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SOME WEIGHTED INEQUALITIES FOR HIGHER-ORDER
PARTIAL DERIVATIVES IN TWO DIMENSIONS AND ITS
APPLICATIONS

SAMET ERDEN AND MEHMET ZEKI SARIKAYA

ABSTRACT. We establish some Ostrowski type inequalities involving higher-
order partial derivatives for two dimensional integrals on Lebesgue spaces
(Loo, Lp and L1). In addition, we obtain some inequalities for double in-
tegrals of functions whose higher-order partial derivatives in absolute value
are convex on the co- ordinates on rectangle from the plane. Some applica-
tions in Numerical Analysis in connection with cubature formula are given.
Finally, with the help of obtained inequality, we establish applications for the
kth moment of random variables.

1. INTRODUCTION

Let f : [a,b]— R be a differentiable mapping on (a,b) whose derivative f :
(a,b)— Ris bounded on (a,b), i.e., || f'||.,, = sup |f'(t)| < oo. Then, the inequality
te(a,b)

holds:

1 (.’L‘— L‘rb)Q !
1 + (b_;)gl (b—a)[lf'll

b
) @) -y [ rod <

for all z € [a,b] [25]. The constant 1 is the best possible. This inequality is well
known in the literature as the Ostrowski inequality.

In a recent paper [2], Barnett and Dragomir proved the following Ostrowski type
inequality for double integrals:

no _ 0%f

Theorem 1. Let f : [a,b] X [c,d]—= R be continuous on [a,b] x [c.d], 7, = 5.5

exists on (a,b) X (¢,d) and is bounded, i.e.,

0*f(z,y)
0x0y

il = sup
H y||°° (z,y)€(a,b) x (c,d)

<
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Then, we have the inequality:

b d
(1.2) //f(s,t)dtds—(d—c)(b—a)f(a:,y)

b

d
- (b—a)/f(m,t)dt—i—(d—c)/f(s,y)ds

< li(ba)2+ (1: a;rb> i(d—c)% <y d;C>
for all (z,y) € [a,b] x [c,d].

In [2], the inequality (1.2) is established by the use of integral identity involving
Peano kernels. In [28], Pecari¢ and Vukeli¢ gave weighted Montgomery’s identities
for two variables functions. Recently, many authors have worked on the Ostrowski
type inequalities for double integrals. For example, Pachpatte obtained a new in-
equality in the view (1.2) by using elementary analysis in [26] and [27]. In [8], [10]
and [13], some Ostrowski type inequalities for double integrals and applications in
numerical analysis in connection with cubature formula are given by researchers.
Authors deduced weighted inequality of Ostrowski type for two dimensional inte-
gralsin [31] and [35]. Some researchers established some Ostrowski type inequalities
for n-time differentiable mappings in [1], [6] and [15]. In [14], weighted integral in-
equalities for one variable mappings which are n—times differentiable are obtained
by Erden and Sarikaya. The researchers established some Ostrowski type inequal-
ities involving higher order partial derivatives for double integrals.in [4], [16] and
[36].

Let us now consider a bidimensional interval A =: [a, b] X [c,d] in R? with a < b
and ¢ < d. A mapping f : A — R is said to be convex on A if the following
inequality:

1
17

fle+ 1A =t)zty+ (1 -tw) <tf (z,y)+ (1 —1) f(z,w)

holds, for all (z,y),(z,w) € A and ¢t € [0,1]. A function f: A — R is said to be
on the co-ordinates on A if the partial mappings f, : [a,0] — R, f, (v) = f (u,y)
and f, : [c,d] = R, f, (v) = f(x,v) are convex where defined for all « € [a, b] and
y € e, d) (see, [9).

A formal definition for co-ordinated convex function may be stated as follows:

Definition 1. A function f: A — R will be called co-ordinated canvexr on A, for
all t,s € [0,1] and (z,y), (u,v) € A, if the following inequality holds:

flx+ (1 —=t)y,su+ (1—s)v)

< tsf(au) +s(1 =) f(y,u) + (1 = 5)f(z,0) + (1= 8)(1 = ) f(y, ).

Clearly, every convex function is co-ordinated convex. Furthermore, there exist
co-ordinated convex function which is not convex, (see, [9]).

Also, in [9], Dragomir established the following similar inequality of Hadamard’s
type for co-ordinated convex mapping on a rectangle from the plane R2.
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Theorem 2. Suppose that f: A — R is co-ordinated convex on A. Then one has
the inequalities:

a+b c+d
(1.9 (5

[ b d
< 3l [ (a5 ]
) b d
[ b b
< i bia/af(x,c)dx—i—ﬁ/a f(z,d)dx
_1 d 1 d
+o— i f(ayy)dy+m i f(bvy)dy]
< flao)+ flad)+fbe)+ f(bd)
< 1 )

The above inequalities are sharp.

In recent years, researchers have studied some integral inequalities by using some
convex function on the co-ordinates on a rectangle from the plane R?. For exam-
ple, authors gave some Hadamard’s type inequalities involving Riemann-Liouville
fractional integrals for convex and s-convex functions on the co-ordinates in [7] and
[33]. In [22], several new inequalities for differentiable co-ordinated convex func-
tions in two variables which are related to the left side of Hermite- Hadamard type
inequality for co-ordinated convex functions in two variables are proved by Latif and
Dragomir. Erden and Sarikaya gave some generalized weighted integral inequalities
for functions whose partial derivatives in absolute value are convex on the co- or-
dinates on rectangle from the plane in [12] and [13]. In [32], Sarikaya et al. proved
some new inequalities that give estimate of the deference between the middle and
the right most terms in (1.3) for differentiable co-ordinated convex functions. Re-
searchers deduced some integral inequalities for differentiable co-ordinated convex
mappings in [17], [20], [23] and [34]. In [21], [24] and [30], some Hermite-Hadamard
type inequalities for veriaty co-ordinated convex functions are developed.

In this study, first of all, we establish a new integral inequality involving higher-
order partial derivatives. Then, some inequalities of Ostrowski type for two dimen-
sional integrals is gotten by using this identity. Also, some integral inequalities for
convex mappings on the co-ordinates on the rectangle from the plane are obtained.
Finally, some applications of the Ostrowski type inequality developed in this work
for cubature formula and the kth moment of random variables are given.

2. INTEGRAL IDENTITY

In order to prove generalized weighted integral inequalities for double integrals,
we need the following lemma:

Lemma 1. Let f : [a,b] x [c,d] =t A C R*> R be a continuous function such
k+1
that the partial derivatives %, k=2012..,n—-1101=0,1,2..,m—1

exists and are continuous on A, and assume that the functions g : [a,b] — [0,00)
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and h : [¢,d] — [0,00) are integrable. In addition, P,_1 (z,t) and Qm—1 (y,s) are
defined by

P_q (z,t) =
t
o J (u— " g(u)du, z<t<b
b
and
(mll)' J(u—s)™ lh(u)du c<s<uy
C
mel (y,s) =

|

uw—8)"" h(u)dv, <s<d
J(u—s) y
d

where n,m € N\ {0}. Then, for all (z,y) € [a,b] X [¢,d], we have the identity

b d
atnas’m
1

n—

b
B mzl y) O f(e,y) = Mily / 8f(t,y)dt
— k' l' Oxk oyt pr [! oyt

a

) [ O [T
k\T :ES
;}kl/h(s) e ds+//h f(t,s)dsdt

c

where My(x) and M;(y) are defined by

My(z) = [(u—2)" g (u)du, k=0,1,2,..

8 —o

Mi(y) = [ (u—y) h(u)du, 1=0,1,2,..

I
O ~—a.

Proof. We have the equality

o f(t, s)

b d
//Pn1$tQm 1(:9,)stdt

8n+m t
n 1 -Tt {/Qm 1 Z/, at71£§m8)d8}dt
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87L+m f(t,s)

Applying integration by parts for partial derivatives ~—4-%

d
n+m
/ Ot () LS 5)

on [c,d], we obtain

atnasm

Yy s
_ m 1 8n+mf(t7 S)
= _1 '// u—) h(u) du S ds

c ¢
d s

'm 1 8n+mf(t’ 3)
_1'//u—s h(u) du Yy ds
Yy d

B Mm ( )8n+m 1f t y an-‘,—m 1f(t S)
 (m—1! Otmoym—1 /Qm 2(y, s otndgsm—1 “orgsm 1

As we progress by this method, we get

O () S Mi(y) 9t y) N
/Q’” 1(4:9) —gmgem 95 = ; I 9ty /h atn

Then, we have

b

At™Mf(t, s)
P,_ t) Qm_1(y,8) ——=——"—dsdt
/ 1(z,t) Qm-1(y, ) Srigem 0
) o (1) o1 (1.9
> /nl(mt) = ldt—/h /Pnlxt — " dtds.
P J atno ot
Similarly, applying integration by parts for partial derivatives 9 a;ibfa(;;y) and 2~ gt(z,s)

on [a,b], we can write

b
"t y)

n—1 b
o Mk(x) 8k+lf($7y) alf(tvy)
= kzzo K ooyl / 9 =g

and

n—1

b b
" s z) 0% f(z,s
(2.4) /pn_l (2,1) mdt _ Z M]/Z.E )" f(z,5) /g(t)f(t,s)dt.
k=0 ’

otn oxk

a = a

Substituting the identity (2.3) and (2.4) in (2.2), we deduce desired identity
(2.1), and thus the theorem is proved. O
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n+m
3. SOME INEQUALITIES FOR % BELONGS TO LEBESGUE SPACE

We give some results for functions whose n+m.th partial derivatives are bounded.
We start with the following result.

an +m

Theorem 3. Let f: A CR?2— R be a continuous on /A such that 2 TrP T{L exist on
(a,b) x (¢, d) and assume that the functions g : [a,b] — [0,00) and h : [¢,d] — [0, 00)
are integrable. If gt:a";,{ € Lo (A), then we have the inequality

n—1m— 1 6k+lf($ y) m— b
>y o) S0 / o
k=0 1=0 Y 1=0
d b d
/h Om’“ ds+//h(s)g(t)f(t, s)dsdt
My, () My (y)
z'fm and n are even numbers
M, (x) [ - 2f (u— h(u)du
zfm 18 odd number and n is even numbers
H grtm f H M, (y) [Mn x) — 2f u—x) g(u)du]
= nlml {9t 9sm 0 if m is even number and n is odd number

[Mn . —2f (w—a "g(u)du}

a

o PRI

zfm and n are odd numbers

for all (z,y) € [a,b] X [c,d], where

‘ 6n+mf
sup
n+m

ot ds™ ” (t,5)€(ab) x (c,d)
Proof. If we take absolute value of both sides of the equality (2.1), because 7&; Bs’{b
is a bounded mapping, we can write

"t f(t,s)
otndsm

n—1m-— 1 m— 1 b
y) 0° L f(z,y) 3lf(t,y)
I D B e e OE. Ly POt

k=0 1=0 1=0 p

ne1 u d a d
= ’ij)/h() fxs // F(t, s)dsdt

k=0 R

[ )

< /:/Lﬂra(ziﬂlQm—l@hSN T dsar

< |t //m D) Qs (. )] dt.
< Dtrdsm n—1 £L‘ m—1 Y, S S
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By definitions of P,_; (z,t) and Q.1 (y, s), we get

b d

[ [1Pacs @001Qus )] s

a

c
T t

_ //“én_t)l)l( dudt+/ =" )l dt

a a x

[
X /y/s(qz_i)l)_l duds+/d/su_8 1h(u)du ds
Yy |d

By using the change of order of integration, we obtain

b d

/ / P ()] @ 3, 9) s

) {/@u m/bw ]

X / (y—w)" u)du + / u)du
c Y
which completes the proof. ([

Remark 1. Under the same assumptions of Theorem 8 with n = m = 1, then the
following inequality holds:

(32) | Mo(e)Mo(y)f(z,y) — Mo(y) / o) f(t,y)dt

—Mo(z) /d h(s)f(z,s)ds + /b /d g()h(s)f(t, s)dsdt
Hi;ﬂ N {Ml(l‘)?/x(fcu)g(u)du] [M1(y) 2/y(yu) h(u)du]

which is "weighted Ostrowski" type inequality for ||| —norm. This inequality
was deduced by Sarikaya and Ogunmez in [31].

Remark 2. If we take g(u) = h(u) =1 in (3.2), then the inequality (3.2) reduce
to the inequality (1.2).
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Remark 3. Taking g(u) = h(u) =1, z = £ and y = <24 in (3.2), then we have
the inequality

b
(33) -0 @-o "3 N - @) [ 5w S
b d

2 2
—(b—a)/df(a;b,s)ds—k//f(t7s)dsdt

(b—a)(d—0)” || 0*f
- 16 0tos ||

which was given by Barnett and Dragomir in [2].

Remark 4. Under the same assumptions of Theorem 3 with g(u) = h(u) = 1, then
we have the inequality

n—1m— 1 ak+lfxy i 1}/[ (t7y)

(3.4) I;) lz; I adkoyl 4o a/ g
o d b d

_ZXk(x)/ ds—l—//ftsdsdt

H i H —o)" @0 [d-p" T+ o™
where

Gt i o VI C et i

(3.5) Xy(z) = (k+1)
and
(3.6) yigy) = 4= D -9t

(1+1)
This inequality (3.4) was proved by Hanna et al. in [16].

Theorem 4. Let f: A C R2— R be a continuous on A such that 55755 ,fl exist on
(a,b) X (¢,d) and assume that the functions g : [a,b] — [0,00) and h : [c d] — [0, 00)

are integrable. If 6t"857]f‘ € Lo (A), then we have the inequality

n—1m— 1 ak_Hf mflM b Glf t,
o0 LR e - L T g

k=0 [=0

ne1l . d A o s b d
> M [ L5t [ [ nisrator s, spasa

an-{-mf ||g||[a7b],oo ”h”[c,d]oo

x (o= @ =) @) 4 -]

IN
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for all (z,y) € [a,5] x[e, d], where |gll . = sup lg@)], [blpge = sup [h(w)]

u€la,b] w€le,d]
and
‘ e ” - sup g 5) 00
otros™ o (£8)€(a,b)x(c,d) atmgs™ '

n+m

Proof. Taking moduls of both sides of the equality (2.1), because gt”TT{ is a
bounded mapping, we have the inequality (3.1). Because of boundedness g and
h, and by definitions of P,_1 (z,t) and Q.,—1 (y, s), we get

b d

(3.8) / / Pacr (2, 0)] |Qur (3, )] dsdt

a C

S

h
< ||g||[ab], || Hcd] // / U—t n— 1du /(u—s)mfldu dsdt
(n—1)!

[

+j/ /t(u—t)"_1 du /(u—s)m_1 dul| dsdt

d

b vy t s
+// /(u—t)” du /(u—s)m_1 du| dsdt
b

C

S

//b/ut du d/(us)mldudsdt

Ty
If we calculate the above four integrals and also substitute the results in (3.8), we
obtain desired inequality (3.7) which completes the proof. O

Corollary 1. Under the same assumptions of Theorem 4 with n = m = 1, then
the following inequality holds:
b

(3.9) Mo() Mo(y) () — Mo(y) / o(t) £ (t,y)dt
fMo()/h xsder// f(t,s)dsdt

0% f
= HataSHOO HgH[a)b]vOO Hh”[o,d]oo

e

which is "weighted Ostrowski" type inequality for |||, —norm.

Remark 5. If we take g(u) = h(u) = 1 in (3.9), then the inequality (3.9) reduce
to the inequality (1.2).

Remark 6. If we choose g(u) = h(u) = 1 in theorem 4, then the inequality (3.7)
becomes (3.4).
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Corollary 2. Under the same assumptions of Theorem 4 with x = ‘%rb and y =

ng, then we have the inequality

n—1m-—1 d k+l gratb c+d
Mk ( —5 )a + f(Tv 2 )
(3.10) Z Z ! Oxkoy!
k=0 =0
m—1 ctd b 1 ct+d
Ml( —5 ) 0 f(ta 2 )
-y = g(t)iayl dt

=0

_nile(a;i) h(s )8 d +// f(t,s)dsdt

grtm ||g||[ab] fe.d]oo <b—a>”“ (d—c)m“
— || 0tnds™ (n+1)! (m+1)! 2n 2m

which is Ostrowski type inequality for double integrals. Thus, (3.10) is a higher
degree "weighted mid-point” inequality for ||| —norm.

Corollary 3. Choosingm =m =1 in (3.10), we obtain

b
Mo M) £ 7 S5 = Matw) [ ate)se S
d b b d ’
—Mo(x)/h(s)f CH_ d8+//g f(t, s)dsdt

e
[e,d]oo 16

o0 f
< — -
= Hatas"m ||g||[a,b],oo

which is "weighted mid-point" inequality for double integrals.

Now, we deduce some inequalities for mappings whose higher order partial deriv-
atives belongs to L, (A) and L (A).

Theorem 5. Let f : A C R?— R be a continuous on A such that 2 5 ,’f exist on
(a,b) X (¢,d) and assume that the functions g : [a,b] — [0,00) and h : [¢,d] — [0, 00)

are integrable. If % eL,(A), %—i—% =1 andp > 1, then we have the inequality

n m - b
Zl Zl y) 8 f(2,y) Z Mi(y) /g@) ofty)
k l
— = k' l' Oxkoy! — I J Jy
n—lM d 8k b d
> MU [ 2T g s [ [ i1, spasa
Pt k Ox
_ H ol l9llanco 1Pl ao
- [[otmos™ p nl(ng + 1)% m! (mq + 1)%

> {(m _ a)nq+1 + (b . $)nq+1}é [(y . C)mq+1 + (d _ y)mq+1 7
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for al (2.) € b x[e, ) where gl = 510100 [l = 10 (0]

u€la,b] u€le,d]

and

OtMf(t, s)

" dsdt
“ormasm | Y

8n+mf
otnodsm

(/]

Proof. From (2.1), using the properties of modulus and from Holder’s inequality,
we get

N (@) Mi(y) O (o) M) [ B,
S 5 0,

k=0 1=0 =0 J oyt
n=l e (@) d 8’“]”( ) b d
E\T T, S
T / h(s)—5 % ds + / / h(s)g(t) £ (t, s)dsdt
b d % %

dsdt

b d
anerftS
q
//|Pn 1 £L’t| |Qm 1(y7 )| dsdt //‘ otnHsm

Because of boundedness g and h, and by definitions of P,_; (z,t) and Q.,—1 (v, 3),
we can write

b d %
/ / Pacs (2. 0)]% | Qs (3, 5)| dsdt
x| t q
||(97|L|[i,bi,)o'o |(|;|[(:_,d1]<>><'> //(u " L du dtJr/ / (u—t)" du| dt
o la z b
| s g | s @
X //(ufs)m_ldu ds+//u—sm1du ds
c le y

By simple calculations, we easily deduced required inequality, and thus the theorem

is proved. (Il
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Corollary 4. Under the same assumptions of Theorem 5 with n = m = 1, then
the following inequality holds:

b

(3.11) Mo() Mo() (2 3) — Mo(y) / o(t)f ()t
b d
—My(x /h msds—i—//g f(t,s)dsdt

o f
: H o105 Hp 190,100 Pl o0

Q=

" [(w —a) " (b - ax)qH]

l(y gty (d- y)‘J“] :
q+1

q+1

which is "weighted Ostrowski" type inequality for ||Hp —norm.

Corollary 5. If we choose x = “;rb and y = <% in (3.11), then we have the
inequality

b
a+b c+d c+d
Mofa)Mo() 152 <) Motw) / o(0) 7, < Dyan
a+b

—My(x /h d8+// f(t,s)dsdt
2f (b—a)'te (d—c)'ta
< 9to ||9||[a b],00 [e,d]oo I T
t0s 2(¢+1)7 2(g+1)7

which is "weighted mid-point" inequality for two dimensional integrals. This
inequality is a weighted Ostrowski type inequality for ||[|, —norm.

Remark 7. If we take g(u) = h(u) =1 in (8.11), then we get

b

(b= a)(d=c) flag) ~ (d=0) [ ft.v)ie

d b d
—(b—a)/f(x,s)ds+//f(t,s)dsdt

_ an (l‘ _ a)q-i-l + (b _ g;)q'H a
— || 0tds » g+1
R N G
qg+1

which was proved by Dragomir et al. in [8].
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Remark 8. Under the same assumptions of Theorem 5 with g(u) = h(u) = 1, then
we have the inequality

n—1

m— 1 m—1
y) OF L f(z,y) Yz f(ty)
(3.12) 2 12; “ Sakoy] 2 / oy dt

a

nl

—Z /8f“d+//ftsdsdt

[((L‘ _ a)nq+1 + (b _ x)nq+1] E

8n+mf
nlm! || 9t"Os™ »

IN

ng+ 1

O s A ) Sl
mq+ 1

where X (x) and Y;(y) are defined as in (3.5) and (3.6), respectively. This inequal-
ity (3.12) was deduced by Hanna in [16].

Corollary 6. Under the same assumptions of Theorem 5 with x = “7“’ and y =
ng, then we have the inequality

(R M) M5 0 25
kgl
== k! I xkoy
-1 c+d b ! c+d
Ml(;)/ o' f(t, 57)
- g(t)—— =—dt
— l! dy
n—1 Mk 8k
— /h d +//h f(t, s)dsdt
0
< H onrmf 191l{4,6),00 1Pl qo0 (b — a)"+5 (d— c)m+5
= [9tnOs™ |, nl (ng + 1)% m! (mq + 1)% 2" 2m

which is "weighted mid-point" inequality for double integrals. This inequality is
a higher degree weighted Ostrowski type for |||, —norm.

Theorem 6. Let f : A C R?>— R be a continuous on A such that oatna ,ﬁ exist on
(a,b) x (c,d) and assume that the functions g : [a,b] — [0,00) and h : [¢,d] — [0, 00)
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are integrable. If % € Ly (A), then we have

n—1lm-—1 m—1 b
My (x) Mi(y) O f(z,y) M (y) / d'f(t,y)
3.13 - t)— 2 gt
(3.13) > K1 9rkay > = [ 9® By
k=0 (=0 1=0 o
el d b d
= kkf"”) /h(s) %) ds +//h F(t, s)dsdt
k=0 B
190l0,6,00 1Pl iedjo0 [(z —a)" + (b —2)*  |(b—2)" — (x—a)"
< +
- n! m! 2 2
| W=+ (d-y) n (d—y)" —(y—o
2 2 otnos™ ||,
for all (z,y) € [a,b]x[c,d], where ||gl;, 4 00 = Sl[lp lg(@)|, 1hlle,qp00 = SiuPd] |h(u)]
u€la,b ue| ¢,
and
gntm Ot™f(t, 5)
Hatnasm / / “arasm | 2t
Proof. By taking absolute value of (2.1), we find that
S M) Mily) 9 f () S Mily) [0 (L)
2 Z zv dxkoyl 2 e oy "

k=0 1=0 1=0 2

—Z /d 8f””"SdJr// £(t, s)dsdt

c

b d
an+m t, s
< //|Pn 1 .73 t HQm 1(y7 )| #‘im) dsdt
8n+mf t S
_ . ()] Qs (.5 / / dsd.
iy SO ‘ 1( )| ‘ 1 | 875”8 m

By boundedness g and h, and because of definitions of P,_; (z,t) and Q,,—1 (v, 3),
we have

sup |Po—1 (2, 0)] |Qm—1 (y, 5]
(t,8)€(a,b)x(c,d)

l191l(a,5],00 ||h||[cd
n!

max {(z —a)", (b — )"} max {(y — )", (d —y)"}.

We obtain desired inequality (3.13) using the identity

max {X,Y} =

X+Y ‘Y—X‘
5 + .

The proof is thus completed. O
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Corollary 7. Under the same assumptions of Theorem 6 with n = m = 1, then
the following inequality holds:

b
(3.14) Mo() Mo() /(2 3) — Mo(y) / o(t)f (6, y)dt

d

b d

~ Mo(a) / h(s)f(x, 5)ds + / o(t)h(s) £, )dsdt
Bzf

< HatasH1 190 ta,01,00 121l e 10

o

X{(b;a)_‘_

c+d_
D) Y

which is "weighted Ostrowski" inequality for double integrals of the Ostrowski
type inequality for |||, —norm.

Corollary 8. If we choose x = “t2 and y = <5 in (3.1/), then we have the
inequality
b d b d
a+b c+ c+
Mo M) £ 7 S5 = Matw) [ ato)se S

b d
o) [ (e f(g 2 s+ [ [ aOh)1ts)dsi

(&

an (b—a)(d—c)
< |5 H oy Wl e 2=

which is "weighted mid-point" inequality for the two dimensional integrals of the
Ostrowski type inequality for ||||; —norm.

Remark 9. If we take g(u) = h(u) =1 in (8.14), then we get

b

(3.15) (b—a)(d—¢) f(z,y) — (d—0) / F(t,y)de

d b od ’
—(b—a)/f(x,s)ds—&-//f(t,s)dsdt

L5

0% f
Otds

a;b_xu {(d;c) )

c+d_
B) Yy

which is Ostrowski type inequality for |||, —norm.
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Remark 10. Taking z = “£2 and y = <52 in (3.15), we get

b
o) @d-a "3 N - @) [ e Sy ar
d

b

d
_(b—a)/f(a;b,s)ds—k//ft s)dsdt
_ 2] G-ad-o
- H@t@s 1 4

which is "mid-point" inequality for double integrals of the Ostrowski type inequality
for ||||; —norm.

Remark 11. Under the same assumptions of Theorem 6 with g(u) = h(u) = 1,
then we have the inequality

n—1lm-—1 m—1

X5(2) Y, ()8’“+lfary Yz ( y)
n—1 d
N Xalw) [ OFS(s) e

IN

1 {(m—a)n—k(b—x)"+‘(b—x)n—(x—a)"
" [(y—C)"Jr

|

]H ot ds™ ||y

where X (z) and Y;(y) are defined as in (3.5) and (3.6), respectively. This inequal-
ity (8.16) was proved by Hanna et al. in [16].

(d—y)" (d—y)— —¢)
e

Corollary 9. Under the same assumptions of Theorem 6 with x = % and y =

2
C;d, then we have the inequality

n—1m—1 d bl rrash oid
Mk Mi(5%) 0 (457, 59
(3.17) T . e
k=0 1=0
m—1 ctd b ; rd
Mi(%5 )/ AL f(t, <)
=2 |9t
1=0 I J dy
n—1 atb d - b d
My (*3°) I
;}k!/h(s)axkds+//h(s)g(t)f(t’5)d5dt
Hg”[a,b},oo ||h||[c,d]oo (b _ a)n (d - C)m
> otnds™ 1 n! m! on om

which is "weighted mid-point" inequality for double integrals. Thus, (3.17) is a
heigher degree weighted Ostrowski type inequality for |||, —norm.
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4. SOME INEQUALITIES FOR CO-ORDINATED CONVEX MAPPINGS

For convenience, we give the following notations used to simplify the details of

some results given in this section;

An(z) = (b—a) n+1 n-+2 ’
(b _ .’I})n+1 _ a)n+2 _ (b _ x)n+2
B =(b—
(@) = (0—a) — ,
C ( )—(d—c) (y_c)m+1 (d_y)m+2_(y_c)m+2
m\¥) = m+1 m+ 2
and
b ( ) B (d B C) (d _ y)m-‘rl _ C)m+2 _ (d _ y)’"b-‘rQ
miY) = m+1 m+2
We start with the following result.
Theorem 7. Suppose that all the assumptions of Lemma 1 hold. If % s a
conver function on the co-ordinates on A, then the following inequality holds:
nlm.l 8k+lfxy ml b 3lf(ty)
- > e L PO L
k=0 1=0 Y 1=0 p Y
1y, (2) d b d
k\T
—> /h( axk ds+//h f(t, s)dsdt
k=0 A
atlioo 1Pl "t f(a, c) ot f(a, d)
A, 'm —5 | An(7) Dy,
(b—a)n! (d—c)m! otnds™ (@)Cm(y) + otndsm (#)Dim(y)
o™ f(b,c) ot f(b,d)
Y Bn m T ama.m BTL Dm
otnosm (IE)C (y) + otnosm (37) (y)}
for all (5,9) € a0 x (o), where gllosyoc = 0P [9e0] and [l o, =
sup |h(u)l.
u€[c,d]

Proof. If we take absolute value of both sides of the equality (2.1), we find that

nolm-1,. m—1 b
y) OF f(x,y) Mz(y)/ d'f(t,y)
g(t)—F5—dt
kzo ; k' l' Ozk oy g ! Ayt
d

—Z /d 8fx5d+//h f(t, s)dsdt

c

b d
< //|Pn1xt\|c2m1<y7 )|

At (¢, s)

dsdt.
atrosm |7
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Since % is a convex function on the co-ordinates on A, we have
ontm b—t t—a, d—s s—a
(42) ‘at"asmf<b—aa+b—ab’d—cCJrd—cd>‘
b—td—s|0"f(a,c) b—ts—c|0"t™f(a,d)
b—ad—c| Ot"9s™ b—ad—c| Ot"os™ ‘
t—ad—s|0"™f(bc)| t—as—c|d"Tf(b,d)
b—ad—c| Otros™ b—ad—c| Otros™ ‘

Utilising the inequality (4.2), we can write

b d
an+m,
(43) //‘Pn—l (Jjat)HQm—l (Z/,S)| ﬁifgs) dsdt
a c .
(b—a)(d—c)
b d
8n+m

{Btgm // — ) [P (2,8)| (d = 8) |Qu1 (y, 5)| dsdt

an-‘rm d
+ 8#1‘2;”’// _t |Pn 1({E t)‘(S—C)|Qm l(yu )ldsdt

8n+m b
* W // (t —a)|Poo1 (2, 1) (d = 5) [Qm-1 (y, s)| dsdt

an-‘rm b d
3t"gsm '// a) |Po-1(z,t)| (s = ¢) |Qm-1 (, S)|dsdt}.

If we calculate the above four double inetgrals and also substitute the results in
(43)7 because of HgH[a,m],oo7 ||g||[a:,b],oo < ||g||[a,b],oo and ||h||[c,y]oo’ Hh”[y,d]oo <
2l (¢, qj00 » We obtain required inequality (4.1) which completes the proof.

Remark 12. Under the same assumptions of Theorem 7 with n = m = 1, then the
following inequality holds:
b

(44) | Mo(@)Mo(y)f () — Mo(y) / g(t) f(t,y)dt

—Mo(x)/dh(s) f(z,s ds—|—// f(t,s)dsdt

||9||[a,b],oo ||h||[c,d]oo 0% f(a,c) 8% f(a, d)
= (b-a) (d-o { Ot0s M’Al(w)Dl(y)
97 f(b,c) 92 f(b,d)

T otds 3@8’ Bl(w)Dl(y)}

which was given by Erden and Sarikaya in [11] (in case of A =10).

Ay (z)Cr(y) +

+ Bi1(z)C1(y) +
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Remark 13. If we take g(u) = h(u) =1 in (4.4), then we get
b

(4.5) (bfwwfdf@w%%d*d/fwwﬁ

d b d
—(b—a)/f(x,s)ds—i—//f(t,s)dsdt

9 f(a,c)
Otds

9 f(a,d)
61585‘ Ai(z)D1(y)

Ar(z)C1(y) +

525;;;@‘ Bl(m)Dl(y)}

w—aﬂd—@{

P10 g @)cry) +

1 o0s

which was given by Erden and Sarikaya in [13].

Remark 14. Taking x = %H’ and y = # in (4.5), we get

b
(- a)@=o)f( 5 55~ (d =) [ 5 e

s)ds—l—/b/df(t,s)dsdt

9* f(a,c) 0 f(a,d) *f(be) 9°f(b,d)
< (b—a)?(d—c)? Bios | T | otos ‘ T | Tows | T | Tow0s
- 16 4

which was given by Latif and Dragomir in [22].

Corollary 10. Under the same assumptions of Theorem 7 with g(u) = h(u) =1,
then we have the inequality

(4.6)
nlml ak+lf$y lei (ty)
DI u dak oy’ P Ny / g
k=0 =0 1=0 o
—Z /afxsd+//ftsdsdt
1 1 (i)n-i-mf(a7 C) ot f(a, d)
= G-a)@d—oniml { girgsm | An(@)C0m(y) + atnasm‘ An(2)Din (y)
o f (b, ot f (b, d
+ ﬁﬁmc) By (z)Cm(y) + W‘Bn(x)pm(y)}

where Xy (x) and Yi(y) are defined as in (3.5) and (3.6), respectively. This result
is a Ostrowski type inequality for mappings whose absolute value of heigher degree
partial derivatives are co-ordinated convezx.
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Corollary 11. Under the same assumptions of Theorem 7 with x = ‘%rb and
y= ng, then we have the inequality

)8k+lf(a+b c+d)

— o~ Mi(“52) Mi(%%
ZZ kk! ll! Oxkoy!

k=0 =0
m—1 c+d b [ c+d
Mz(é)/ d'f(t, <5%)
D Py R a
— i oyt
n— 1

ak atb
—Z /h Qk’d+//h f(t, s)dsdt

||g||[a,b],oo ||h‘H[c,d]oo ( - a)’ﬂ-’rl (d - C)"H_l

IN

(n+ 1)l (m+1) 2ntl gm+1
2 | |0 e, d)| |9 f(by )| 0T f (b, d)
ot s atnasm ot s atnsm

which is "weighted mid-point” inequality for functions whoose absolute value of
hetgher degree partial derivatives are co-ordinated convex.

We establish some weighted integral inequalities by using convexity of

atnaém

Theorem 8. Suppose that all the assumptions of Lemma 1 hold. If | gmazm| s a
convex function on the co-ordinates on A, % + % =1 and q > 1, then the following

inequality holds:

an+mf ‘q

1 b

e~ Mi(z) My(y) 9% f(z,y) y)/ d'f(t,y)
4. ZJI\»I)
(47) > 2 T Sk ay! -2 9O =5,
k=0 (=0 1=0 s
M) [ 0 i
k\T Z’ S
72 o /h(s) o ds+//h f(t, s)dsdt
k=0 p
HgHab oo ”h‘Hcdoo 1 1
S [)]7 T [)] l(b_a’)q(d_c)q
n!(np+1)» m! (mp+ 1)»
1 1
<@ =)+ -2 |- o™ -y
1
"t ™ f(a,c) |4 o™ t™ f(a,d) |4 o™t ™ £(b,c) |7 omt ™ f(b,d) |97 @
“orosm | T | amasm | "amasm | T | amesm ‘
4
for all (z,y) € la,b] x [c,d], where |9, 400 = Sl[lpb] lg(u)| and [|All. 400 =
ue|a,
sup |h(u)].

u€[c,d]
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Proof. Taking absolute value of (2.1), from Holder’s inequality, then we get

b

n—1m— 1 8k+lf x y — l(y) alf(t7y)
(4.8) Z Z , , Dk oyl /g(t)aiyldt
k=0 1=0 1=0 a
n—1 M ( ) d a f 4
B My (z) h(s) 2\ 8 (z,5) h(s f(t,s)dsdt
54 e fu

C

dsdt

8”+mft8
p

By similar methods in the proof of Theorem 5, we obtain

1
P

b d
(4.9) / / Pacr (017 Qo (g, 9)|P dsdt
||g||[a,b},oo ||h||[c,d]oo

n! (np + 1)% m! (mp + 1)%

X [(m —a)""t (b x)”pﬂ}

®=

(e @y

Sj anrtmr(t,s) |9 . . .
ince | “5;p,m | 18 a convex function on the co-ordinates on A, we have
gnrtm b—t t—a, d—s s—a \|!
4.10 b, d
(4.10) '8t’iasmf<b—aa+b—a d—cc+d—c>
b—td—s|0"f(a,c)|? b—ts—c|o"™f(a,d)|*
b—ad—c| O0Otrds™ b—ad—c| Otrds™
t—ad—s|O"T™f(bco)|? t—as—c|loT™f(b,d)|?
b—ad—c| Otrds™ b—ad—c| Otrds™
Using the inequality (4.10), it follows that
O™ (t, s) ’
4.11 d dt
(4-11) / / ‘ armosm |
< (b—a)i(d—c)
an+7n f(a,c) q 8"+""f(a,d) q 3n+7nf(b,c) q 8n+7nf(b,d) q %
dtn ds™ dtm Hs™ | “amosm | omosm

4

Substituting the inequalities (4.9) and (4.11) in (4.8), we deduce the inequality
(4.7). Hence, the proof is completed. [



22 SAMET ERDEN AND MEHMET ZEKI SARIKAYA

Remark 15. Under the same assumptions of Theorem 8 with n = m = 1, then the
following inequality holds:

b

(4.12) Mo(2) Mo(y) f (2, y) — Mo(y) / gt f(t,y)dt

b d

—Mo(a:)/dh(s) f(z,s d8+//g f(t,s)dsdt

C

1
S ||g||[a,b],oo ||h‘||[c,d]oo ( )q (d

1
)q
_ 1 1
1 1] » p+1 1] p»
y (z—a)’ + (b—2)"" (y—o’ " +(d—yr"
p+1 p+1
1
0% f(a) T [82f(ad)|? | |0%f o) [T | |82 |17 @
% ’ O0tos + Otds + Otds + o0tos ]
4

which was given by Erden and Sarikaya in [11] (in case of A =10).

Corollary 12. Let us substitute (x,y) = (a,c), (a,d), (b,c) and (b,d) in (4.12).
Subsequently, if we add the obtained results and use the triangle inequality for the
modulus, we get the inequality

b d
(4.13) Mo(x)Mo(y)f(a’C) *f(a.d) 1— fb) + f(b,d) + //g f(t,s)dsdt

b d
_;[Mmm/ganﬂt@+f@d ) dt + Moz /h Fla,s) + f(b, )] d ]

(b a)(d- o
4(p+ 1)%

1
fae) |1 | |82 f(a,d) |7 | |8%F(be) |1 | |82 (0, d) |77 7
% [ OtOs + OtOs + OtOs + OtOs ]
4

< HgH[a,b],olo”[c,d]oo

which is a weighted Hermite-Hadamard type inequality for double integrals.
Remark 16. If we take g(u) = h(u) =1 in (4.18), then we have

b d
f(a,c)—|—f(a,d)1—f(b70)+f(bad)+ _al — //f(t,s)dsdt

b d
5 15 [+ saata s 7 [ 1) + 50.504s

a

Q=

82 f(a,d) |?
Otds

82 f(bye) |
Otds

9 f (b,
Otds

q
+

<

Alp+1)»

82 f(a,c
(b—a)(d—rc) |:’ 8t(8s)
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which was deduced by Sarikaya et al. in [32].
Remark 17. If we take g(u) = h(u) =1 in (4.12), then we get

b

(4.14) (b—a)(d—¢) f(z.y) — (d— o) / F(ty)dt

d b d ’
—(b—a)/f(x,s)ds+//f(t,s)dsdt

< (b—a)7 (d—c)"
- 1 i
y R R et i B (R R C e N
p+1 p+1
1
[ (a0 |T | |22f@d) [T | |22fke) [T |22 f0d) [T
% otds Otds + Otds + Otos
4

which was given by Erden and Sarikaya in [13].

Remark 18. Taking x = ‘LTH’ and y = % in (4.14), we get

b
o) (G2 o) [ 7 S e

a

d b d
—(b—a)/f(a;b,s)ds+//f(t,s)dsdt

(b—a)’(d—c)®

2
4(p+1)r
D 1) |7 | |0 Fad) |7 | |82Fbe) |7, |0PF(bad) |7 T
% OtOs Otds + Otds + Otos
1

which was given by Latif and Dragomir in [22].

Similarly, the other reults related to Theorem 8 can be obtained as Corollary 10
and 11.

ntm g |4
Theorem 9. Suppose that all the assumptions of Lemma 1 hold. If ‘% is a

convez function on the co-ordinates on A, % + % =1 and q > 1, then the following
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inequality holds:

n—1m— 1 m—1 b
y) OFH f(z,y) M;(y) O f(t,y)
(4.15) Z Z /{:' l' dxky! Z Il /g(t)Tyldt
k=0 1=0 1=0 v
d d
/h d +// f(t, s)dsdt
h
< 1 : [a,b],ool | ||[c,d]oo1
[(b—a)(d—c)]sn! (n+1)7 m!(m+1)»
0" f(a,0) | o™+ f(a,d) |
X{ “igem | An@Cm) + | =5mm 2= An(@)Dm(y)
8n+mf(b7 C) q 8"+mf(b, d) q i
| " gmggm | Br@CnW) + | =g Bn(év)Dm(y)}
for all (z,y) € [a,b] X [e,d], where HQH[(L,,,LOO = supb lg(u)| and ||h||[c,d}OO =
ueE|a,
sup |h(u)|.
u€le,d]

Proof. We take absolute value of (2.1). Because of % + % =1, % + % can be written
instead of 1. Using Holder’s inequality, we find that

T My () Mily) 0 f(ay) M) [ ()
(4.16) kzo lzg k, z' Takoy] ; 0 a/g(t) oy

n—1 d d

B My () o f(x,s 5)ds
];7]“ c/h() d+//h f(t, s)dsdt
b d ;v

S (//|Pn1 (xvt)Hmel (y,S)det)
b d JR 7
x ( [ [1Ps @ 0l1@m 9] | Tt e dsdt) .

By simple calculations, we write
b d

(4.17) [ 1P @01 @ (3:5) s

||g||[a,b},oo ||h||[c,d]oo
(n+ 1! (m+1)!

x|o=a)" 4 @ =™ [@= )™ - o™
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By similar methods in the proof of Theorem 7, from (4.10), we obtain
(4.18)

b d
/ / Pacr (@,0)] Qo (5, 9)

an-l-mf(a7 C) q
otnds™

(1, 5)|

St s dsdt

an-l-mf(a7 d) q

An(x)Dm(y)

a,b Hh”[cd
(b—a)n! (d—c)m! {

8”+mf(b, C) q
otnosm

"t f(b,d) |
T ormosm Bn(x)Dm(y)}'

Substituting the inequalities (4.17) and (4.18) in (4.16), we easily deduce required
inequality (4.15) which completes the proof. O

+ ‘ B (x)Cp(y) +

Remark 19. In case (p,q) = (00, 1), if we take limit as p — oo in Theorem 9,

then the inequality (4.15) becomes the inequality (4.1). Thus, we obtain all of the
results which are similar to Theorem 7.

5. APPLICATIONS TO CUBATURE FORMULAE

We now deal with applications of the integral inequalities developed in the pre-
vious section, to obtain estimates of cubature formula which, it turns out have a
markedly smaller error than that which may be obtained by the classical results.
Thus the following applications in numerical integration is naturel to be considered.

Let I, ;a=20 <1 <..<xp1 <zy=band J,:c=yg <y < ... <yu—1 <
Yu = d be divisions of the intervals [a, b] and [c,d], &; € [z, 7i41] and 1; € [y, Yj41]
with (¢ =0,...,v—1; 7=0,...,u— 1). Consider the equivalent

m—1v—1p—1 Tit1 1
M) / 2

oyt

(5‘1)S(f7[VaJw€777) = dt

“M

=0 =0

<.

n—1lv—1p—1

SES e /h P SEs),
k=0 1=0 j=
n—1m—-1v
-2

M‘ D(e) MP (n;) 9L f(m,)
k=0 1=0 i=0 j=0

1! Oxkdy!

where M,gi)(gi) and Ml(j)(nj) are defined by

Tif1

MOE) = [ (=€) glu)du, k=012 .;

Zi

() e l
M (n;) = [ (ufnj) h(u)du, 1=0,1,2,..

Yi

Theorem 10. Let f : [a,b] X [¢,d]— R be a continuous on A such that gt:d S
exist on (a,b) x (¢,d) and assume that the functions g : [a,b] — [0,00) and h :
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[e,d] — [0,00) are integrable. If % € Lo (A), then we have the representation

// t S dsdt (f7Iy,Ju,f,77)+R(fa-[v,=];u€777)

where S (f,1,,J,,&,n) is defined as in (5.1) and the remainder term satisfies the
estimations:

(5:2) 1R/, Ins Jns €11
||g||[a oo

8n+mf [e,d]oo
otmosm ||, (n+1)! (m+1)!
v—1p—1
x>y [(le — &)+ (& - fci)nﬂ} [(ijrl - ﬁj)mﬂ + (n; — yj)mﬂ}
i=0 j=0

for all (&;,m;) € [zi, Tiv1] X [yj,yj11] with (i =0,...,v—1; j=0,...,u— 1), where

19l z; isa00 = sUP - Ag()ls Bl 40,00 = sUP - |A(u)] and
WE[T;,xiq1] €[y ,y;+1]
8"+"Lf an-l-an(t7 S)

< 0

Proof. Applying Theorem 4 on the interval [x;, ;1] % [y, yj41), ¢ =0,...,v —=1; j=0,..,u—1),
we obtain

sup

otnds™ ”oo N (t,8)€(a,b) X (c,d) otros™

n—1m-—1 M(i) ,M(j) ) §k+ o m—1 M(j) ‘ Tit1 5l ton,
ZZ k (51) l (77]) f(g n;)iz l '(773) /g(t) f( 77])

. dt
i I Dk dy! —~ Ay
n M(i) Yi+1 ak Tit1 Yj+1
-y ﬁ / h(s)%ds + / / h(s)g(t)f (¢, s)dsdt
k=0 . T Yj
< 8"+mf ||g||[$17$z+1 || H [yj,yj+1],00
- || otrds™ (n+1)! (m+1)!

X [($i+1 - fi)n—H + (fz - xi)m_l} {(yj-&-l - nj)mH + (77j - yj)m+l]

foralli=0,..,v—-1; 7=0,...,u— 1.
Summing over ¢ from 0 to v — 1 and over j from 0 to p — 1 using the generalized
triangle inequality we deduce the estimations (5.2). O

Remark 20. If we take g(u) = h(u) =1 and m =n =1 in Theorem 10, then we
recapture the cubature formula

b d

/ / F(ts)dsdt = S (£, I, Jun€0) + B (f. Ty JusE01)

a ¢
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where the remainder R (f,1,,J,,€,n) satisfies the estimation:
(5.3) |R(f, Iy Im, &, 1)

v— 1
1“ (Tis1 —2)° + (e - vit+ w1\
4 ! 2
© =0 —0
2 2
« [(Zﬁ-ﬁ-l; yz) + (77]‘ _ Y +2y]+1> ] }

which was given by Barnett and Dragomir in [2].

< J7l. %

Remark 21. if we consider the inequality (3.3), then we recapture the midpoint
cubature formula

b d
//f(t,s)dsdt — Sar (fi Lo, J) + Rt (fs 1o, J,)

where the remainder Rar(f, 1., J,,) satzsﬁes the estimation:

|RM(f7 I, Jm

< 16 H@tas

which was proved by Barnett and Dmgomzr in [2].

A similar process can be undertaken in producing composite rules if we use the
other results given in previous sections, but we omit the details.

6. SOME APPLICATIONS FOR THE MOMENTS

Distribution functions and density functions provide complete descriptions of the
distribution of probality for a given random variable. However, they do not allow
us to easily make comparisons between two different distributions. The set of mo-
ments that uniquely characterizes the distribution under reasonable conditions are
useful in making comparisons. Knowing the probability function, we can determine
moments if they exist. Applying the mathematical inequalities, some estimations
for the moments of random variables were recently studied (see, [3], [5], [18], [19],
20]).

Set X to denote a random variable whose probability density function is ¢ :
[a,b] — [0,00) on the interval of real numbers I (a,b € I, a < b) and Y to denote a
random variable whose probability density function is h : [¢,d] — R on the interval
of real numbers I (¢,d € I, ¢ < d). Denoted by M,(z) and M,(y) the r.th central
moment of the random variable X and Y, respectively, defined as

b
M. (z)=[(u—E(z))" g(u)du, r=0,1,2,..

a

and
d

M,(y)=[(u—E(y) h(u)du, r=0,1,2,..

where E(z) and E(y) are the mean of the random variables X and Y, respectively. It
may be noted that My(z) = Mo(y) = 1, My(z) = M1(y) = 0, Ma(z) = 0*(X) and
Ms(y) = 0?(Y) where 0?(X) and 0%(Y) are the variance of the random variables
X and Y, respectively.
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Now, we reconsider the identity (2.1) by changing conditions given in Lemma 1.
Herewith, we deduce an identity involving r.th moment.

Lemma 2. Let f: [a,b] x [¢,d] =t A C R?*> R be a continuous function such that
k+1

the partial derivatives %, k=0,1,2..,n—1,1=0,1,2,....m — 1 exists

and are continuous on A, and let X and Y be random variables whose p.d.f. are

g : [a,b] — [0,00) and h : [¢,d] — [0,00), respectively. Then, for all (x,y) €

[a,b] X [c,d], we have the identity

b d

n—+m
/ PnlxtQm1<ya)87f(t7S)

S dsdt

n—

b
1“121 y) O f(x,y) mz:l Mi(y / 3lf(t,y)dt
k:‘ l' Oxk oyl 1 oyt
k=0 1=0 1=0
d

b d
M (
_Z k /h agisds—i—//h f(t, s)dsdt
x

where n,m € N\ {0}, My(z) and M;(y) are the k'" moment, and P,_; (x,t) and
Qm—1(y,s) are defined as in Lemma 1.

Theorem 11. Suppose that all the assumptions of Lemma 2 hold. If gf+Tf
Lo (A), then we have the inequality
U M) Mify) 0 ) M) [ 0L
(6.1) Yy 92F 0y n ) IO
k=0 1=0 1=0 v
ok b d
(S)Md;sJr / / h(s)g(t) f(t, s)dsdt
8"+mf _a+b " d—c+ e d\™
= ||otrasm 2 2 V7 2
for all (z,y) € [a,b] x [c,d], where
an-{-mf ” (i)n+mf(t7 S)
= sup — <
‘ O"Is™ || o (ts)e(ab)x(ed) | OL"OS™
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Proof. By similar methods in the proof of Theorem 3, we obtain

winly y) O f(ay) M) [ ()
c2) |y Mo Ml DI / o) 5
k=0 =0 =0
d

—Z /d 8f“dJr//h F(t,s)dsdt

Hg;;;i“ [ LESOR (u)dU‘Fx/(u;!x)ng(u)dudt]

IA

We observe that

€T

/(x_u)ng(u)du+/b(u_x)ng(u)du

n!

|
2|
<
¥
IS
E’U
—~
8
I
£
—

b
g(u)du + sup (u—x)n/g(u)du]

s u€[x,b)
T b
= [(m —a)" /g(u)du +(b—x)" /g(u)du]

IN

max {(z —a)", fx"}/

b
Because g is a p.d.f., [ g(u)du = 1. Using the identity

max {X,Y} =

X+Y Y-X
2 2

we get

max {(z — )", (b — ) }/ d“-( ‘x_a;b’)n

Similarly, if we examine the other integral in (6.2), we obtain desired inequality
(6.1). Thus, the proof is completed. ([l
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Remark 22. With the assumptions of theorem 11, then we have the represantation
b

(6.3) fay) - / o) f(t,y)dt

a

d b

- [ He) s s+ [ /d g(O)h(s)f (¢, 5)dsdt

0% f b—a+x_a+b d—c+ _c+d
= oeos|  \ 2 2 2 YT 2 |)
Proof. If we take n = m =1 in (6.1), then we get the inequality (6.3). O

Similarly, using the other integrals in section 3 and section 4, we obtain some
results involving r.th central moment of the random variable X and Y.

Theorem 12. Let f : [a,b] x [c,d] =0 A C R*>— R be a continuous function such

k+1
that the partial derivatives %Tfa(:f), k=0,1,1=0,1,2 exists and are continuous

on A, and let X and Y be random variables whose p.d.f. are g : [a,b] — [0,00) and
h:le,d] — [0,00), respectively. Then we have

(6.4) fay) - / o) f(t,y)dt

b d
_ / h(s)f (z, 5)ds + / (0)h(s) £ (£, s)dsdt

o0

for all (z,y) € [a,b] X [c,d], where

H ot f B sup 0*f(t,s)
8t2832 00 (t,8)E(a,b)x(c,d) 6t2352

Proof. If we take n = m = 2 in (6.2), we obtain desired inequality (6.4). O

< 0
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