a)j dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) jf (t)� f (b)j dt
[g (t)� g (x)]1��

#
=: C (x)

for any x 2 (a; b) :
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Since f : [a; b]! C is r-H-Hölder continuous on [a; b] with r 2 (0; 1] and H > 0;
hence

C (x) � H

� (�)

"Z x

a

g0 (t) (t� a)r dt
[g (x)� g (t)]1��

+

Z b

x

g0 (t) (b� t)r dt
[g (t)� g (x)]1��

#

� H

� (�)

"
(x� a)r

Z x

a

g0 (t) dt

[g (x)� g (t)]1��
+ (b� x)r

Z b

x

g0 (t) dt

[g (t)� g (x)]1��

#

=
H

� (�)

�
(x� a)r (g (x)� g (a))

�

�
+ (b� x)r (g (b)� g (x))

�

�

�
=

H

� (�+ 1)
[(x� a)r (g (x)� g (a))� + (b� x)r (g (b)� g (x))�] ;

for any x 2 (a; b) ; which proves the �rst two inequalities in (5.2). The rest is
obvious.
The inequality (5.3) follows in a similar way by utilising the equality (2.16).
The inequality (5.4) follows by utilising the equality (2.17). �

Corollary 7. With the assumptions of Theorem 4 we have

(5.5)

����I�a+;gf(Mg (a; b)) + I
�
b�;gf(Mg (a; b))�

f (a) + f (b)

2�� (�+ 1)
[g (b)� g (a)]�

����
� H

� (�)

"Z Mg(a;b)

a

g0 (t) (t� a)r dt
[g (Mg (a; b))� g (t)]1��

+

Z b

Mg(a;b)

g0 (t) (b� t)r dt
[g (t)� g (Mg (a; b))]

1��

#

� H

2�� (�+ 1)
(g (b)� g (a))� [(Mg (a; b)� a)r + (b�Mg (a; b))

r
]

and

(5.6)

����I�Mg(a;b)�;gf(a) + I
�
Mg(a;b)+;g

f(b)� f (a) + f (b)
2�� (�+ 1)

[g (b)� g (a)]�
����

� H

� (�)

"Z Mg(a;b)

a

g0 (t) (t� a)r dt
[g (t)� g (a)]1��

+

Z b

Mg(a;b)

g0 (t) (b� t)r dt
[g (b)� g (t)]1��

#

� H

2�� (�+ 1)
(g (b)� g (a))� [(Mg (a; b)� a)r + (b�Mg (a; b))

r
] :

6. Applications for Hadamard Fractional Integrals

If we take g (t) = ln t and 0 � a < x � b; then by Theorem 3 for Hadamard
fractional integrals H�

a+ and H
�
b� we have for f : [a; b]! C, a function of bounded
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variation on [a; b] that

(6.1)

�����H�
a+f(x) +H

�
b�f(x)�

�
ln
�
x
a

���
f (a) +

�
ln
�
b
x

���
f (b)

� (�+ 1)

�����
� 1

� (�)

"Z x

a

�
ln
�
x
t

����1Wt
a (f) dt

t
+

Z b

x

�
ln
�
t
x

����1Wb
t (f) dt

t

#

� 1

� (�+ 1)

"h
ln
�x
a

�i� x_
a

(f) +

�
ln

�
b

x

��� b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 ln

�
b
a

�
+
���ln� x

G(a;b)

����i�Wba (f) ;��
ln
�
x
a

���p
+
�
ln
�
b
x

���p�1=p �
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;��

ln
�
x
a

���
+
�
ln
�
b
x

���� h 1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
and

(6.2)

�����H�
x�f(a) +H

�
x+f(b)�

�
ln
�
x
a

���
f (a) +

�
ln
�
b
x

���
f (b)

� (�+ 1)

�����
� 1

� (�)

"Z x

a

�
ln
�
t
a

����1Wt
a (f) dt

t
+

Z b

x

�
ln
�
b
t

����1Wb
t (f) dt

t

#

� 1

� (�+ 1)

"�
ln
�x
a

��� x_
a

(f) +

�
ln

�
b

x

��� b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 ln

�
b
a

�
+
���ln� x

G(a;b)

����i�Wba (f) ;��
ln
�
x
a

���p
+
�
ln
�
b
x

���p�1=p �
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;��

ln
�
x
a

���
+
�
ln
�
b
x

���� h 1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 (a; b)
We also have

(6.3)

����H�
b�f(a) +H

�
a+f(b)

2
� 1

� (�+ 1)

�
ln

�
b

a

���
f (b) + f (a)

2

����
� 1

2� (�)

"Z b

a

�
ln
�
b
t

����1Wb
t (f) dt

t
+

Z b

a

�
ln
�
t
a

����1
g0 (t)

Wt
a (f) dt

t

#

� 1

� (�+ 1)

�
ln

�
b

a

��� b_
a

(f) :
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If we take in (6.1) and (6.2) x = G (a; b) ; then we get

(6.4)

����H�
a+f(G (a; b)) +H

�
b�f(G (a; b))�

f (a) + f (b)

2�� (�+ 1)

�
ln

�
b

a

�������
� 1

� (�)

264Z G(a;b)

a

h
ln
�
G(a;b)
t

�i��1Wt
a (f) dt

t
+

Z b

G(a;b)

h
ln
�

t
G(a;b)

�i��1Wb
t (f) dt

t

375
� 1

2�� (�+ 1)

�
ln

�
b

a

��� b_
a

(f)

and

(6.5)

����H�
G(a;b)�f(a) +H

�
G(a;b)+f(b)�

f (a) + f (b)

2�� (�+ 1)

�
ln

�
b

a

�������
� 1

� (�)

"Z G(a;b)

a

�
ln
�
t
a

����1Wt
a (f) dt

t
+

Z b

G(a;b)

�
ln
�
b
t

����1Wb
t (f) dt

t

#

� 1

2�� (�+ 1)

�
ln

�
b

a

��� b_
a

(f) :

Assume that f : [a; b]! C is r-H-Hölder continuous on [a; b] with r 2 (0; 1] and
H > 0. If we take g (t) = ln t and 0 � a < x � b in Theorem 4, then we get

(6.6)

�����H�
a+f(x) +H

�
b�f(x)�

�
ln
�
x
a

���
f (a) +

�
ln
�
b
x

���
f (b)

� (�+ 1)

�����
� H

� (�)

"Z x

a

�
ln
�
x
t

����1
(t� a)r dt
t

+

Z b

x

�
ln
�
t
x

����1
(b� t)r dt
t

#

� H

� (�+ 1)

�h
ln
�x
a

�i�
(x� a)r +

�
ln

�
b

x

���
(b� x)r

�

� H

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 ln

�
b
a

�
+
���ln� x

G(a;b)

����i�Wba (f) ;��
ln
�
x
a

���p
+
�
ln
�
b
x

���p�1=p �
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;��

ln
�
x
a

���
+
�
ln
�
b
x

���� h 1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
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and

(6.7)

�����H�
x�f(a) +H

�
x+f(b)�

�
ln
�
x
a

���
f (a) +

�
ln
�
b
x

���
f (b)

� (�+ 1)

�����
� H

� (�)

"Z x

a

�
ln
�
t
a

����1
(t� a)r dt
t

+

Z b

x

�
ln
�
b
t

����1
(b� t)r dt
t

#

� H

� (�+ 1)

�h
ln
�x
a

�i�
(x� a)r +

�
ln

�
b

x

���
(b� x)r

�

� H

� (�+ 1)

8>>>>>><>>>>>>:

h
1
2 ln

�
b
a

�
+
���ln� x

G(a;b)

����i�Wba (f) ;��
ln
�
x
a

���p
+
�
ln
�
b
x

���p�1=p �
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;��

ln
�
x
a

���
+
�
ln
�
b
x

���� h 1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
for any x 2 (a; b) :
We also have

(6.8)

����H�
b�f(a) +H

�
a+f(b)

2
� 1

� (�+ 1)

�
ln

�
b

a

���
f (b) + f (a)

2

����
� H

2� (�)

"Z b

a

�
ln
�
b
t

����1
(b� t)r dt
t

+

Z b

a

�
ln
�
t
a

����1
(t� a)r dt
t

#

� H

� (�+ 1)
(b� a)r

�
ln

�
b

a

���
:

If we take in (6.7) and (6.8) x = G (a; b) ; then we get

(6.9)

����H�
a+f(G (a; b)) +H

�
b�f(G (a; b))�

f (a) + f (b)

2�� (�+ 1)

�
ln

�
b

a

�������
� H

� (�)

264Z G(a;b)

a

h
ln
�
G(a;b)
t

�i��1
(t� a)r dt

t
+

Z b

G(a;b)

h
ln
�

t
G(a;b)

�i��1
(b� t)r dt

t

375
� 1

2�� (�+ 1)

�
ln

�
b

a

���
(b� a)r

and

(6.10)

����H�
G(a;b)�f(a) +H

�
G(a;b)+f(b)�

f (a) + f (b)

2�� (�+ 1)

�
ln

�
b

a

�������
� 1

� (�)

"Z G(a;b)

a

�
ln
�
t
a

����1
(t� a)r dt
t

+

Z b

G(a;b)

�
ln
�
b
t

����1
(b� t)r dt
t

#

� 1

2�� (�+ 1)

�
ln

�
b

a

���
(b� a)r :
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