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Abstract. We establish some Ostrowski type inequalities involving higher-
order partial derivatives for two dimensional integrals on Lebesgue spaces
(L1; Lp and L1). In addition, we obtain some inequalities for double in-
tegrals of functions whose higher-order partial derivatives in absolute value
are convex on the co- ordinates on rectangle from the plane. Some applica-
tions in Numerical Analysis in connection with cubature formula are given.
Finally, with the help of obtained inequality, we establish applications for the
kth moment of random variables.

1. Introduction

Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose derivative f
0
:

(a; b)! R is bounded on (a; b); i.e., kf 0k1 = sup
t2(a;b)

jf 0(t)j <1: Then, the inequality

holds:

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+
(x� a+b

2 )
2

(b� a)2

#
(b� a) kf 0k1

for all x 2 [a; b] [25]: The constant 1
4 is the best possible. This inequality is well

known in the literature as the Ostrowski inequality.
In a recent paper [2], Barnett and Dragomir proved the following Ostrowski type

inequality for double integrals:

Theorem 1. Let f : [a; b] � [c; d]! R be continuous on [a; b] � [c; d]; f 00x;y = @2f
@x@y

exists on (a; b)� (c; d) and is bounded; i.e.,



f 00x;y

1 = sup
(x;y)2(a;b)�(c;d)

����@2f(x; y)@x@y

���� <1:
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Then, we have the inequality:������
bZ
a

dZ
c

f(s; t)dtds� (d� c)(b� a)f(x; y)(1.2)

�

24(b� a) dZ
c

f(x; t)dt+ (d� c)
bZ
a

f(s; y)ds

35������
�

"
1

4
(b� a)2 +

�
x� a+ b

2

�2#"
1

4
(d� c)2 +

�
y � d+ c

2

�2#

f 00x;y

1
for all (x; y) 2 [a; b]� [c; d]:

In [2], the inequality (1.2) is established by the use of integral identity involving
Peano kernels. In [28], Pecaríc and Vukelíc gave weighted Montgomery�s identities
for two variables functions. Recently, many authors have worked on the Ostrowski
type inequalities for double integrals. For example, Pachpatte obtained a new in-
equality in the view (1.2) by using elementary analysis in [26] and [27]. In [8], [10]
and [13], some Ostrowski type inequalities for double integrals and applications in
numerical analysis in connection with cubature formula are given by researchers.
Authors deduced weighted inequality of Ostrowski type for two dimensional inte-
grals in [31] and [35]. Some researchers established some Ostrowski type inequalities
for n-time di¤erentiable mappings in [1], [6] and [15]. In [14], weighted integral in-
equalities for one variable mappings which are n�times di¤erentiable are obtained
by Erden and Sar¬kaya. The researchers established some Ostrowski type inequal-
ities involving higher order partial derivatives for double integrals.in [4], [16] and
[36].
Let us now consider a bidimensional interval � =: [a; b]� [c; d] in R2 with a < b

and c < d. A mapping f : � ! R is said to be convex on � if the following
inequality:

f (tx+ (1� t) z; ty + (1� t)w) � tf (x; y) + (1� t) f (z; w)

holds, for all (x; y) ; (z; w) 2 � and t 2 [0; 1]. A function f : � ! R is said to be
on the co-ordinates on � if the partial mappings fy : [a; b] ! R, fy (u) = f (u; y)
and fx : [c; d]! R, fx (v) = f (x; v) are convex where de�ned for all x 2 [a; b] and
y 2 [c; d] (see, [9]).
A formal de�nition for co-ordinated convex function may be stated as follows:

De�nition 1. A function f : � ! R will be called co-ordinated canvex on �, for
all t; s 2 [0; 1] and (x; y) ; (u; v) 2 �, if the following inequality holds:

f(tx+ (1� t)y; su+ (1� s)v)

� tsf(x; u) + s(1� t)f(y; u) + t(1� s)f(x; v) + (1� t)(1� s)f(y; v):

Clearly, every convex function is co-ordinated convex. Furthermore, there exist
co-ordinated convex function which is not convex, (see, [9]).
Also, in [9], Dragomir established the following similar inequality of Hadamard�s

type for co-ordinated convex mapping on a rectangle from the plane R2.
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Theorem 2. Suppose that f : �! R is co-ordinated convex on �. Then one has
the inequalities:

f

�
a+ b

2
;
c+ d

2

�
(1.3)

� 1

2

"
1

b� a

Z b

a

f

�
x;
c+ d

2

�
dx+

1

d� c

Z d

c

f

�
a+ b

2
; y

�
dy

#

� 1

(b� a) (d� c)

Z b

a

Z d

c

f (x; y) dydx

� 1

4

"
1

b� a

Z b

a

f (x; c) dx+
1

b� a

Z b

a

f (x; d) dx

+
1

d� c

Z d

c

f (a; y) dy +
1

d� c

Z d

c

f (b; y) dy

#

� f (a; c) + f (a; d) + f (b; c) + f (b; d)

4
:

The above inequalities are sharp.

In recent years, researchers have studied some integral inequalities by using some
convex function on the co-ordinates on a rectangle from the plane R2. For exam-
ple, authors gave some Hadamard�s type inequalities involving Riemann-Liouville
fractional integrals for convex and s-convex functions on the co-ordinates in [7] and
[33]. In [22], several new inequalities for di¤erentiable co-ordinated convex func-
tions in two variables which are related to the left side of Hermite- Hadamard type
inequality for co-ordinated convex functions in two variables are proved by Latif and
Dragomir. Erden and Sar¬kaya gave some generalized weighted integral inequalities
for functions whose partial derivatives in absolute value are convex on the co- or-
dinates on rectangle from the plane in [12] and [13]. In [32], Sarikaya et al. proved
some new inequalities that give estimate of the deference between the middle and
the right most terms in (1.3) for di¤erentiable co-ordinated convex functions. Re-
searchers deduced some integral inequalities for di¤erentiable co-ordinated convex
mappings in [17], [20], [23] and [34]. In [21], [24] and [30], some Hermite-Hadamard
type inequalities for veriaty co-ordinated convex functions are developed.
In this study, �rst of all, we establish a new integral inequality involving higher-

order partial derivatives. Then, some inequalities of Ostrowski type for two dimen-
sional integrals is gotten by using this identity. Also, some integral inequalities for
convex mappings on the co-ordinates on the rectangle from the plane are obtained.
Finally, some applications of the Ostrowski type inequality developed in this work
for cubature formula and the kth moment of random variables are given.

2. Integral identity

In order to prove generalized weighted integral inequalities for double integrals,
we need the following lemma:

Lemma 1. Let f : [a; b] � [c; d] =: � � R2! R be a continuous function such

that the partial derivatives @k+lf(t;s)
@tk@sl

, k = 0; 1; 2; :::; n � 1; l = 0; 1; 2; :::;m � 1
exists and are continuous on �; and assume that the functions g : [a; b] ! [0;1)
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and h : [c; d] ! [0;1) are integrable. In addition, Pn�1 (x; t) and Qm�1 (y; s) are
de�ned by

Pn�1 (x; t) :=

8>>>><>>>>:
1

(n�1)!

tR
a

(u� t)n�1 g (u) du; a � t < x

1
(n�1)!

tR
b

(u� t)n�1 g (u) du; x � t � b

and

Qm�1 (y; s) :=

8>>>><>>>>:
1

(m�1)!

sR
c

(u� s)m�1 h (u) dv; c � s < y

1
(m�1)!

sR
d

(u� s)m�1 h (u) dv; y � s � d

where n;m 2 Nn f0g : Then, for all (x; y) 2 [a; b]� [c; d]; we have the identity

bZ
a

dZ
c

Pn�1 (x; t)Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
dsdt(2.1)

=

n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

where Mk(x) and Ml(y) are de�ned by

Mk(x) =
bR
a

(u� x)k g (u) du; k = 0; 1; 2; :::

Ml(y) =
dR
c

(u� y)l h (u) du; l = 0; 1; 2; :::

Proof. We have the equality

bZ
a

dZ
c

Pn�1 (x; t)Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
dsdt

=

bZ
a

Pn�1 (x; t)

8<:
dZ
c

Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
ds

9=; dt:
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Applying integration by parts for partial derivatives @n+mf(t;s)
@tn@sm on [c; d], we obtain

dZ
c

Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
ds

=
1

(m� 1)!

yZ
c

sZ
c

(u� s)m�1 h (u) du@
n+mf(t; s)

@tn@sm
ds

+
1

(m� 1)!

dZ
y

sZ
d

(u� s)m�1 h (u) du@
n+mf(t; s)

@tn@sm
ds

=
Mm�1(y)

(m� 1)!
@n+m�1f(t; y)

@tn@ym�1
+

dZ
c

Qm�2 (y; s)
@n+m�1f(t; s)

@tn@sm�1
ds:

As we progress by this method, we get

dZ
c

Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
ds =

m�1X
l=0

Ml(y)

l!

@n+lf(t; y)

@tn@yl
�

dZ
c

h(s)
@nf(t; s)

@tn
ds:

Then, we have

bZ
a

dZ
c

Pn�1 (x; t)Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
dsdt(2.2)

=

m�1X
l=0

Ml(y)

l!

bZ
a

Pn�1 (x; t)
@n+lf(t; y)

@tn@yl
dt�

dZ
c

h(s)

bZ
a

Pn�1 (x; t)
@nf(t; s)

@tn
dtds:

Similarly, applying integration by parts for partial derivatives @
n+lf(t;y)
@tn@yl

and @nf(t;s)
@tn

on [a; b], we can write

bZ
a

Pn�1 (x; t)
@n+lf(t; y)

@tn@yl
dt(2.3)

=
n�1X
k=0

Mk(x)

k!

@k+lf(x; y)

@xk@yl
�

bZ
a

g(t)
@lf(t; y)

@yl
dt

and

(2.4)

bZ
a

Pn�1 (x; t)
@nf(t; s)

@tn
dt =

n�1X
k=0

Mk(x)

k!

@kf(x; s)

@xk
�

bZ
a

g(t)f(t; s)dt:

Substituting the identity (2.3) and (2.4) in (2.2), we deduce desired identity
(2.1), and thus the theorem is proved. �
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3. Some inequalities for @n+mf
@tn@sm belongs to lebesgue space

We give some results for functions whose n+m:th partial derivatives are bounded.
We start with the following result.

Theorem 3. Let f : � � R2! R be a continuous on � such that @n+mf
@tn@sm exist on

(a; b)�(c; d) and assume that the functions g : [a; b]! [0;1) and h : [c; d]! [0;1)
are integrable. If @n+mf

@tn@sm 2 L1 (�) ; then we have the inequality������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������

� 1

n!m!





 @n+mf@tn@sm






1

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

Mn(x)Mm(y)
if m and n are even numbers

Mn(x)

�
Mm(y)� 2

yR
c

(u� y)m h(u)du
�

if m is odd number and n is even numbers

Mm(y)

�
Mn(x)� 2

xR
a

(u� x)n g(u)du
�

if m is even number and n is odd number�
Mn(x)� 2

xR
a

(u� x)n g(u)du
�

�
�
Mm(y)� 2

yR
c

(u� y)m h(u)du
�

if m and n are odd numbers

for all (x; y) 2 [a; b]� [c; d]; where



 @n+mf@tn@sm






1
= sup

(t;s)2(a;b)�(c;d)

����@n+mf(t; s)@tn@sm

���� <1:
Proof. If we take absolute value of both sides of the equality (2.1), because @n+mf

@tn@sm

is a bounded mapping, we can write������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(3.1)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j
����@n+mf(t; s)@tn@sm

���� dsdt
�





 @n+mf@tn@sm






1

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j dsdt:



SOME WEIGHTED INEQUALITIES FOR DOUBLE INTEGRALS 7

By de�nitions of Pn�1 (x; t) and Qm�1 (y; s), we get

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j dsdt

=

24 xZ
a

������
tZ
a

(u� t)n�1

(n� 1)! g(u)du

������ dt+
bZ
x

������
tZ
b

(u� t)n�1

(n� 1)! g(u)du

������ dt
35

�

24 yZ
c

������
sZ
c

(u� s)m�1

(m� 1)! h (u) du

������ ds+
dZ
y

������
sZ
d

(u� s)m�1

(m� 1)! h (u) du

������ ds
35 :

By using the change of order of integration, we obtain

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j dsdt

=

24 xZ
a

(x� u)n

n!
g(u)du+

bZ
x

(u� x)n

n!
g(u)du

35
�

24 yZ
c

(y � u)m

m!
h(u)du+

dZ
y

(u� y)m

m!
h(u)du

35
which completes the proof. �

Remark 1. Under the same assumptions of Theorem 3 with n = m = 1, then the
following inequality holds:������M0(x)M0(y)f(x; y)�M0(y)

bZ
a

g(t)f(t; y)dt(3.2)

�M0(x)

dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






1

24M1(x)� 2
xZ
a

(x� u) g(u)du

3524M1(y)� 2
yZ
c

(y � u)h(u)du

35
which is "weighted Ostrowski" type inequality for kk1�norm. This inequality
was deduced by Sarikaya and Ogunmez in [31].

Remark 2. If we take g(u) = h(u) = 1 in (3.2), then the inequality (3.2) reduce
to the inequality (1.2).
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Remark 3. Taking g(u) = h(u) = 1; x = a+b
2 and y = c+d

2 in (3.2), then we have
the inequality ������(b� a) (d� c) f(a+ b2 ;

c+ d

2
)� (d� c)

bZ
a

f(t;
c+ d

2
)dt(3.3)

� (b� a)
dZ
c

f(
a+ b

2
; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� (b� a)2 (d� c)2

16





 @2f@t@s






1

which was given by Barnett and Dragomir in [2].

Remark 4. Under the same assumptions of Theorem 3 with g(u) = h(u) = 1, then
we have the inequality������

n�1X
k=0

m�1X
l=0

Xk(x)

k!

Yl(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Yl(y)

l!

bZ
a

@lf(t; y)

@yl
dt(3.4)

�
n�1X
k=0

Xk(x)

k!

dZ
c

@kf(x; s)

@xk
ds+

bZ
a

dZ
c

f(t; s)dsdt

������
�





 @n+mf@tn@sm






1

"
(b� x)n+1 + (x� a)n+1

(n+ 1)!

#"
(d� y)m+1 + (y � c)m+1

(m+ 1)!

#
where

(3.5) Xk(x) =
(b� x)k+1 + (�1)k (x� a)k+1

(k + 1)

and

(3.6) Yl(y) =
(d� y)l+1 + (�1)l (y � c)l+1

(l + 1)
:

This inequality (3.4) was proved by Hanna et al. in [16].

Theorem 4. Let f : � � R2! R be a continuous on � such that @n+mf
@tn@sm exist on

(a; b)�(c; d) and assume that the functions g : [a; b]! [0;1) and h : [c; d]! [0;1)
are integrable. If @n+mf

@tn@sm 2 L1 (�) ; then we have the inequality������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(3.7)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






1

kgk[a;b];1
(n+ 1)!

khk[c;d]1
(m+ 1)!

�
h
(b� x)n+1 + (x� a)n+1

i h
(d� y)m+1 + (y � c)m+1

i
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for all (x; y) 2 [a; b]�[c; d]; where kgk[a;b];1 = sup
u2[a;b]

jg(u)j ; khk[c;d]1 = sup
u2[c;d]

jh(u)j

and 



 @n+mf@tn@sm






1
= sup

(t;s)2(a;b)�(c;d)

����@n+mf(t; s)@tn@sm

���� <1:
Proof. Taking moduls of both sides of the equality (2.1), because @n+mf

@tn@sm is a
bounded mapping, we have the inequality (3.1). Because of boundedness g and
h; and by de�nitions of Pn�1 (x; t) and Qm�1 (y; s), we get

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j dsdt(3.8)

�
kgk[a;b];1
(n� 1)!

khk[c;d]1
(m� 1)!

8<:
xZ
a

yZ
c

������
tZ
a

(u� t)n�1 du

������
������
sZ
c

(u� s)m�1 du

������ dsdt
+

xZ
a

dZ
y

������
tZ
a

(u� t)n�1 du

������
������
sZ
d

(u� s)m�1 du

������ dsdt
+

bZ
x

yZ
c

������
tZ
b

(u� t)n du

������
������
sZ
c

(u� s)m�1 du

������ dsdt
+

bZ
x

dZ
y

������
tZ
b

(u� t)n du

������
������
sZ
d

(u� s)m�1 du

������ dsdt
9=; :

If we calculate the above four integrals and also substitute the results in (3.8), we
obtain desired inequality (3.7) which completes the proof. �
Corollary 1. Under the same assumptions of Theorem 4 with n = m = 1, then
the following inequality holds:������M0(x)M0(y)f(x; y)�M0(y)

bZ
a

g(t)f(t; y)dt(3.9)

�M0(x)

dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






1
kgk[a;b];1 khk[c;d]1

�
"
1

4
(b� a)2 +

�
x� a+ b

2

�2#"
1

4
(d� c)2 +

�
y � d+ c

2

�2#
which is "weighted Ostrowski" type inequality for kk1�norm.
Remark 5. If we take g(u) = h(u) = 1 in (3.9), then the inequality (3.9) reduce
to the inequality (1.2).

Remark 6. If we choose g(u) = h(u) = 1 in theorem 4, then the inequality (3.7)
becomes (3.4).
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Corollary 2. Under the same assumptions of Theorem 4 with x = a+b
2 and y =

c+d
2 , then we have the inequality�����

n�1X
k=0

m�1X
l=0

Mk(
a+b
2 )

k!

Ml(
c+d
2 )

l!

@k+lf(a+b2 ;
c+d
2 )

@xk@yl
(3.10)

�
m�1X
l=0

Ml(
c+d
2 )

l!

bZ
a

g(t)
@lf(t; c+d2 )

@yl
dt

�
n�1X
k=0

Mk(
a+b
2 )

k!

dZ
c

h(s)
@kf(a+b2 ; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






1

kgk[a;b];1
(n+ 1)!

khk[c;d]1
(m+ 1)!

(b� a)n+1

2n
(d� c)m+1

2m

which is Ostrowski type inequality for double integrals: Thus, (3.10) is a higher
degree "weighted mid-point" inequality for kk1�norm.

Corollary 3. Choosing n = m = 1 in (3.10), we obtain������M0(x)M0(y)f(
a+ b

2
;
c+ d

2
)�M0(y)

bZ
a

g(t)f(t;
c+ d

2
)dt

�M0(x)

dZ
c

h(s)f(
a+ b

2
; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






1
kgk[a;b];1 khk[c;d]1

(b� a)2 (d� c)2

16

which is "weighted mid-point" inequality for double integrals:

Now, we deduce some inequalities for mappings whose higher order partial deriv-
atives belongs to Lp (�) and L1 (�) :

Theorem 5. Let f : � � R2! R be a continuous on � such that @n+mf
@tn@sm exist on

(a; b)�(c; d) and assume that the functions g : [a; b]! [0;1) and h : [c; d]! [0;1)
are integrable. If @

n+mf
@tn@sm 2 Lp (�) ; 1p+

1
q = 1 and p > 1; then we have the inequality������

n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






p

kgk[a;b];1
n! (nq + 1)

1
q

khk[c;d]1
m! (mq + 1)

1
q

�
h
(x� a)nq+1 + (b� x)nq+1

i 1
q
h
(y � c)mq+1 + (d� y)mq+1

i 1
q
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for all (x; y) 2 [a; b]�[c; d]; where kgk[a;b];1 = sup
u2[a;b]

jg(u)j ; khk[c;d]1 = sup
u2[c;d]

jh(u)j

and





 @n+mf@tn@sm






p

=

0@ bZ
a

dZ
c

����@n+mf(t; s)@tn@sm

����p dsdt
1A

1
p

:

Proof. From (2.1), using the properties of modulus and from Hölder�s inequality,
we get

������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

24 bZ
a

dZ
c

jPn�1 (x; t)jq jQm�1 (y; s)jq dsdt

35
1
q
24 bZ
a

dZ
c

����@n+mf(t; s)@tn@sm

����p dsdt
35

1
p

:

Because of boundedness g and h; and by de�nitions of Pn�1 (x; t) and Qm�1 (y; s),
we can write

24 bZ
a

dZ
c

jPn�1 (x; t)jq jQm�1 (y; s)jq dsdt

35
1
q

�
kgk[a;b];1
(n� 1)!

khk[c;d]1
(m� 1)!

0@ xZ
a

������
tZ
a

(u� t)n�1 du

������
q

dt+

bZ
x

������
tZ
b

(u� t)n du

������
q

dt

1A
1
q

�

0@ yZ
c

������
sZ
c

(u� s)m�1 du

������
q

ds+

dZ
y

������
sZ
d

(u� s)m�1 du

������
q

ds

1A
1
q

:

By simple calculations, we easily deduced required inequality, and thus the theorem
is proved. �
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Corollary 4. Under the same assumptions of Theorem 5 with n = m = 1, then
the following inequality holds:������M0(x)M0(y)f(x; y)�M0(y)

bZ
a

g(t)f(t; y)dt(3.11)

�M0(x)

dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






p

kgk[a;b];1 khk[c;d]1

�
"
(x� a)q+1 + (b� x)q+1

q + 1

# 1
q
"
(y � c)q+1 + (d� y)q+1

q + 1

# 1
q

which is "weighted Ostrowski" type inequality for kkp�norm.

Corollary 5. If we choose x = a+b
2 and y = c+d

2 in (3.11), then we have the
inequality ������M0(x)M0(y)f(

a+ b

2
;
c+ d

2
)�M0(y)

bZ
a

g(t)f(t;
c+ d

2
)dt

�M0(x)

dZ
c

h(s)f(
a+ b

2
; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






p

kgk[a;b];1 khk[c;d]1
(b� a)1+

1
q

2 (q + 1)
1
q

(d� c)1+
1
q

2 (q + 1)
1
q

which is "weighted mid-point" inequality for two dimensional integrals. This
inequality is a weighted Ostrowski type inequality for kkp�norm.

Remark 7. If we take g(u) = h(u) = 1 in (3.11), then we get������(b� a) (d� c) f(x; y)� (d� c)
bZ
a

f(t; y)dt

� (b� a)
dZ
c

f(x; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
�





 @2f@t@s






p

"
(x� a)q+1 + (b� x)q+1

q + 1

# 1
q

�
"
(y � c)q+1 + (d� y)q+1

q + 1

# 1
q

which was proved by Dragomir et al. in [8].
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Remark 8. Under the same assumptions of Theorem 5 with g(u) = h(u) = 1, then
we have the inequality

������
n�1X
k=0

m�1X
l=0

Xk(x)

k!

Yl(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Yl(y)

l!

bZ
a

@lf(t; y)

@yl
dt(3.12)

�
n�1X
k=0

Xk(x)

k!

dZ
c

@kf(x; s)

@xk
ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� 1

n!m!





 @n+mf@tn@sm






p

"
(x� a)nq+1 + (b� x)nq+1

nq + 1

# 1
q

�
"
(y � c)mq+1 + (d� y)mq+1

mq + 1

# 1
q

where Xk(x) and Yl(y) are de�ned as in (3.5) and (3.6), respectively. This inequal-
ity (3.12) was deduced by Hanna in [16].

Corollary 6. Under the same assumptions of Theorem 5 with x = a+b
2 and y =

c+d
2 , then we have the inequality

�����
n�1X
k=0

m�1X
l=0

Mk(
a+b
2 )

k!

Ml(
c+d
2 )

l!

@k+lf(a+b2 ;
c+d
2 )

@xk@yl

�
m�1X
l=0

Ml(
c+d
2 )

l!

bZ
a

g(t)
@lf(t; c+d2 )

@yl
dt

�
n�1X
k=0

Mk(
a+b
2 )

k!

dZ
c

h(s)
@kf(a+b2 ; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






p

kgk[a;b];1
n! (nq + 1)

1
q

khk[c;d]1
m! (mq + 1)

1
q

(b� a)n+
1
q

2n
(d� c)m+

1
q

2m

which is "weighted mid-point" inequality for double integrals: This inequality is
a higher degree weighted Ostrowski type for kkp�norm.

Theorem 6. Let f : � � R2! R be a continuous on � such that @n+mf
@tn@sm exist on

(a; b)�(c; d) and assume that the functions g : [a; b]! [0;1) and h : [c; d]! [0;1)
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are integrable. If @n+mf
@tn@sm 2 L1 (�) ; then we have������

n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(3.13)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

kgk[a;b];1
n!

khk[c;d]1
m!

�
(x� a)n + (b� x)n

2
+

���� (b� x)n � (x� a)n2

�����
�
�
(y � c)n + (d� y)n

2
+

���� (d� y)n � (y � c)n2

����� 



 @n+mf@tn@sm






1

for all (x; y) 2 [a; b]�[c; d]; where kgk[a;b];1 = sup
u2[a;b]

jg(u)j ; khk[c;d]1 = sup
u2[ c;d]

jh(u)j

and 



 @n+m@tn@sm






1

=

bZ
a

dZ
c

����@n+mf(t; s)@tn@sm

���� dsdt:
Proof. By taking absolute value of (2.1), we �nd that������

n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j
����@n+mf(t; s)@tn@sm

���� dsdt
� sup

(t;s)2(a;b)�(c;d)
jPn�1 (x; t)j jQm�1 (y; s)j

bZ
a

dZ
c

����@n+mf(t; s)@tn@sm

���� dsdt:
By boundedness g and h; and because of de�nitions of Pn�1 (x; t) and Qm�1 (y; s),
we have

sup
(t;s)2(a;b)�(c;d)

jPn�1 (x; t)j jQm�1 (y; s)j

�
kgk[a;b];1

n!

khk[c;d]1
m!

max f(x� a)n ; (b� x)ngmax f(y � c)m ; (d� y)mg :

We obtain desired inequality (3.13) using the identity

max fX;Y g = X + Y

2
+

����Y �X2
���� :

The proof is thus completed. �
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Corollary 7. Under the same assumptions of Theorem 6 with n = m = 1, then
the following inequality holds:

������M0(x)M0(y)f(x; y)�M0(y)

bZ
a

g(t)f(t; y)dt(3.14)

�M0(x)

dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






1

kgk[a;b];1 khk[c;d]1

�
�
(b� a)
2

+

����a+ b2 � x
����� � (d� c)2

+

����c+ d2 � y
�����

which is "weighted Ostrowski" inequality for double integrals of the Ostrowski
type inequality for kk1�norm.

Corollary 8. If we choose x = a+b
2 and y = c+d

2 in (3.14), then we have the
inequality

������M0(x)M0(y)f(
a+ b

2
;
c+ d

2
)�M0(y)

bZ
a

g(t)f(t;
c+ d

2
)dt

�M0(x)

dZ
c

h(s)f(
a+ b

2
; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






1

kgk[a;b];1 khk[c;d]1
(b� a) (d� c)

4

which is "weighted mid-point" inequality for the two dimensional integrals of the
Ostrowski type inequality for kk1�norm.

Remark 9. If we take g(u) = h(u) = 1 in (3.14), then we get

������(b� a) (d� c) f(x; y)� (d� c)
bZ
a

f(t; y)dt(3.15)

� (b� a)
dZ
c

f(x; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
�





 @2f@t@s






1

�
(b� a)
2

+

����a+ b2 � x
����� � (d� c)2

+

����c+ d2 � y
�����

which is Ostrowski type inequality for kk1�norm.
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Remark 10. Taking x = a+b
2 and y = c+d

2 in (3.15), we get������(b� a) (d� c) f(a+ b2 ;
c+ d

2
)� (d� c)

bZ
a

f(t;
c+ d

2
)dt

� (b� a)
dZ
c

f(
a+ b

2
; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
�





 @2f@t@s






1

(b� a) (d� c)
4

which is "mid-point" inequality for double integrals of the Ostrowski type inequality
for kk1�norm.

Remark 11. Under the same assumptions of Theorem 6 with g(u) = h(u) = 1,
then we have the inequality������

n�1X
k=0

m�1X
l=0

Xk(x)

k!

Yl(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Yl(y)

l!

bZ
a

@lf(t; y)

@yl
dt(3.16)

�
n�1X
k=0

Xk(x)

k!

dZ
c

@kf(x; s)

@xk
ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� 1

n!m!

�
(x� a)n + (b� x)n

2
+

���� (b� x)n � (x� a)n2

�����
�
�
(y � c)n + (d� y)n

2
+

���� (d� y)n � (y � c)n2

����� 



 @n+mf@tn@sm






1

where Xk(x) and Yl(y) are de�ned as in (3.5) and (3.6), respectively. This inequal-
ity (3.16) was proved by Hanna et al. in [16].

Corollary 9. Under the same assumptions of Theorem 6 with x = a+b
2 and y =

c+d
2 , then we have the inequality�����

n�1X
k=0

m�1X
l=0

Mk(
a+b
2 )

k!

Ml(
c+d
2 )

l!

@k+lf(a+b2 ;
c+d
2 )

@xk@yl
(3.17)

�
m�1X
l=0

Ml(
c+d
2 )

l!

bZ
a

g(t)
@lf(t; c+d2 )

@yl
dt

�
n�1X
k=0

Mk(
a+b
2 )

k!

dZ
c

h(s)
@kf(a+b2 ; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






1

kgk[a;b];1
n!

khk[c;d]1
m!

(b� a)n

2n
(d� c)m

2m

which is "weighted mid-point" inequality for double integrals: Thus, (3.17) is a
heigher degree weighted Ostrowski type inequality for kk1�norm.
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4. Some inequalities for co-ordinated convex mappings

For convenience, we give the following notations used to simplify the details of
some results given in this section;

An(x) = (b� a)
(x� a)n+1

n+ 1
+
(b� x)n+2 � (x� a)n+2

n+ 2
;

Bn(x) = (b� a)
(b� x)n+1

n+ 1
+
(x� a)n+2 � (b� x)n+2

n+ 2
;

Cm(y) = (d� c)
(y � c)m+1

m+ 1
+
(d� y)m+2 � (y � c)m+2

m+ 2

and

Dm(y) = (d� c)
(d� y)m+1

m+ 1
+
(y � c)m+2 � (d� y)m+2

m+ 2
:

We start with the following result.

Theorem 7. Suppose that all the assumptions of Lemma 1 hold. If
��� @n+mf@tn@sm

��� is a
convex function on the co-ordinates on �, then the following inequality holds:������

n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(4.1)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

kgk[a;b];1
(b� a)n!

khk[c;d]1
(d� c)m!

�����@n+mf(a; c)@tn@sm

����An(x)Cm(y) + ����@n+mf(a; d)@tn@sm

����An(x)Dm(y)
+

����@n+mf(b; c)@tn@sm

����Bn(x)Cm(y) + ����@n+mf(b; d)@tn@sm

����Bn(x)Dm(y)�
for all (x; y) 2 [a; b] � [c; d]; where kgk[a;b];1 = sup

u2[a;b]
jg(u)j and khk[c;d]1 =

sup
u2[c;d]

jh(u)j :

Proof. If we take absolute value of both sides of the equality (2.1), we �nd that������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j
����@n+mf(t; s)@tn@sm

���� dsdt:
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Since
���@n+mf(t;s)@tn@sm

��� is a convex function on the co-ordinates on �; we have���� @n+m@tn@sm
f

�
b� t
b� aa+

t� a
b� ab;

d� s
d� c c+

s� a
d� cd

�����(4.2)

� b� t
b� a

d� s
d� c

����@n+mf(a; c)@tn@sm

����+ b� t
b� a

s� c
d� c

����@n+mf(a; d)@tn@sm

����
+
t� a
b� a

d� s
d� c

����@n+mf(b; c)@tn@sm

����+ t� a
b� a

s� c
d� c

����@n+mf(b; d)@tn@sm

���� :
Utilising the inequality (4.2), we can write

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j
����@n+mf(t; s)@tn@sm

���� dsdt(4.3)

� 1

(b� a) (d� c)

�

8<:
����@n+mf(a; c)@tn@sm

����
bZ
a

dZ
c

(b� t) jPn�1 (x; t)j (d� s) jQm�1 (y; s)j dsdt

+

����@n+mf(a; d)@tn@sm

����
bZ
a

dZ
c

(b� t) jPn�1 (x; t)j (s� c) jQm�1 (y; s)j dsdt

+

����@n+mf(b; c)@tn@sm

����
bZ
a

dZ
c

(t� a) jPn�1 (x; t)j (d� s) jQm�1 (y; s)j dsdt

+

����@n+mf(b; d)@tn@sm

����
bZ
a

dZ
c

(t� a) jPn�1 (x; t)j (s� c) jQm�1 (y; s)j dsdt

9=; :
If we calculate the above four double inetgrals and also substitute the results in
(4.3), because of kgk[a;x];1 ; kgk[x;b];1 � kgk[a;b];1 and khk[c;y]1 ; khk[y;d]1 �
khk[c;d]1 ; we obtain required inequality (4.1) which completes the proof. �

Remark 12. Under the same assumptions of Theorem 7 with n = m = 1, then the
following inequality holds:������M0(x)M0(y)f(x; y)�M0(y)

bZ
a

g(t)f(t; y)dt(4.4)

�M0(x)

dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�

kgk[a;b];1
(b� a)

khk[c;d]1
(d� c)

�����@2f(a; c)@t@s

����A1(x)C1(y) + ����@2f(a; d)@t@s

����A1(x)D1(y)
+

����@2f(b; c)@t@s

����B1(x)C1(y) + ����@2f(b; d)@t@s

����B1(x)D1(y)�
which was given by Erden and Sarikaya in [11] (in case of � = 0).
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Remark 13. If we take g(u) = h(u) = 1 in (4.4), then we get������(b� a) (d� c) f(x; y)� (d� c)
bZ
a

f(t; y)dt(4.5)

� (b� a)
dZ
c

f(x; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� 1

(b� a) (d� c)

�����@2f(a; c)@t@s

����A1(x)C1(y) + ����@2f(a; d)@t@s

����A1(x)D1(y)
+

����@2f(b; c)@t@s

����B1(x)C1(y) + ����@2f(b; d)@t@s

����B1(x)D1(y)�
which was given by Erden and Sar¬kaya in [13].

Remark 14. Taking x = a+b
2 and y = c+d

2 in (4.5), we get������(b� a) (d� c) f(a+ b2 ;
c+ d

2
)� (d� c)

bZ
a

f(t;
c+ d

2
)dt

� (b� a)
dZ
c

f(
a+ b

2
; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� (b� a)2 (d� c)2

16

8<:
���@2f(a;c)@t@s

���+ ���@2f(a;d)@t@s

���+ ���@2f(b;c)@t@s

���+ ���@2f(b;d)@t@s

���
4

9=;
which was given by Latif and Dragomir in [22].

Corollary 10. Under the same assumptions of Theorem 7 with g(u) = h(u) = 1,
then we have the inequality

(4.6)������
n�1X
k=0

m�1X
l=0

Xk(x)

k!

Yl(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Yl(y)

l!

bZ
a

@lf(t; y)

@yl
dt

�
n�1X
k=0

Xk(x)

k!

dZ
c

@kf(x; s)

@xk
ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� 1

(b� a) (d� c)
1

n!m!

�����@n+mf(a; c)@tn@sm

����An(x)Cm(y) + ����@n+mf(a; d)@tn@sm

����An(x)Dm(y)
+

����@n+mf(b; c)@tn@sm

����Bn(x)Cm(y) + ����@n+mf(b; d)@tn@sm

����Bn(x)Dm(y)�
where Xk(x) and Yl(y) are de�ned as in (3.5) and (3.6), respectively. This result
is a Ostrowski type inequality for mappings whose absolute value of heigher degree
partial derivatives are co-ordinated convex.
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Corollary 11. Under the same assumptions of Theorem 7 with x = a+b
2 and

y = c+d
2 , then we have the inequality�����

n�1X
k=0

m�1X
l=0

Mk(
a+b
2 )

k!

Ml(
c+d
2 )

l!

@k+lf(a+b2 ;
c+d
2 )

@xk@yl

�
m�1X
l=0

Ml(
c+d
2 )

l!

bZ
a

g(t)
@lf(t; c+d2 )

@yl
dt

�
n�1X
k=0

Mk(
a+b
2 )

k!

dZ
c

h(s)
@kf(a+b2 ; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

kgk[a;b];1
(n+ 1)!

khk[c;d]1
(m+ 1)!

(b� a)n+1

2n+1
(d� c)m+1

2m+1

�
�����@n+mf(a; c)@tn@sm

����+ ����@n+mf(a; d)@tn@sm

����+ ����@n+mf(b; c)@tn@sm

����+ ����@n+mf(b; d)@tn@sm

�����
which is "weighted mid-point" inequality for functions whoose absolute value of
heigher degree partial derivatives are co-ordinated convex.

We establish some weighted integral inequalities by using convexity of
��� @n+mf@tn@sm

���q.
Theorem 8. Suppose that all the assumptions of Lemma 1 hold. If

��� @n+mf@tn@sm

���q is a
convex function on the co-ordinates on �, 1p +

1
q = 1 and q > 1; then the following

inequality holds:������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(4.7)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

kgk[a;b];1
n! (np+ 1)

1
p

khk[c;d]1
m! (mp+ 1)

1
p

(b� a)
1
q (d� c)

1
q

�
h
(x� a)np+1 + (b� x)np+1

i 1
p
h
(y � c)mp+1 + (d� y)mp+1

i 1
p

�

24
���@n+mf(a;c)@tn@sm

���q + ���@n+mf(a;d)@tn@sm

���q + ���@n+mf(b;c)@tn@sm

���q + ���@n+mf(b;d)@tn@sm

���q
4

35
1
q

for all (x; y) 2 [a; b] � [c; d]; where kgk[a;b];1 = sup
u2[a;b]

jg(u)j and khk[c;d]1 =

sup
u2[c;d]

jh(u)j :
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Proof. Taking absolute value of (2.1), from Hölder�s inequality, then we get������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(4.8)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

0@ bZ
a

dZ
c

jPn�1 (x; t)jp jQm�1 (y; s)jp dsdt

1A
1
p
0@ bZ
a

dZ
c

����@n+mf(t; s)@tn@sm

����q dsdt
1A

1
q

:

By similar methods in the proof of Theorem 5, we obtain

0@ bZ
a

dZ
c

jPn�1 (x; t)jp jQm�1 (y; s)jp dsdt

1A
1
p

(4.9)

�
kgk[a;b];1
n! (np+ 1)

1
p

khk[c;d]1
m! (mp+ 1)

1
p

�
h
(x� a)np+1 + (b� x)np+1

i 1
p
h
(y � c)mp+1 + (d� y)mp+1

i 1
p

:

Since
���@n+mf(t;s)@tn@sm

���q is a convex function on the co-ordinates on �; we have
���� @n+m@tn@sm

f

�
b� t
b� aa+

t� a
b� ab;

d� s
d� c c+

s� a
d� cd

�����q(4.10)

� b� t
b� a

d� s
d� c

����@n+mf(a; c)@tn@sm

����q + b� t
b� a

s� c
d� c

����@n+mf(a; d)@tn@sm

����q
+
t� a
b� a

d� s
d� c

����@n+mf(b; c)@tn@sm

����q + t� a
b� a

s� c
d� c

����@n+mf(b; d)@tn@sm

����q :
Using the inequality (4.10), it follows that

0@ bZ
a

dZ
c

����@n+mf(t; s)@tn@sm

����q dsdt
1A

1
q

(4.11)

� (b� a)
1
q (d� c)

1
q

�

24
���@n+mf(a;c)@tn@sm

���q + ���@n+mf(a;d)@tn@sm

���q + ���@n+mf(b;c)@tn@sm

���q + ���@n+mf(b;d)@tn@sm

���q
4

35
1
q

:

Substituting the inequalities (4.9) and (4.11) in (4.8), we deduce the inequality
(4.7). Hence, the proof is completed. �
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Remark 15. Under the same assumptions of Theorem 8 with n = m = 1, then the
following inequality holds:������M0(x)M0(y)f(x; y)�M0(y)

bZ
a

g(t)f(t; y)dt(4.12)

�M0(x)

dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
� kgk[a;b];1 khk[c;d]1 (b� a)

1
q (d� c)

1
q

�
"
(x� a)p+1 + (b� x)p+1

p+ 1

# 1
p
"
(y � c)p+1 + (d� y)p+1

p+ 1

# 1
p

�

24
���@2f(a;c)@t@s

���q + ���@2f(a;d)@t@s

���q + ���@2f(b;c)@t@s

���q + ���@2f(b;d)@t@s

���q
4

35
1
q

which was given by Erden and Sarikaya in [11] (in case of � = 0).

Corollary 12. Let us substitute (x; y) = (a; c); (a; d); (b; c) and (b; d) in (4.12).
Subsequently, if we add the obtained results and use the triangle inequality for the
modulus, we get the inequality������M0(x)M0(y)

f(a; c) + f(a; d) + f(b; c) + f(b; d)

4
+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt(4.13)

�1
2

24M0(y)

bZ
a

g(t) [f(t; c) + f(t; d)] dt+M0(x)

dZ
c

h(s) [f(a; s) + f(b; s)] ds

35������
� kgk[a;b];1 khk[c;d]1

(b� a)2 (d� c)2

4(p+ 1)
1
p

�

24
���@2f(a;c)@t@s

���q + ���@2f(a;d)@t@s

���q + ���@2f(b;c)@t@s

���q + ���@2f(b;d)@t@s

���q
4

35
1
q

which is a weighted Hermite-Hadamard type inequality for double integrals.

Remark 16. If we take g(u) = h(u) = 1 in (4.13), then we have������f(a; c) + f(a; d) + f(b; c) + f(b; d)4
+

1

(b� a) (d� c)

bZ
a

dZ
c

f(t; s)dsdt

�1
2

24 1

b� a

bZ
a

[f(t; c) + f(t; d)] dt+
1

d� c

dZ
c

[f(a; s) + f(b; s)] ds

35������
� (b� a) (d� c)

4(p+ 1)
1
p

24
���@2f(a;c)@t@s

���q + ���@2f(a;d)@t@s

���q + ���@2f(b;c)@t@s

���q + ���@2f(b;d)@t@s

���q
4

35
1
q
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which was deduced by Sarikaya et al. in [32].

Remark 17. If we take g(u) = h(u) = 1 in (4.12), then we get

������(b� a) (d� c) f(x; y)� (d� c)
bZ
a

f(t; y)dt(4.14)

� (b� a)
dZ
c

f(x; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� (b� a)

1
q (d� c)

1
q

�
"
(x� a)p+1 + (b� x)p+1

p+ 1

# 1
p
"
(y � c)p+1 + (d� y)p+1

p+ 1

# 1
p

�

24
���@2f(a;c)@t@s

���q + ���@2f(a;d)@t@s

���q + ���@2f(b;c)@t@s

���q + ���@2f(b;d)@t@s

���q
4

35
1
q

which was given by Erden and Sar¬kaya in [13].

Remark 18. Taking x = a+b
2 and y = c+d

2 in (4.14), we get

������(b� a) (d� c) f(a+ b2 ;
c+ d

2
)� (d� c)

bZ
a

f(t;
c+ d

2
)dt

� (b� a)
dZ
c

f(
a+ b

2
; s)ds+

bZ
a

dZ
c

f(t; s)dsdt

������
� (b� a)2 (d� c)2

4 (p+ 1)
2
p

�

24
���@2f(a;c)@t@s

���q + ���@2f(a;d)@t@s

���q + ���@2f(b;c)@t@s

���q + ���@2f(b;d)@t@s

���q
4

35
1
q

which was given by Latif and Dragomir in [22].

Similarly, the other reults related to Theorem 8 can be obtained as Corollary 10
and 11.

Theorem 9. Suppose that all the assumptions of Lemma 1 hold. If
��� @n+mf@tn@sm

���q is a
convex function on the co-ordinates on �, 1p +

1
q = 1 and q � 1; then the following
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inequality holds:������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(4.15)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
� 1

[(b� a) (d� c)]
1
q

kgk[a;b];1
n! (n+ 1)

1
p

khk[c;d]1
m! (m+ 1)

1
p

�
h
(b� x)n+1 + (x� a)n+1

i 1
p
h
(d� y)m+1 + (y � c)m+1

i 1
p

�
�����@n+mf(a; c)@tn@sm

����q An(x)Cm(y) + ����@n+mf(a; d)@tn@sm

����q An(x)Dm(y)
+

����@n+mf(b; c)@tn@sm

����q Bn(x)Cm(y) + ����@n+mf(b; d)@tn@sm

����q Bn(x)Dm(y)�
1
q

for all (x; y) 2 [a; b] � [c; d]; where kgk[a;b];1 = sup
u2[a;b]

jg(u)j and khk[c;d]1 =

sup
u2[c;d]

jh(u)j :

Proof. We take absolute value of (2.1). Because of 1p +
1
q = 1,

1
p +

1
q can be written

instead of 1: Using Hölder�s inequality, we �nd that������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(4.16)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�

0@ bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j dsdt

1A
1
p

�

0@ bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j
����@n+mf(t; s)@tn@sm

����q dsdt
1A

1
q

:

By simple calculations, we write

bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j dsdt(4.17)

�
kgk[a;b];1
(n+ 1)!

khk[c;d]1
(m+ 1)!

�
h
(b� x)n+1 + (x� a)n+1

i h
(d� y)m+1 + (y � c)m+1

i
:
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By similar methods in the proof of Theorem 7, from (4.10), we obtain

(4.18)
bZ
a

dZ
c

jPn�1 (x; t)j jQm�1 (y; s)j
����@n+mf(t; s)@tn@sm

����q dsdt
�

kgk[a;b];1
(b� a)n!

khk[c;d]1
(d� c)m!

�����@n+mf(a; c)@tn@sm

����q An(x)Cm(y) + ����@n+mf(a; d)@tn@sm

����q An(x)Dm(y)
+

����@n+mf(b; c)@tn@sm

����q Bn(x)Cm(y) + ����@n+mf(b; d)@tn@sm

����q Bn(x)Dm(y)� :
Substituting the inequalities (4.17) and (4.18) in (4.16), we easily deduce required
inequality (4.15) which completes the proof. �

Remark 19. In case (p; q) = (1; 1); if we take limit as p ! 1 in Theorem 9,
then the inequality (4.15) becomes the inequality (4.1). Thus, we obtain all of the
results which are similar to Theorem 7.

5. Applications to Cubature Formulae

We now deal with applications of the integral inequalities developed in the pre-
vious section, to obtain estimates of cubature formula which, it turns out have a
markedly smaller error than that which may be obtained by the classical results.
Thus the following applications in numerical integration is naturel to be considered.
Let I� : a = x0 < x1 < ::: < x��1 < x� = b and J� : c = y0 < y1 < ::: < y��1 <

y� = d be divisions of the intervals [a; b] and [c; d] ; �i 2 [xi; xi+1] and �j 2 [yj ; yj+1]
with (i = 0; :::; � � 1; j = 0; :::; �� 1). Consider the equivalent

S (f; I� ; J�; �; �) =

m�1X
l=0

��1X
i=0

��1X
j=0

M
(j)
l (�j)

l!

xi+1Z
xi

g(t)
@lf(t; �j)

@yl
dt(5.1)

+
n�1X
k=0

��1X
i=0

��1X
j=0

M
(i)
k (�i)

k!

yj+1Z
yj

h(s)
@kf(�i; s)

@xk
ds

�
n�1X
k=0

m�1X
l=0

��1X
i=0

��1X
j=0

M
(i)
k (�i)

k!

M
(j)
l (�j)

l!

@k+lf(�i; �j)

@xk@yl

where M (i)
k (�i) and M

(j)
l (�j) are de�ned by

M
(i)
k (�i) =

xi+1R
xi

(u� �i)
k
g (u) du; k = 0; 1; 2; :::;

M
(j)
l (�j) =

yj+1R
yj

�
u� �j

�l
h (u) du; l = 0; 1; 2; :::

Theorem 10. Let f : [a; b] � [c; d]! R be a continuous on � such that @n+mf
@tn@sm

exist on (a; b) � (c; d) and assume that the functions g : [a; b] ! [0;1) and h :
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[c; d]! [0;1) are integrable. If @n+mf
@tn@sm 2 L1 (�) ; then we have the representation

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt = S (f; I� ; J�; �; �) +R (f; I� ; J�; �; �)

where S (f; I� ; J�; �; �) is de�ned as in (5.1) and the remainder term satis�es the
estimations:

jR(f; In; Jm; �; �)j(5.2)

�




 @n+mf@tn@sm






1

kgk[a;b];1
(n+ 1)!

khk[c;d]1
(m+ 1)!

�
��1X
i=0

��1X
j=0

h
(xi+1 � �i)

n+1
+ (�i � xi)

n+1
i h�

yj+1 � �j
�m+1

+
�
�j � yj

�m+1i
for all (�i; �j) 2 [xi; xi+1]� [yj ; yj+1] with (i = 0; :::; � � 1; j = 0; :::; �� 1) ; where
kgk[xi;xi+1];1 = sup

u2[xi;xi+1]
jg(u)j ; khk[yj ;yj+1];1 = sup

u2[yj ;yj+1]
jh(u)j and





 @n+mf@tn@sm






1
= sup

(t;s)2(a;b)�(c;d)

����@n+mf(t; s)@tn@sm

���� <1:
Proof. Applying Theorem 4 on the interval [xi; xi+1]�[yj ; yj+1]; (i = 0; :::; � � 1; j = 0; :::; �� 1) ;
we obtain������

n�1X
k=0

m�1X
l=0

M
(i)
k (�i)

k!

M
(j)
l (�j)

l!

@k+lf(�i; �j)

@xk@yl
�
m�1X
l=0

M
(j)
l (�j)

l!

xi+1Z
xi

g(t)
@lf(t; �j)

@yl
dt

�
n�1X
k=0

M
(i)
k (�i)

k!

yj+1Z
yj

h(s)
@kf(�i; s)

@xk
ds+

xi+1Z
xi

yj+1Z
yj

h(s)g(t)f(t; s)dsdt

�������
�





 @n+mf@tn@sm






1

kgk[xi;xi+1];1
(n+ 1)!

khk[yj ;yj+1];1
(m+ 1)!

�
h
(xi+1 � �i)

n+1
+ (�i � xi)

n+1
i h�

yj+1 � �j
�m+1

+
�
�j � yj

�m+1i
for all i = 0; :::; � � 1; j = 0; :::; �� 1:
Summing over i from 0 to �� 1 and over j from 0 to �� 1 using the generalized

triangle inequality we deduce the estimations (5.2). �

Remark 20. If we take g(u) = h(u) = 1 and m = n = 1 in Theorem 10, then we
recapture the cubature formula

bZ
a

dZ
c

f(t; s)dsdt = S (f; I� ; J�; �; �) +R (f; I� ; J�; �; �)
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where the remainder R (f; I� ; J�; �; �) satis�es the estimation:

jR(f; In; Jm; �; �)j(5.3)

�




 @2f@t@s






1

��1X
i=0

��1X
j=0

("
(xi+1 � xi)2

4
+

�
�i �

xi + xi+1
2

�2#

�
"
(yi+1 � yi)2

4
+

�
�j �

yj + yj+1
2

�2#)
which was given by Barnett and Dragomir in [2].

Remark 21. if we consider the inequality (3.3), then we recapture the midpoint
cubature formula

bZ
a

dZ
c

f(t; s)dsdt = SM (f; I� ; J�) +RM (f; I� ; J�)

where the remainder RM (f; I� ; J�) satis�es the estimation:

jRM (f; In; Jm)j �
1

16





 @2f@t@s






1

n�1X
i=0

(xi+1 � xi)2
m�1X
j=0

(yi+1 � yi)2

which was proved by Barnett and Dragomir in [2].

A similar process can be undertaken in producing composite rules if we use the
other results given in previous sections, but we omit the details.

6. Some applications for the moments

Distribution functions and density functions provide complete descriptions of the
distribution of probality for a given random variable. However, they do not allow
us to easily make comparisons between two di¤erent distributions. The set of mo-
ments that uniquely characterizes the distribution under reasonable conditions are
useful in making comparisons. Knowing the probability function, we can determine
moments if they exist. Applying the mathematical inequalities, some estimations
for the moments of random variables were recently studied (see, [3], [5], [18], [19],
[29]).
Set X to denote a random variable whose probability density function is g :

[a; b]! [0;1) on the interval of real numbers I (a; b 2 I; a < b) and Y to denote a
random variable whose probability density function is h : [c; d]! R on the interval
of real numbers I (c; d 2 I; c < d): Denoted by Mr(x) and Mr(y) the r:th central
moment of the random variable X and Y; respectively, de�ned as

Mr(x) =
bR
a

(u� E(x))r g (u) du; r = 0; 1; 2; :::

and

Mr(y) =
dR
c

(u� E(y))r h (u) du; r = 0; 1; 2; :::

where E(x) and E(y) are the mean of the random variablesX and Y; respectively. It
may be noted that M0(x) = M0(y) = 1; M1(x) = M1(y) = 0, M2(x) = �

2(X) and
M2(y) = �

2(Y ) where �2(X) and �2(Y ) are the variance of the random variables
X and Y; respectively.
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Now, we reconsider the identity (2.1) by changing conditions given in Lemma 1.
Herewith, we deduce an identity involving r:th moment.

Lemma 2. Let f : [a; b]� [c; d] =: � � R2! R be a continuous function such that
the partial derivatives @k+lf(t;s)

@tk@sl
, k = 0; 1; 2; :::; n � 1; l = 0; 1; 2; :::;m � 1 exists

and are continuous on �; and let X and Y be random variables whose p.d.f. are
g : [a; b] ! [0;1) and h : [c; d] ! [0;1), respectively. Then, for all (x; y) 2
[a; b]� [c; d]; we have the identity

bZ
a

dZ
c

Pn�1 (x; t)Qm�1 (y; s)
@n+mf(t; s)

@tn@sm
dsdt

=

n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

where n;m 2 Nn f0g ; Mk(x) and Ml(y) are the kth moment, and Pn�1 (x; t) and
Qm�1 (y; s) are de�ned as in Lemma 1.

Theorem 11. Suppose that all the assumptions of Lemma 2 hold. If @n+mf
@tn@sm 2

L1 (�) ; then we have the inequality

������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(6.1)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






1

�
b� a
2

+

����x� a+ b2
�����n�d� c2 +

����y � c+ d2
�����m

for all (x; y) 2 [a; b]� [c; d]; where





 @n+mf@tn@sm






1
= sup

(t;s)2(a;b)�(c;d)

����@n+mf(t; s)@tn@sm

���� <1:
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Proof. By similar methods in the proof of Theorem 3, we obtain������
n�1X
k=0

m�1X
l=0

Mk(x)

k!

Ml(y)

l!

@k+lf(x; y)

@xk@yl
�
m�1X
l=0

Ml(y)

l!

bZ
a

g(t)
@lf(t; y)

@yl
dt(6.2)

�
n�1X
k=0

Mk(x)

k!

dZ
c

h(s)
@kf(x; s)

@xk
ds+

bZ
a

dZ
c

h(s)g(t)f(t; s)dsdt

������
�





 @n+mf@tn@sm






1

24 xZ
a

(x� u)n

n!
g(u)du+

bZ
x

(u� x)n

n!
g(u)dudt

35
�

24 yZ
c

(y � u)m

m!
h(u)du+

dZ
y

(u� y)m

m!
h(u)du

35 :
We observe that

xZ
a

(x� u)n

n!
g(u)du+

bZ
x

(u� x)n

n!
g(u)du

� 1

n!

24 sup
u2[a;x]

(x� u)n
xZ
a

g(u)du+ sup
u2[x;b]

(u� x)n
bZ
x

g(u)du

35
=

24(x� a)n xZ
a

g(u)du+ (b� x)n
bZ
x

g(u)du

35
� max f(x� a)n ; (b� x)ng

bZ
a

g(u)du:

Because g is a p.d.f.,
bR
a

g(u)du = 1: Using the identity

max fX;Y g = X + Y

2
+

����Y �X2
���� ;

we get

max f(x� a)n ; (b� x)ng
bZ
a

g(u)du =

�
b� a
2

+

����x� a+ b2
�����n :

Similarly, if we examine the other integral in (6.2), we obtain desired inequality
(6.1). Thus, the proof is completed. �



30 SAMET ERDEN AND MEHMET ZEKI SARIKAYA

Remark 22. With the assumptions of theorem 11, then we have the represantation������f(x; y)�
bZ
a

g(t)f(t; y)dt(6.3)

�
dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @2f@t@s






1

�
b� a
2

+

����x� a+ b2
������d� c2 +

����y � c+ d2
����� :

Proof. If we take n = m = 1 in (6.1); then we get the inequality (6.3). �
Similarly, using the other integrals in section 3 and section 4, we obtain some

results involving r:th central moment of the random variable X and Y:

Theorem 12. Let f : [a; b] � [c; d] =: � � R2! R be a continuous function such
that the partial derivatives @k+lf(t;s)

@tk@sl
, k = 0; 1; l = 0; 1; 2 exists and are continuous

on �; and let X and Y be random variables whose p.d.f. are g : [a; b]! [0;1) and
h : [c; d]! [0;1), respectively. Then we have������f(x; y)�

bZ
a

g(t)f(t; y)dt(6.4)

�
dZ
c

h(s)f(x; s)ds+

bZ
a

dZ
c

g(t)h(s)f(t; s)dsdt

������
�





 @4f

@t2@s2






1
�2(X)�2(Y )

for all (x; y) 2 [a; b]� [c; d]; where



 @4f

@t2@s2






1
= sup

(t;s)2(a;b)�(c;d)

����@4f(t; s)@t2@s2

���� <1:
Proof. If we take n = m = 2 in (6.2), we obtain desired inequality (6.4). �
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