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POMPEIU TYPE INEQUALITIES USING CONFORMABLE
FRACTIONAL CALCULUS AND ITS APPLICATIONS

SAMET ERDEN AND MEHMET ZEKI SARIKAYA

ABSTRACT. We establish Pompeiu’s mean value theorem for a-fractional dif-
ferentiable mappings. Then, some Pompeiu type inequalities using conformable
fractional integrals are obtained. In addition, the weighted versions of this
Pompeiu type inequalities are presented. Finally, some applications of ob-
tained inequalities in numerical integration and for special means are given.

1. INTRODUCTION

In 1938, the classical integral inequality established by Ostrowski [13] as follows:

Theorem 1. Let f : [a,b]— R be a differentiable mapping on (a,b) whose derivative

/

[ (a,b)— R is bounded on (a,b), i.e., |f'|l., = sup |[f'(t)] < oo. Then, the
te(a,b)

inequality holds:

b
) s -y [ s <

1 (=50
4 (b—a)?

] (b= a)f'llo

for all © € [a,b]. The constant + is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory
of some special means; estimating error bounds for some special means, some mid-
point, trapezoid and Simpson rules and quadrature rules, etc. Hence inequality
(1.1) has attracted considerable attention and interest from mathematicans and
researchers.

In 1946, Pompeiu [15] derived a variant of Lagrange’s mean value theorem, now
known as Pompeiu’s mean value theorem.

Theorem 2. For every real valued function f differentiable on an interval [a,b]
not containing 0 and for all pairs 1 # x2 in [a,b], there exist a point £ between x4
and x9 such that

w1 f(w2) — 2 f(21)

T1 — T2

= f(&) = £1'(9)-

The following Pompeiu type inequality is proved by Dragomir in [6].
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Theorem 3. Let f : [a,b] — R be continuous on [a,b] and differentiable on (a,b)
with [a,b] not containing 0. Then for any x € [a,b], we have the inequality

b

a+b f(z) 1
R ACL

a

1 (z— 50

vl U)j)g] 1f=1f"l o -

b—a

||

where I(t) =t for all t € [a,b]. The constant ; is sharp in the sense that it cannot
be replaced by a smaller constant.

In recent years, many authors have studied the Pompeiu type integral inequal-
ities. For example, authors presented some Ostrowski type inequalities by using
mean value theorem in [4] and [16]. In [14], Pec¢ari¢ and Ungar proved an inequal-
ity of Ostrowski type for p-norm, generalizing a result of Dragomir [6]. Dragomir
provided some power Pompeiu’s type and exponential Pompeiu’s type inequalities
for complex-valued absolutely continuous functions in [8] and [9]. Also, Dragomir
gave generalizations of Pompeiu’s inequality and they are applied to obtain some
new Ostrowski type results in [7]. In [10], Erden and Sarikaya estblished general-
ized Pompeiu mean value theorem and Pompeiu type inequalities for local fractional
calculus. In [21], Sarikaya obtained some new Pompeiu type inequalities for twice
differentiable mappings. Researchers examined some new Ostrowski and Griiss type
inequalities via variant Pompeiu’ mean value theorem for two variable functions in
[18]-[20].

2. DEFINITIONS AND PROPERTIES OF CONFORMABLE FRACTIONAL DERIVATIVE
AND INTEGRAL

Recently, the authors introduced a new simple well-behaved definition of the
fractional derivative called the "conformable fractional derivative" depending just
on the basic limit definition of the derivative in [12]. Namely, for given a function
f :]0,00) — R the conformable fractional derivative of order 0 < & < 1 of f at
t > 0 was defined by

(2.1) De (f) (t) = lim
If f is a—differentiable in some (0,a), « >0, h%l+ F(@) (t) exist, then define
t—

(2.2) 7 (0) = Tim 7 (1),

Also, note that if f is differentiable, then

(2.3) Do (f) () =7 f" (1)
where

) — i LD 1O

e—0 €
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We can write f(® () for D, (f) (t) to denote the conformable fractional derivatives
of f of order a. In addition, if the conformable fractional derivative of f of order
« exists, then we simply say f is a—differentiable.

In order to prove main result, we use the mean value theorem for conformable
fractional derivatives. This theorem is established by Iyiola and Nwaeze [11] as the
following.

Theorem 4 (Mean value theorem for conformable fractional differentiable func-
tions). Let o € (0,1] and f : [a,b] — R be a continuous on [a,b] and an a-fractional
differentiable mapping on (a,b) with 0 < a < b. Then, there exists ¢ € (a,b), such

that )
Da () (e = {P =S,

The following definitions and theorems related to conformable fractional deriv-
ative and integral were referred in [1]-[3], [5], [11] amd [12].

Theorem 5. Let o € (0,1] and f, g be a—differentiable at a point t > 0. Then
i. Do (af +bg) = aDy (f) + 0D, (g), for all a,b € R,
ii. Do (A) = 0, for all constant functions f (t) = A,
iti- Do (fg) = fDa (9) + 9Da (f)
iv. D. (f> _ fDa(g9) —9Da(f)

g 9>

Definition 1 (Conformable fractional integral). Let o € (0,1] and 0 < a < b. A
function f : [a,b] — R is a-fractional integrable on [a,b] if the integral

(2.4) /abf (x) dox := /abf (z) z° da

exists and is finite.

Remark 1.
[@)y,
€T —

t
ENO=1 ) =
where the integral is the usual Riemann improper integral, and o € (0,1].

Theorem 6. Let f : (a,b) — R be differentiable and 0 < o < 1. Then, for all
t > a we have

(2.5) IGDof () = ()= f(a).

Theorem 7. (Integration by parts) Let f,g: [a,b] — R be two functions such
that fg is differentiable. Then

b b
(2.6) / £ (2) D2 (9) (2) doz = fgl! — / 0 (2) D (£) (x) duz.

Theorem 8. Assume that f : [a,00) — R such that f("™)(t) is continuous and
«a € (n,n+ 1]. Then, for all t > a we have

DRISf () = f(t).
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Theorem 9. Let a € (0,1] and f : [a,b] — R be a continuous on [a,b] with
0<a<b. Then,

15 (f) (@) < Ig | f] (@)
In[5], Anderson prove Ostrowski’s a-fractional inequality using a Motgomery

identity as follows:

Theorem 10. Let a,b,s,t € R with 0 < a < b, and [ : [a,b]— R be a-fractional
differentiable for o € (0,1]. Then,

IN

f(t) — o /f(t)dat QOé(biw_aa) |:(t0t _ aa)2 + (ba o toc)

where
M = sup |Dyf(t)| < 0.
te(a,b)

In this study, Pompeiu’s mean value theorem for conformable fractional deriv-
atives is obtained. Then, we present pompeiu’s type inequalities involving con-
formable fractional integrals with applications Ostrowski’s inequalities. In addi-
tion, some applications of obtained inequalities in numerical integration are given.
Finally, some special means for conformable calculus are introduced and some ap-
plications of given inequalities for these special means are deduced.

3. MAIN RESULTS

We prove Pompeiu’s mean value theorem for conformable fractional differentiable
functions.

Theorem 11. Let o € (0,1] and f : [a,b] CR — R be an a-fractional differentiable
mapping on (a,b), with 0 < a < b and for all pairs x1 # x5 in [a,b], there exist a
point & in (x1,x2) such that the following equality holds:

o9 f(w2) — 25 f(71)

(31) e = af(§) - €7 Da(NO)
Proof. Define function F' on [%, %] by
ol
(3.2) F)=1f(;)
Using the third item of Theorem 5, we get
1 1 1
(33) DalF) (1) = af () = 72 Dal 1))

In addition, applying the mean value theorem given for conformable fractional
differentiable functions to F' on the interval [z,y] C [%, %] , we obtain
F(x) - F(y)

(3.4) = = Da(F) (¢)

for all c € (z,y).
Now, using (3.2) and (3.3) on (3.4), we obtain

z*f(3) =y f(5) 1 1 1
o 5 =af(2) = 55 Dalf)()-
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Let wp = L, z1 = % and ¢ = L. Then, since ¢ € (z,%), we have

g
.’E1<f<$2

and we write

29 f(z2) — 25 f(21)

2
zF a5 :af(é.)*g aDa(f)(g)
which completes the proof. ([l

Now, we give an Ostrowski type ineqaulity using Pompeiu’s mean value theorem
given for conformable fractional differentiable functions.

Theorem 12. Let a € (0,1] and f : [a,b] — R be a continuous on [a,b] and an a-
fractional differentiable mapping on (a,b) with 0 < a < b. Then, for any x € [a,b],
we have the inequality

a® +b* f(x) 1
(3.5) SrIE / F(t)dat
(ba _ aa) 1 o — aa—z&-bo‘ 2
< Tame 2T <M> 1f = wDa ()l
where u(t) = £t € [a,b], and ||f — uDa(f)||, = S 1£(€) —uDa(f)(€)] <
0. '

Proof. Applying Pompeiu’s mean value theorem for conformable fractional differ-
entiable functions, for any x,t € [a,b], there is £ beyween x and ¢ such that

2—a
B @) -0 = |16 - S D] ¢ o).
Because of the equality (3.6) and the inequality
2—a 2—«
FO-5pane] < sw [0~ 0a00e)
£€(asb) o
= If —uDa(f)ll

we have the inequality

(3.7) 1 f (@) — 2z f()] < If — uDa(f)ll [t — 2.
Integrating both sides of (3.7) with respect to ¢ from a to b for conformable fractional
integrals, we get
b b b
68)  |f@) [tdat~ " [ fOdat] < I~ uDa (Dl [ 117 - 2] dat
@ b
— I = uDa Dl | [ @ =t dat 4 [ (¢ 2 dat
x

a
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Using the definition 1 and the inequality (3.8), we obtain

b
) - ;va/f(t)dat

a

(z™ — ao‘)2 + (b — :E“)T .

b2a 2c

(3.9)

< |f = uDa(f)|l o [ 20

If we divide the inequality (3.9) with z® (b® — a®), we easily deduce required result
(3.5). O

Corollary 1. Under the same assumptions of Theorem 12 with z = # Then,

we have
1 b = L
aOé+(l o
af(( 2 )>_baaa/f(t>dat

a

(b — o)

S (@) If —uDo(f)| -

We consider now the weighted case of the inequality (3.5).

Theorem 13. Let a € (0,1] and f : [a,b] — R be a continuous on [a,b] and an
a-fractional differentiable mapping on (a,b), with 0 < a < b. If w : [a,b] — R is
nonnegative and a-fractional integrable on [a,b], then the following inequality given
for conformable integrals holds:

w()é

b b
(3.10) /() / tw(t)dat — / FOw(t)dat

b

< 17 = uDa(P)le | [wldat ~ [wit)dat

b T
+ L / 10 () dot — / 1w (t)dt
for each x € la,b] and where u(t) = tta, t € [a,b], and |[f —uDu(f)|l =
S 1£() = uDa(f) ()] < oc.
S€la,

Proof. Multiplying both sides of the inequality (3.7) with w(¢) and then integrating
both sides of the result with respect to ¢ from a to b for conformable fractional
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integrals, we have

b b
f(x)/taw(t)dat - a:a/f(t)w(t)dat
b

< = wDaf)l [uwlt) e — 2 dut
T b
= 1 = uDala” | [utidat = [w(trdat
b T
7 = uDalPll | [trwtat ~ [w)dat
T a
from where we obtain required inequality (3.10). O

We deduce an Ostrowski type ineqaulity using the identity (3.1) in the following
theorem.

Theorem 14. Let o € (0,1] and f : [a,b] — R be an a-fractional differentiable
mapping on (a,b) with 0 < a < b. Then, for any « € [a,b], we have the inequality

b

< 2 1 i aa;ba - IIf Da(f)ll
n + Ul o
a(b* — a®) Vacbe x®

where u(t) = £, t € [a,0], and ||f — uDa(f)ll.. = bl (&) — uDa(f)(6)] <

00.
Proof. If we divide both sides of (3.6) with t*z®, we obtain the inequality
flx) [ 11

o o P

(3.12)

< |If = uDa(f)llo

for any ¢,z € [a,b].
Integrating over ¢ € [a,b] for conformable fractional integrals, we get

(3.13) i il bft(j)dat
/ 1 1
< ||f—uDa<f>|ooa/‘xa—m dot.
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‘We observe that

b b
1 1 1 1 1 1
3.14 — = dot = — — — | dut — — — | dut
10 [l [ (=) [ (o)
a a a
rz x%—a® b*—2z“ b
= In—— + —In—
a axr® ax® x

for any x € [a,b]. If we sabstitute (3.14) in (3.13), then we deduce desired result
(3.11). O

Corollary 2. Under the same assumptions of Theorem 14 with z® = %. Then,
we have

tOé

f((a"‘—é—b"‘)i) ) b
ft)
o,

a° 5o
a

2

<
- ad®—a"

oo *

) <ln «“ ; A \/a“ba> If — uDa(f)|

We consider now the weighted integral case of the inequality (3.11).

Theorem 15. Let « € (0,1] and f : [a,b] — R be a continuous on [a,b] and an
a-fractional differentiable mapping on (a,b), with 0 < a < b. If w : [a,b] — R is
nonnegative and a-fractional integrable on [a, b], then the following inequality given
for conformable integrals holds:

b

b
Lﬂj)/w(t)dat_ Mw(t)dat

A te
T b
< - uDalle | [“aut— [2
a x
1 b T
+x—a /w(t)datf/w(t)dat
for each x € [a,b] and where u(t) = tQ;a, t € [a,0] and [|f —uDa(f)lls =

sup |f(§) —uDa(f) ()| < oo

§€(abd)
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Proof. Using the inequality (3.12), we have

b b
fé:)/w(t)dat - /%w(t)dat
b

fl@)  f@)
/ el w(t)dat

a

b
< I -uball [

a

By simple calculations, we easily deduced required inequality, and thus the theorem
is proved. (I

4. APPLICATIONS TO NUMERICAL INTEGRATION

We now deal with applications of the integral inequalities involving conformable
fractional integral, to obtain estimates of composite quadrature rules which, it turns
out have a markedly smaller error than that which may be obtained by the classical
results.

Consider the partition of the inteval [a,b], 0 < a < b, given by

I,;a=2xp<t1<...<xp_1<x,=0b

and &, € [z;,x4+1], 7 =0, ..., n — 1 a sequance of intermediate points. Define the
quadrature

1 - f(g) @ [e%
(4.1) S(f.1,,€) == %0 - ff‘l ($i+1 +z; ) h;

I
=)

where h; = (2, —2§),i=0, ..., n— 1.
Theorem 16. Let « € (0,1] and f : [a,b] — R be a continuous on [a,b] and an

a-fractional differentiable mapping on (a,b) with 0 < a < b. Then we have the
representation

b
/ F(O)dat = S(f, 10,€) + R(f. L, €)

where S(f, I,,€) is as defined in (4.1) and the remainder satisfies the astimation:

(4.2) [R(f, In, )]

n—1 g+
1 h? |1 & — 5
< Z||f —uD, E AN el 22




10 SAMET ERDEN AND MEHMET ZEKI SARIKAYA

Proof. Applying Theorem 12 on the interval [z;, ;1] for the intermadiate points
&;, we obtain

Tit1

1 f(f) a a)
%ng (%‘4—1 +$i) hi — / f(t)dat
2
1h2 |1 (g — Bt
< S S B —uD,,
< oi 4+( - I = uDal Dl
for all i = 0,...,n — 1. Summing over ¢ from 0 to n — 1 and using the triangle
inequality we obtain the estimation (4.2). O

Now, define the mid-point rule as the following:

Zf((x + a2, )) n

where h; = (23, —x3),i=0, ..., n— L.
Corollary 3. Under the same assumptions of Theorem 16 with £ = AT
Then, we have

/f M(f, 1) + R(f.T,).

where the remainder satzsﬁes the astimation:

n—1 2
h‘i

R < g |17~ uDa(ll0

T TN«
i=0 (x? + x?+1)
5. APPLICATIONS TO SOME SPECIAL MEANS

We define conformable arithmatic, geometric and p-logarithmic means, respec-
tively:
a® + b
2 )
Gu(a,b) = Va*be,
3 po(pt1) _ qalptl) 17
L (a,b) = , p e R\{-1,0}.
100 =[Gy PERELO

In order to get the results in this section, we will use the following inequalities
obtained in Corollary 1 and Corollary 2.
Consider the mapping f : (0,00) — R, f(t) = t*?, p € R\{—1,0}. Then,

0 < a < b, we have
a® + b* a
f(( ! )>=[Aa(a,b>]”,
b

t)dat = [L3(a,b)]”

Aq(a,b) =
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and

b
1 t _
o 190 )

a

Also, if we use the identity (2.3), then we obtain

If —uDa(f)lls = d(a,b)
(1 —pa2*2a) a®?, if p € (—o0,0)\{-1}

|1 —pb?=2| 6P, if pe (0,1)U(1,00).
Finally, utilizing the corollary 1 and corollary 2, we deduce the inequalities
1 p o p

~ [Aa(a.0))” — [Lg(a,b)

(b* — a”)
< N 7T
- 404Aa(a,b)5(a’b)
and
1 _
~[Aala b)) = (L5 (ab)]"
6(a,b) | [Aala,b)]?
(b —a®) Gaola,b) |’
respectively.
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