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Abstract. We establish Pompeiu�s mean value theorem for �-fractional dif-
ferentiable mappings. Then, some Pompeiu type inequalities using conformable
fractional integrals are obtained. In addition, the weighted versions of this
Pompeiu type inequalities are presented. Finally, some applications of ob-
tained inequalities in numerical integration and for special means are given.

1. Introduction

In 1938, the classical integral inequality established by Ostrowski [13] as follows:

Theorem 1. Let f : [a; b]! R be a di¤erentiable mapping on (a; b) whose derivative
f
0
: (a; b)! R is bounded on (a; b); i.e., kf 0k1 = sup

t2(a;b)
jf 0(t)j < 1: Then, the

inequality holds:

(1.1)

������f(x)� 1

b� a

bZ
a

f(t)dt

������ �
"
1

4
+
(x� a+b

2 )
2

(b� a)2

#
(b� a) kf 0k1

for all x 2 [a; b]: The constant 14 is the best possible.

Inequality (1.1) has wide applications in numerical analysis and in the theory
of some special means; estimating error bounds for some special means, some mid-
point, trapezoid and Simpson rules and quadrature rules, etc. Hence inequality
(1.1) has attracted considerable attention and interest from mathematicans and
researchers.
In 1946, Pompeiu [15] derived a variant of Lagrange�s mean value theorem, now

known as Pompeiu�s mean value theorem.

Theorem 2. For every real valued function f di¤erentiable on an interval [a; b]
not containing 0 and for all pairs x1 6= x2 in [a; b], there exist a point � between x1
and x2 such that

x1f(x2)� x2f(x1)
x1 � x2

= f(�)� �f 0(�):

The following Pompeiu type inequality is proved by Dragomir in [6].

2000 Mathematics Subject Classi�cation. 26D10, 26D15, 26A33.
Key words and phrases. Pompeiu�s mean value theorem, conformable fractional integral, frac-

tal space, numerical integration, special means.

1

e5011831
Typewritten Text
Received 31/05/17

e5011831
Typewritten Text
RGMIA Res. Rep. Coll. 20 (2017), Art. 63, 12 pp



2 SAMET ERDEN AND MEHMET ZEKI SARIKAYA

Theorem 3. Let f : [a; b] ! R be continuous on [a; b] and di¤erentiable on (a; b)
with [a; b] not containing 0: Then for any x 2 [a; b] ; we have the inequality������a+ b2 f(x)

x
+

1

b� a

bZ
a

f(t)dt

������
� b� a

jxj

"
1

4
+
(x� a+b

2 )
2

(b� a)2

#
kf � lf 0k1 :

where l(t) = t for all t 2 [a; b] : The constant 14 is sharp in the sense that it cannot
be replaced by a smaller constant.

In recent years, many authors have studied the Pompeiu type integral inequal-
ities. For example, authors presented some Ostrowski type inequalities by using
mean value theorem in [4] and [16]. In [14], Peµcaríc and Ungar proved an inequal-
ity of Ostrowski type for p-norm, generalizing a result of Dragomir [6]. Dragomir
provided some power Pompeiu�s type and exponential Pompeiu�s type inequalities
for complex-valued absolutely continuous functions in [8] and [9]. Also, Dragomir
gave generalizations of Pompeiu�s inequality and they are applied to obtain some
new Ostrowski type results in [7]. In [10], Erden and Sarikaya estblished general-
ized Pompeiu mean value theorem and Pompeiu type inequalities for local fractional
calculus. In [21], Sarikaya obtained some new Pompeiu type inequalities for twice
di¤erentiable mappings. Researchers examined some new Ostrowski and Grüss type
inequalities via variant Pompeiu�mean value theorem for two variable functions in
[18]-[20].

2. Definitions and properties of conformable fractional derivative
and integral

Recently, the authors introduced a new simple well-behaved de�nition of the
fractional derivative called the "conformable fractional derivative" depending just
on the basic limit de�nition of the derivative in [12]. Namely, for given a function
f : [0;1) ! R the conformable fractional derivative of order 0 < � � 1 of f at
t > 0 was de�ned by

(2.1) D� (f) (t) = lim
�!0

f
�
t+ �t1��

�
� f (t)

�

If f is ��di¤erentiable in some (0; a) ; � > 0; lim
t!0+

f (�) (t) exist, then de�ne

(2.2) f (�) (0) = lim
t!0+

f (�) (t) :

Also, note that if f is di¤erentiable, then

(2.3) D� (f) (t) = t
1��f 0 (t)

where

f 0 (t) = lim
�!0

f (t+ �)� f (t)
�

:
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We can write f (�) (t) for D� (f) (t) to denote the conformable fractional derivatives
of f of order �. In addition, if the conformable fractional derivative of f of order
� exists, then we simply say f is ��di¤erentiable.
In order to prove main result, we use the mean value theorem for conformable

fractional derivatives. This theorem is established by Iyiola and Nwaeze [11] as the
following.

Theorem 4 (Mean value theorem for conformable fractional di¤erentiable func-
tions). Let � 2 (0; 1] and f : [a; b]! R be a continuous on [a; b] and an �-fractional
di¤erentiable mapping on (a; b) with 0 � a < b: Then, there exists c 2 (a; b), such
that

D� (f) (c) =
f(b)� f(a)
b�

� �
a�

�

:

The following de�nitions and theorems related to conformable fractional deriv-
ative and integral were referred in [1]-[3], [5], [11] amd [12].

Theorem 5. Let � 2 (0; 1] and f; g be ��di¤erentiable at a point t > 0. Then

i: D� (af + bg) = aD� (f) + bD� (g) ; for all a; b 2 R;

ii: D� (�) = 0; for all constant functions f (t) = �;

iii: D� (fg) = fD� (g) + gD� (f) ;

iv: D�

�
f

g

�
=
fD� (g)� gD� (f)

g2
:

De�nition 1 (Conformable fractional integral). Let � 2 (0; 1] and 0 � a < b: A
function f : [a; b]! R is �-fractional integrable on [a; b] if the integral

(2.4)
Z b

a

f (x) d�x :=

Z b

a

f (x)x��1dx

exists and is �nite.

Remark 1.

Ia� (f) (t) = I
a
1

�
t��1f

�
=

Z t

a

f (x)

x1��
dx;

where the integral is the usual Riemann improper integral, and � 2 (0; 1].

Theorem 6. Let f : (a; b) ! R be di¤erentiable and 0 < � � 1. Then, for all
t > a we have

(2.5) Ia�D
a
�f (t) = f (t)� f (a) :

Theorem 7. (Integration by parts) Let f; g : [a; b] ! R be two functions such
that fg is di¤erentiable. Then

(2.6)
Z b

a

f (x)Da
� (g) (x) d�x = fgjba �

Z b

a

g (x)Da
� (f) (x) d�x:

Theorem 8. Assume that f : [a;1) ! R such that f (n)(t) is continuous and
� 2 (n; n+ 1]: Then, for all t > a we have

Da
�I

a
�f (t) = f (t) :
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Theorem 9. Let � 2 (0; 1] and f : [a; b] ! R be a continuous on [a; b] with
0 � a < b: Then,

jIa� (f) (x)j � Ia� jf j (x) :

In[5], Anderson prove Ostrowski�s �-fractional inequality using a Motgomery
identity as follows:

Theorem 10. Let a; b; s; t 2 R with 0 � a < b; and f : [a; b]! R be �-fractional
di¤erentiable for � 2 (0; 1]: Then,������f(t)� �

b� � a�

bZ
a

f(t)d�t

������ � M

2� (b� � a�)

h
(t� � a�)2 + (b� � t�)

i
where

M = sup
t2(a;b)

jD�f(t)j <1:

In this study, Pompeiu�s mean value theorem for conformable fractional deriv-
atives is obtained. Then, we present pompeiu�s type inequalities involving con-
formable fractional integrals with applications Ostrowski�s inequalities. In addi-
tion, some applications of obtained inequalities in numerical integration are given.
Finally, some special means for conformable calculus are introduced and some ap-
plications of given inequalities for these special means are deduced.

3. Main Results

We prove Pompeiu�s mean value theorem for conformable fractional di¤erentiable
functions.

Theorem 11. Let � 2 (0; 1] and f : [a; b] � R! R be an �-fractional di¤erentiable
mapping on (a; b), with 0 < a < b and for all pairs x1 6= x2 in [a; b], there exist a
point � in (x1; x2) such that the following equality holds:

(3.1)
x�1 f(x2)� x�2 f(x1)

x�1
� � x�2

�

= �f(�)� �2��D�(f)(�):

Proof. De�ne function F on
�
1
b ;

1
a

�
by

(3.2) F (t) = t�f(
1

t
):

Using the third item of Theorem 5, we get

(3.3) D�(F ) (t) = �f(
1

t
)� 1

t2��
D�(f)(

1

t
):

In addition, applying the mean value theorem given for conformable fractional
di¤erentiable functions to F on the interval [x; y] �

�
1
b ;

1
a

�
; we obtain

(3.4)
F (x)� F (y)
x�

� � y�

�

= D�(F ) (c)

for all c 2 (x; y) :
Now, using (3.2) and (3.3) on (3.4), we obtain

x�f( 1x )� y
�f( 1y )

x�

� � y�

�

= �f(
1

c
)� 1

c2��
D�(f)(

1

c
):
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Let x2 = 1
x ; x1 =

1
y and � =

1
c : Then, since c 2 (x; y) ; we have

x1 < � < x2

and we write
x�1 f(x2)� x�2 f(x1)

x�1
� � x�2

�

= �f(�)� �2��D�(f)(�)

which completes the proof. �

Now, we give an Ostrowski type ineqaulity using Pompeiu�s mean value theorem
given for conformable fractional di¤erentiable functions.

Theorem 12. Let � 2 (0; 1] and f : [a; b]! R be a continuous on [a; b] and an �-
fractional di¤erentiable mapping on (a; b) with 0 < a < b: Then, for any x 2 [a; b] ;
we have the inequality������a

� + b�

2�

f(x)

x�
� 1

b� � a�

bZ
a

f(t)d�t

������(3.5)

� (b� � a�)
�x�

241
4
+

 
x� � a�+b�

2

b� � a�

!235 kf � uD�(f)k1
where u(t) = t2��

� , t 2 [a; b] ; and kf � uD�(f)k1 = sup
�2(a;b)

jf(�)� uD�(f)(�)j <
1:

Proof. Applying Pompeiu�s mean value theorem for conformable fractional di¤er-
entiable functions, for any x; t 2 [a; b] ; there is � beyween x and t such that

(3.6) t�f(x)� x�f(t) =
�
f(�)� �

2��

�
D�(f)(�)

�
(t� � x�) :

Because of the equality (3.6) and the inequality����f(�)� �2��� D�(f)(�)

���� � sup
�2(a;b)

����f(�)� �2��� D�(f)(�)

����
= kf � uD�(f)k1 ;

we have the inequality

(3.7) jt�f(x)� x�f(t)j � kf � uD�(f)k1 jt
� � x�j :

Integrating both sides of (3.7) with respect to t from a to b for conformable fractional
integrals, we get������f(x)

bZ
a

t�d�t� x�
bZ
a

f(t)d�t

������ � kf � uD� (f)k1
bZ
a

jt� � x�j d�t(3.8)

= kf � uD� (f)k1

0@ xZ
a

(x� � t�) d�t+
bZ
x

(t� � x�) d�t

1A :
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Using the de�nition 1 and the inequality (3.8), we obtain

������b
2� � a2�
2�

f(x)� x�
bZ
a

f(t)d�t

������(3.9)

� kf � uD�(f)k1

"
(x� � a�)2 + (b� � x�)2

2�

#
:

If we divide the inequality (3.9) with x� (b� � a�), we easily deduce required result
(3.5). �

Corollary 1. Under the same assumptions of Theorem 12 with x� = a�+b�

2 : Then,
we have ������ 1�f

 �
a� + b�

2

� 1
�

!
� 1

b� � a�

bZ
a

f(t)d�t

������
� (b� � a�)

2� (a� + b�)
kf � uD�(f)k1 :

We consider now the weighted case of the inequality (3.5).

Theorem 13. Let � 2 (0; 1] and f : [a; b] ! R be a continuous on [a; b] and an
�-fractional di¤erentiable mapping on (a; b), with 0 < a < b: If w : [a; b] ! R is
nonnegative and �-fractional integrable on [a; b], then the following inequality given
for conformable integrals holds:

������f(x)x�

bZ
a

t�w(t)d�t�
bZ
a

f(t)w(t)d�t

������(3.10)

� kf � uD�(f)k1

24 xZ
a

w(t)d�t�
bZ
x

w(t)d�t

+
1

x�

0@ bZ
x

t�w(t)d�t�
xZ
a

t�w(t)d�t

1A35
for each x 2 [a; b] and where u(t) = t2��

� , t 2 [a; b] ; and kf � uD�(f)k1 =
sup

�2(a;b)
jf(�)� uD�(f)(�)j <1:

Proof. Multiplying both sides of the inequality (3.7) with w(t) and then integrating
both sides of the result with respect to t from a to b for conformable fractional
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integrals, we have ������f(x)
bZ
a

t�w(t)d�t� x�
bZ
a

f(t)w(t)d�t

������
� kf � uD�(f)k1

bZ
a

w(t) jt� � x�j d�t

= kf � uD�(f)k1 x
�

0@ xZ
a

w(t)d�t�
bZ
x

w(t)d�t

1A

+ kf � uD�(f)k1

0@ bZ
x

t�w(t)d�t�
xZ
a

t�w(t)d�t

1A
from where we obtain required inequality (3.10). �

We deduce an Ostrowski type ineqaulity using the identity (3.1) in the following
theorem.

Theorem 14. Let � 2 (0; 1] and f : [a; b] ! R be an �-fractional di¤erentiable
mapping on (a; b) with 0 < a < b: Then, for any x 2 [a; b] ; we have the inequality������f(x)�x�

� 1

b� � a�

bZ
a

f(t)

t�
d�t

������(3.11)

� 2

� (b� � a�)

 
ln

x�p
a�b�

+
a�+b�

2 � x�

x�

!
kf � uD�(f)k1

where u(t) = t2��

� , t 2 [a; b] ; and kf � uD�(f)k1 = sup
�2(a;b)

jf(�)� uD�(f)(�)j <
1:

Proof. If we divide both sides of (3.6) with t�x�, we obtain the inequality

(3.12)

����f(x)x�
� f(t)

t�

���� � kf � uD�(f)k1 ���� 1x� � 1

t�

����
for any t; x 2 [a; b] :
Integrating over t 2 [a; b] for conformable fractional integrals, we get������f(x)x�

b� � a�
�

�
bZ
a

f(t)

t�
d�t

������(3.13)

�
bZ
a

����f(x)x�
� f(t)

t�

���� d�t
� kf � uD�(f)k1

bZ
a

���� 1x� � 1

t�

���� d�t:
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We observe that

bZ
a

���� 1x� � 1

t�

���� d�t =

bZ
a

�
1

t�
� 1

x�

�
d�t+

bZ
a

�
1

x�
� 1

t�

�
d�t(3.14)

= ln
x

a
� x

� � a�
�x�

+
b� � x�
�x�

� ln b
x

=
2

�

 
ln

x�p
a�b�

+
a�+b�

2 � x�

x�

!

for any x 2 [a; b] : If we sabstitute (3.14) in (3.13), then we deduce desired result
(3.11). �

Corollary 2. Under the same assumptions of Theorem 14 with x� = a�+b�

2 : Then,
we have ��������

f

��
a�+b�

2

� 1
�

�
�a

�+b�

2

� 1

b� � a�

bZ
a

f(t)

t�
d�t

��������
� 2

� (b� � a�)

�
ln
a� + b�

2
� ln

p
a�b�

�
kf � uD�(f)k1 :

We consider now the weighted integral case of the inequality (3.11).

Theorem 15. Let � 2 (0; 1] and f : [a; b] ! R be a continuous on [a; b] and an
�-fractional di¤erentiable mapping on (a; b), with 0 < a < b: If w : [a; b] ! R is
nonnegative and �-fractional integrable on [a; b], then the following inequality given
for conformable integrals holds:

������f(x)x�

bZ
a

w(t)d�t�
bZ
a

f(t)

t�
w(t)d�t

������
� kf � uD�(f)k1

24 xZ
a

w(t)

t�
d�t�

bZ
x

w(t)

t�
d�t

+
1

x�

0@ bZ
x

w(t)d�t�
xZ
a

w(t)d�t

1A35
for each x 2 [a; b] and where u(t) = t2��

� , t 2 [a; b] and kf � uD�(f)k1 =
sup

�2(a;b)
jf(�)� uD�(f)(�)j <1:
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Proof. Using the inequality (3.12), we have������f(x)x�

bZ
a

w(t)d�t�
bZ
a

f(t)

t�
w(t)d�t

������
bZ
a

����f(x)x�
� f(t)

t�

����w(t)d�t
� kf � uD�(f)k1

bZ
a

���� 1x� � 1

t�

����w(t)d�t:
By simple calculations, we easily deduced required inequality, and thus the theorem
is proved. �

4. Applications to Numerical Integration

We now deal with applications of the integral inequalities involving conformable
fractional integral, to obtain estimates of composite quadrature rules which, it turns
out have a markedly smaller error than that which may be obtained by the classical
results.
Consider the partition of the inteval [a; b] ; 0 < a < b; given by

In : a = x0 < x1 < ::: < xn�1 < xn = b

and �i 2 [xi; xi+1] ; i = 0; :::; n � 1 a sequance of intermediate points. De�ne the
quadrature

(4.1) S(f; In; �) :=
1

2�

n�1X
i=0

f (�i)

��i

�
x�i+1 + x

�
i

�
hi

where hi = (x�i+1 � x�i ); i = 0; :::; n� 1:

Theorem 16. Let � 2 (0; 1] and f : [a; b] ! R be a continuous on [a; b] and an
�-fractional di¤erentiable mapping on (a; b) with 0 < a < b: Then we have the
representation

bZ
a

f(t)d�t = S(f; In; �) +R(f; In; �)

where S(f; In; �) is as de�ned in (4.1) and the remainder satis�es the astimation:

jR(f; In; �)j(4.2)

� 1

�
kf � uD�(f)k1

n�1X
i=0

h2i
��i

241
4
+

 
��i �

x�i +x
�
i+1

2

hi

!235 :
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Proof. Applying Theorem 12 on the interval [xi; xi+1] for the intermadiate points
�i; we obtain ������ 12� f (�i)��i

�
x�i+1 + x

�
i

��
hi �

xi+1Z
xi

f(t)d�t

������
� 1

�

h2i
��i

241
4
+

 
��i �

x�i +x
�
i+1

2

hi

!235 kf � uD�(f)k1
for all i = 0; :::; n � 1. Summing over i from 0 to n � 1 and using the triangle
inequality we obtain the estimation (4.2). �

Now, de�ne the mid-point rule as the following:

M(f; In) :=
1

�

n�1X
i=0

f

 �
x�i + x

�
i+1

2

� 1
�

!
hi

where hi = (x�i+1 � x�i ); i = 0; :::; n� 1:

Corollary 3. Under the same assumptions of Theorem 16 with ��i =
x�i +x

�
i+1

2 :
Then, we have

bZ
a

f(t)d�t =M(f; In) +R(f; In);

where the remainder satis�es the astimation:

jR(f; In)j �
1

2�
kf � uD�(f)k1

n�1X
i=0

h2i�
x�i + x

�
i+1

�� :
5. Applications to Some Special Means

We de�ne conformable arithmatic, geometric and p-logarithmic means, respec-
tively:

A�(a; b) =
a� + b�

2
;

G�(a; b) =
p
a�b�;

L�p (a; b) =

�
b�(p+1) � a�(p+1)
� (p+ 1) (b� � a�)

� 1
p

; p 2 Rn f�1; 0g :

In order to get the results in this section, we will use the following inequalities
obtained in Corollary 1 and Corollary 2.
Consider the mapping f : (0;1) ! R; f(t) = t�p; p 2 Rn f�1; 0g : Then,

0 < a < b; we have

f

 �
a� + b�

2

� 1
�

!
= [A�(a; b)]

p
;

1

b� � a�

bZ
a

f(t)d�t =
�
L�p (a; b)

�p
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and

1

b� � a�

bZ
a

f(t)

t�
d�t =

�
L�p�1(a; b)

�p�1
:

Also, if we use the identity (2.3), then we obtain

kf � uD�(f)k1 = �(a; b)

=

8<:
�
1� pa2�2�

�
a�p; if p 2 (�1; 0) n f�1g��1� pb2�2��� b�p; if p 2 (0; 1) [ (1;1) :

Finally, utilizing the corollary 1 and corollary 2, we deduce the inequalities���� 1� [A�(a; b)]p � �L�p (a; b)�p
����

� (b� � a�)
4�A�(a; b)

�(a; b)

and ���� 1� [A�(a; b)]p�1 � �L�p�1(a; b)�p�1
����

� �(a; b)

� (b� � a�) ln
�
A�(a; b)

G�(a; b)

�2
;

respectively.
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