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Abstract

Here we present a general fractional analysis theory for Banach space
valued functions of real domain. A series of general Taylor formulae with
Bochner integral remainder is presented. We discuss the continuity of gen-
eral Riemann-Liouville Bochner fractional integrals and we prove their
semigroup property. Then we introduce the right and left generalized
Banach space valued fractional derivatives and we establish the corre-
sponding fractional Taylor formulae with Bochner integral remainders.
Furthermore we study the iterated generalized left and right fractional
derivatives and we establish Taylor formulae for the case, and we find in-
teresting Bochner integral representation formulae for them. We study the
differentiation of the left and right Riemann-Liouville fractional Bochner
integrals. At the end we give Ostrowski type inequalities on this general
setting, plus other interesting applications.
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1 Introduction

An account of our work follows: This paper deals with essential aspects of
fractional analysis for Banach space valued functions of a real domain. We
pursue our results to the greatest possible generality within our setting’s limits.
The related Fundamental Theorem of Calculus (FTC), by [12], Theorem 2 here,
plays a pivotal role in this article, without it would not have been written.
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Based on this we produce various very general Taylor formulae with integral
remainders, these are with respect to a parameter function, see Theorems 3, 4,
5, 6, 7, and Corollaries 8, 9. In all these the Hausdorff measure is the key to
generality. All the above so far belong to section 2, about auxiliary results.

The main results in section 3 unfold by giving first some continuity the-
orems for parameter function Bochner integrals involving a general fractional
kernel and defining functions of the second parameter variable, see Theorems 10,
11. We next define the right and left Riemann-Liouville generalized fractional
Bochner integral operators, see Definitions 12, 14, and we prove the semigroup
property under composition over continuous Banach space valued functions, see
Theorems 13, 15.

Then based on the last we define the Banach valued right and left generalized
fractional derivatives, Caputo style, see Definitions 16, 17. The next step is to
give related generalized fractional Taylor formulae, see Theorems 18, 19.

We continue with the Canavati style ([7]) generalized fractional Calculus
for Banach space valued functions. We introduce the generalized related right
and left fractional derivatives and produce Taylor formulae, see Theorems 20, 21.
We continue with the Canavati type iterated fractional integrals and derivatives,
right and left with a parameter function. The results are right and left iterated
fractional Taylor formulae of Canavati type, see Theorems 24, 27.

We continue with right and left iterated fractional Taylor formulae of Caputo
type, see Theorems 30, 33. We apply these when the parameter function is the
identity map, see Theorems 43, 44.

Then we establish some very important differentiation theorems, see Theo-
rems 34, 35, regarding differentiation of right and left Riemann-Liouville frac-
tional Bochner integrals. Based on the last properties we develop representation
formulae for the right and left iterated fractional derivatives of Caputo type for
Banach space valued functions, see Theorems 45, 46, 47 and 48, and Theorems
49, 50, 51 and 52. Our results potentially have great applications in the theory
of fractional ordinary and partial differential equations, analytic inequalities,
approximation theory, and in general computational analysis.

Due to the length of article we only give applications to the well-known
Ostrowski inequalities, here at the fractional level, generalized, and for Banach
space valued functions. We present the general Theorem 53, then we apply
this Ostrowski inequality for specific parameter functions such as e, cost, see
Theorems 61, 62.

We also give applications of our major fractional Taylor formulae, see The-
orems 55, 56, 57, 58, 59, 60, the parameter functions now are e’,sint, tanz.
Applications belong to section 4.

Overall we feel this article opens new research frontiers in the fractional
calculus study and many papers can be written based on it.



2 Auxilliary Results
All integrals here are of Bochner type, see [9]. We need

Definition 1 (/12]) A definition of the Hausdorff measure h,, would go as fol-
lows: if (T, d) is any metric space, A CT and § > 0, let A (A, ) be the set of all
arbitrary collections (C); of subsets of T, such that A C U;C; and diam (C;) < 6
for every i. Now, for every a > 0 define

hS (A) = inf{z (diamC;)* | (C;) € A (A, 5)} : (1)

Then there exists lims_q kS, (A) = sups~g hS (A) and by (A) = lims_ hS (A)
gives an outer measure on power set P (T') which is countable additive on the
o-field of all Borel subsets of T.

If T = R", the Hausdorff measure h,,, restricted to the o-filed of the Borel
subsets of R™, is identical to the Lebesgue measure on R™ up to a constant
multiple. In particular, hy (C) = p(C) for every Borel set C C R, where p is
the Lebesgue measure on R.

We also need

Theorem 2 (/12]) (Fundamental Theorem of Calculus) Suppose that for the
given
fia,b) — X, (X,|Il]) is a Banach space,

there exists F : [a,b] — X, which is continuous, the derivative F’ (t) exists and
F'(t) = f(t) outside a p-null Borel set B C [a,b] such that

hy (F (B)) = 0.

Then f is a strongly p-measurable and if we assume the Bochner integrability

of f, b
FO) -F@= [ s 2)

‘We have

Theorem 3 Letn € N and f € C" ! ([a,b], X), where [a,b] C R and (X, ]|
is a Banach space. Let g € C* ([a,b]), such that g~ € C™ (g ([a,b])). Set

F(z) = .7 (g(b);—!g(x))z(ng_l)(i) (g(z)), Vax€la,b]. (3)

Assume that (f ) gil)(n) og exists outside a p (Lebesque measure)-null Borel set
B C [a,b] such that hy (F (B)) = 0. We further assume the Bochner integrability

of (f og_l)(n) og.



Then

o=+ Y WO I o O @y )
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Proof. We get that F' € C ([a,b],X). We get that

Py = SO I8 (o)™ g @) @), 9

YV x € [a,b] — B. Also F’ is Bochner integrable.
Notice that F (b) = f (b), and

F(a)= ‘

We have (by Theorem 2)

b

F(b)— F(a) = / F' (1) dt (7)

Thus .
poy -3 WO () (g (a)) = ®

1=0

b
ﬁ / @) —g(@)" " (Fog ™)™ (4(2) ¢ () da.
proving the claim. m
‘We have

Theorem 4 Letn € N and f € C"* ([a,b], X), where [a,b] C R and (X, ||-||)
is a Banach space. Let g € C' ([a,b]), such that g~ € C™ (g ([a,b])). Set

n—1

F@)=3 WO IEN (100 @), vaelat. ()

=0

Assume that (f o g_l)(n) og exists outside a p (Lebesgue measure)-null Borel set
B C [a,b] such that hy (F (B)) = 0. We further assume the Bochner integrability

of (fog™)™ oy,

Then
f@= 1o+ O IO (o9 e o)
[ 0@ e (0g ) @) o @) e



Proof. We get that F' € C ([a,b], X ). Then we have

P = YOI (o) gang @,

YV x € [a,b] — B. Also F’ is Bochner integrable.
Notice here F' (a) = f (a), and

I (fog ) 9 ) ~ fa) = (14)
i=0 :
b
i L w@ 5@ (roa )" @) @)ds -
1 ¢ n—1 —1)\(n) ’
_m/b (g(a)—g @) (fog ") " (9(2)d (z)da.

proving (10). m
In Bochner integrals the change of variable is a questionable matter, a posi-
tive answer follows:

Theorem 5 Let ¢ be a strictly increasing function in C* ([a,b]), and ¢ : [a,b] —
[, B] with ¢ (a) = a, ¢ (b) = B, a < b. Assume that ¢~ € AC (o, 8]) (ab-
solutely continuous functions). Let F : [, f] — X be continuous, where (X, ||-]|)
is a Banach space. Assume that the derivative F' exists outside a p (Lebesgue)-
null Borel set W C [a, B8] such that hy (F(W)) = 0, and F' is Bochner inte-
grable.

Then

»(b) b
/ F(t) dt = / F (o (8) ¢ () dt. (15)
»(a) a

Proof. By Theorem 2, we get that

B
F(ﬁ)—F(a):/ F' (t) dt. (16)



ILe.
Fle®)-Flp@)= [ P i
Consider the function
H({t):=F(¢(t), a<t<hb.

Then H : [a,b] — X is a continuous function.
Then the derivative H' (t) = F' (¢ (t)) ¢’ (t) exists outside the p-null Borel
set (see [11], p. 108, exercise 14) B := ¢~ ! (W) C [a, b], such that
hi (H (B)) = ha (H (7" (W) = b1 (F (¢ (07" (W)))) = ha (F (W)) = 0.

That is hy (H (B)) = 0.
Here H' is Bochner integrable by:
B
:/ |F" (t)| dt < oo.

b b b
[ rwa < [1mola= [ 17 el od b, o) o)
Again by Theorem 2, we get that

F(B) = F(a)=F(p() = F(p(a)) = H(b) - H(a) = (19)

b b
/ H' (1) dt = / F' (o (8) ' (1) dt,

proving the claim. m
Using the methods of Theorem 5 we get

Theorem 6 Letn € N and f € C" 1 ([a,b], X), where [a,b] C R and (X, ||
is a Banach space. Let g € C'([a,b]), strictly increasing, such that g~1' €

C"(lg(a), g (b)]). Set

(2= YO (1o, vacl@gm). @)

7!

Assume that (fogfl)(n) exists outside a p-null Borel set W C [g(a), g (D)]

such that hy (G(W)) =0, and (f o g_l)(n) is Bochner integrable.
Then

(fog ) (g(a) + Ru(a,bg), (21)



b
Ru(abg) = o [ 00 =@ (Fos™) " (6@)g @) da
_ 1 ") - Y 92
=~ L, GO (o) e (22)
Proof. Notice that G € C ([g (a), g (b)], X). We also notice the existence of
—Z n—1 n
6 ()= U= (1o ), (23)

Vz € lg(a),g(b)]—W,and furthermore G’ is Bochner integrable over [g (a) , g (b)] .
By Theorem 2 now we get that

g(b)

G(g(b) — C(g(a) = / L, Cd= (24)

9(b)
o L @ = e ) ()

Here we have

and
G o (@)=Y WO (70 (g ) (25)
1=0 ’
We have proved that
n—1
o) =@+ > WO IO (oD gy e
=1 :

then H : [a,b] — X is a continuous function.
Then the derivative H' (z) = G’ (g (x)) ¢’ (), exists outside the p-null Borel
set (see [11], p. 108, exercise 14) B := g~ (W) C [a, b], such that

hi (H(B))=h1 (H (97" (W))) =h1 (G (g (g7 (W)))) = h1 (G (W)) = 0.
(27)



That is hy (H (B)) = 0.
Here H' is Bochner integrable by:

/H’ t)dt

/ \E (8)]|dt = / 16 (g @)l ¢ (@) dz (by [10])  (28)

g(b)
:/ G (1) dt < oo.
g(a)

Again by Theorem 2, we get that

G (9 (b))~G (g (a)) = / H () dit = / G (g (1) g (B)dt. (29)
Finally we see that
F) -3 WO IO (5o 1) (g (a)) = (30)
1

b
o ) @O 9@ (roa ) @) @)

proving the claim. m
Using methods from Theorem 5 we get

Theorem 7 Letn € N and f € C" ! ([a,b], X), where [a,b] C R and (X, ||-])
is a Banach space. Let g € C'([a,b]), strictly increasing, such that g~ €

C" ([g(a), g (b)]). Set
G(z):= A (f ngl)(i) (2), Vzelg(a),g(b)]. (31)

Assume that (fogfl)(n) exists outside a p-null Borel set W C [g(a), g (D)]

such that hy (G (W)) =0, and (f o g_l)(n) is Bochner integrable.
Then

flay= s+ COZIO (10 oy (g 1)) 4 Ry (brag), (32

7!

=1
where
1 ¢ n—1 —1\(n ,
n(ba.9) (n_l)./b (9@ —g@)" " (Foa™) ™ (9(@) ¢ (@)de
— 1 g(a) o \n—1 gt (n) N d
- (n—l)l/g(b) (9(a)=2)""" (fog™) " (»)d (33)



Proof. Notice that G € C ([g (a), g (b)], X). We also notice the existence of

6'(2) = = (1o )" (). (34)

Vzelg(a),g(b)]—W,and furthermore G’ is Bochner integrable over [g (a) , g (b)] .
By Theorem 2 now we get that

g(b)
G(g(b) —G(g(a)) = G' (t)dt = (35)

g(a)

g(b)
(nll)!/( ) (g(@)=2)" " (fog ™)™ (2)dz =

-1 g(a) - B

M/m (9(a)=2)" " (fog™)" ()dz.
*Jg

Here we have

and

That is, it holds

f@ =+ YOI (o gy )

i!

g(a)
ﬁ / o G@ =" (o) e

Consider the function

H(z):=G(g(x)), a<z<b,

then H : [a,b] — X is a continuous function.



Then the derivative H' (z) = ( ( )) ¢’ (z), exists outside the p-null Borel
set (see [11], p. 108, exercise 14) B “tw) C [ b], such that
hi (H (B)) = ha (H (97" (W))) = (G (9(97 (W) = ha (G(W)) =0.

That is hy (H (B)) = 0.
Here H' is Bochner integrable by:

/H’ £) dt

/ V(1)) dt = / IG' (g @) ¢ (z)dz (by [10])  (39)
g(b)

:/ 16" (1)]] dt < o.
g(a)

Again by Theorem 2, we get that

G g (6)~G (g(a) = / H (1) dt / & (g 1) dt. (40)

Finally, we see that

i 9@ =g®) (¢ 401D (b)) = £ (a) =

ot [ @@y s g @) de

Equivalently we have

F@=rm+ > IO (o gnO gy
[ @ =g (ea ) () g ()

proving the claim. m
Based on the Theorems 3, 4 we give

Corollary 8 Letn € N and f € C™ ([a,b], X), where [a,b] C R and (X, ||-|)
is a Banach space. Let g € C' ([a,b]), such that g~ € C" (g ([a,b])). Let any
z,y € [a,b].

Then



Proof. Notice in Theorems 3, 4 that F (&) = &, where B = &, and
n)

hi (@) = (@) = 0, where p is the Lebesgue measure, and (f ogfl)( ogis
continuous over [a,b]. m

We also have

Corollary 9 Let n € N and f € C"([a,b],X), where [a,b] C R and (X, |||
is a Banach space. Let g € C*([a,b]),strictly increasing, such that g=' €
C" ([g(a),g(D)]). Let any x,y € [a,b]. Then

(Fou ™ W)+ Ra(yz.g),  (44)

Proof. By Theorems 6, 7. m

3 Main Results
‘We need

Theorem 10 Here [a,b] C R, (X,||||) is a Banach space, F : [a,b] — X,
g € C([a,b]) and increasing. Let r > 0 and F € Ly ([a,b],X), and the
Bochner integral

G(s) = / (9(s) =g (1) "¢ (&) F (1), (46)

all s € [a,b]. Then G € AC ([a,b],X) (absolutely continuous) for r > 1 and
G e C(la,b],X) forr e (0,1).

Proof. Denote by |[F|l, == Fll;__(a,8,x) = €ssup [ I (t)|| x < +oo. Hence
ST t€la,b]

F € Ly ([a,b], X). By Theorem 5.4, p. 101, [9], (¢ (s) — g (£))" " ¢/ (t) F (t) is a
strongly measurable function in ¢, ¢ € [a, 8], s € [a, D] .

So that (g (s) — g (£)) "¢’ (t) F (t) € Ly ([a, 5], X), see [6]. Notice for above
that we used

11



by [11], p. 107, exercise 13d.

1) Case r > 1. We use the definition of absolute continuity. So for every
e > 0 weneed § > 0 : whenever (a;,b;), i = 1,...,n, are disjoint open subintervals
of [a, b], then

n

Z(bi—ai) <5:>Z||G(bl)—G(a2)H <E. (48)

i=1 i=1

If |F||,, = 0, then G (s) =0, for all s € [a,b], the trivial case and all fulfilled.
So we assume ||F'|| , # 0. Hence we have (see [5])

b
G (b;) - G (a;) = / (9 (b)) — g (1))~ o (8) F (t) di—

/ T ) —g W) g () F () di / (g (a) — g (1) g () F (1) det

(49)
b;
[ @) -9y g O F @di=
(see [1], p. 426, Theorem 11.43)
[ (o=~ gl —s ) ") o' () F () dr+
b;
[ e gy OF @
Call o
Lim [ ]la®) =90 =@ -9 ) g 0d. (50)
Thus ;
160 - Glal < [+ LD ey oo o)

If r =1, then I; = 0, and
G (b)) = G (ai)ll < |Fll (g (bi) = g(ai)) < ||Flloo 19" ll o (b — ai) (52)

foralli=1,...,n.
If r > 1, then since

(90 =g @) = (g(a) —g )] =0,

12



for all ¢ € [a, a;], we find

R N O R I e IO R0 G PACT S

/g e (9 =" = (ga) = 2)") dz =

(a)
(g (bi) —g(a)” — (g(ai) —g(a))" — (g(bs) —g(a:))” _
r(€—g(a)" " (g(bs) = g(a:)) = (g (bs) — g (a:))"
for some & € (g (as) g (b:)) -
Therefore, it holds
< rw® g (@) (9(by) - 9(a:)) — (9(bi) = g (a:)” (54)
and ) .
(14 LB < () - g @) 000 -9 @) (59)
That is
T, <||Fl (9 (6) — g (@) (g (b)) — g (ai)), (56)
so that
IG (b:) = G (@)l < [[Fllog (9.(0) = g ()" " (|9l o (b — a2) (57)
foralli=1,...,n.
So in the case of r = 1, and by choosing ¢ := m, we get

31600 -G @)l '€ 171 9 (Z - >> 59

i=1
<N Fllog 19"l 6 = &,
proving for r = 1 that G is absolutely continuous. In the case of r > 1, and by

1 o — 1=
choosing 0 := o —Cn @

7T we get
31660 =G @l S 1Pl 0 0) — g @) 3 (i —a) - (9

i=1

<N Flle 9 lloo (9. (B) =g (a))" "6 =,

proving for » > 1 that G is absolutely continuous again.

13



2) Case of 0 < r < 1. Let a;«, b« € [a,b] : a;» < b= and then g (a;+) < g (bi+).
Then (g (an) —g ()" > (g(b) — g ()", for all t € [a, a;-). Hence

= [ (@) =90 = (g0 - g 0) ") o ()1 =

, + - < (60)
) — ) I
() ~g (@) _ Il

T T

by [(g (aix) = g(a))" = (g (bix) — g (a))"] <O0.
Therefore o
and o
proving that
2|1l 19115 .

The last inequality proves that G is continuous for r € (0,1). The theorem is
proved. m
We also need

Theorem 11 Here [a,b] C R, (X,]|||) is a Banach space, F : [a,b] — X,
g € Cl([a,b]) and increasing. Let r > 0 and F € Ly ([a,b],X), and the
Bochner integral

b
G (s) :=/ (9 —g(s)" g () F (1) dt, (64)

all s € [a,b]. Then G € AC ([a,b],X) (absolutely continuous) for r > 1 and
G e C(la,b],X) forr € (0,1).

Proof. Denote by [|F|, = [[Fll;_(ay.x) = es[subﬁ) |1E' ()] x < “oc.
t€la,
Hence F € L ([a,b], X). By Theorem 5.4, p. 101, [9], (g (t) — g (s)) "' ¢’ (t) F (t)
is a strongly measurable function in ¢, ¢t € [s,b], s € [a,b].
So that (g (t) —g(s)) "' ¢ (t) F (t) € Ly ([s, ] , X), sece [6].
Notice for above that we used
b r
— b) —g(s
[ e -gy g @a= 202D (63

r

by [11], p. 107, exercise 13d.

14



1) Case r > 1. We use the definition of absolute continuity. So for every
€ > 0weneed § > 0: whenever (a;,b;), i = 1,...,n, are disjoint open subintervals
of [a, b], then

n

> bi—a)<6=> |G b:) -G (ai)] <e.

i=1 =1

If ||[F|l, =0, then G (s) =0, for all s € [a,b], the trivial case and all fulfilled.
So we assume ||F'|| , # 0. Hence we have (see [5])

b
Gb)=Gla) = [ a) =g b)) d (OF ()=

Call

Thus
160 - Glal < [+ LT ey o o)

If r =1, then I; =0, and

G (b:) = G (ai)ll < [ Fll (9 (bi) — g (ai)) < [1Fllo 19l (i — @i}, (69)

foralli=1,...,n.
If r > 1, then because

15



for all t € [b;, ], we find

b
= / (9 =g (@)™ = (g(®) =g @) ") g ®yat = (70)
b;

for some € € (g (a;),g(b;)).
Therefore, it holds

I < - (71)
and , ,
(14 COIZOD ) < ()= g @) 000 -9 @) (72
That is
T; < ||Fllo (9 (b) — g (a))" " (g (b:) — g (a:)), (73)
so that

1G (b)) = G (@)l < 1 Fllo (9 (0) = g (a)" " (9 (b) = g (ai)) <
1l (g (0) = g (@) 119" llo (b = ai). (74)

foralli=1,...,n.
So in the case of r = 1, and by choosing ¢ := o EHFH , we get

ZIIG (@)l < 1Flloo 119l (Z(bz'—ai)> (75)

i=1
<Pl gl d =6,
proving for r = 1 that G is absolutely continuous. In the case of r > 1, and by

g

19"l o 1 F'll oo (9(b) —g(a)

ZIIG (ai)] s 1o 119" lloc (9. (B) = g (@) (Z(@-—m)) (76)

i=1

choosing ¢ := jTs We get

< Fllo llg'lle (g9 (0) =g (@)) "6 =,

proving for 7 > 1 that G is absolutely continuous again.

16



2) Case of 0 < r < 1. Let a;+,b;« € [a,b] : a;» < b= and g (a;+) < g (bix).
Then (g (t) — g (ai))""" < (g(t) — g (b)) ", for all t € (b, b]. Then

b
I = / (&) =g @)™ = (9(&) =g (air)) ") g/ (t) dt =

by
() —g:i)" ((g(b)—g(ai*)) — (g (bi~) — g (air)) )< (77)
T T
(9(bir) =g (@) _ llg'll5 (bir — air)”
r - r ’
by [(g(b) — g (bi-))" = (g (b) — g (ai))"] < 0.
Therefore " ;
Ii* S ||g ||oo( T ai*) , (78)
T
and o IF 0 i,
7 < 2WPlka I (e =)’ -
proving that
2| Fll o llg' 115 r
IG (i) = G (a)|| £ == (b —aix)" . (80)
The last inequality proves that G is continuous for 7 € (0,1). The theorem is
proved. m
We need

Definition 12 Let [a,b] C R, (X,|||) a Banach space, g € C*([a,b]) and
increasing, [ € C ([a,b],X), v > 0.

We define the left Riemann-Liouville generalized fractional Bochner integral
operator

Ul @ = 55 | 6@ =0 @I s 6D

V z € [a,b], where T is the gamma function.

The last integral is of Bochner type. Since f € C(la,b],X), then f €
Lo ([a,b], X). By Theorem 10 we get that (J%,,f) € C([a,b],X). Above we
set JO.,f = f and see that (J.,f) (a) = 0.

We derive

Theorem 13 Let all as in Definition 12. Let m,n > 0 and f € C ([a,b],X).
Then
TR f = U = gn g, (82)

a;g-ag a;g-ag

17



Proof. Here a < z < b. We have

m n _ #
(Ja gJa gf) ( ) - F (m) F (T'L) (83)
/ AL ( / (9() =g ()" g (1) f (1) dT) “=
T / / X 9O (90— 9 ()" (g () f (7) drs
(here X[a,y) 18 the characteristic function, we use Fubini’s theorem from 9], p.
93, Theorem 2)
= m F / / X[Tr ( ))m_l (g (t) 79(7’))71_19/ (t) g/ (T)f(’]’) d’]‘dt

1 o . o L
- F(m)F(n)/a F(r)g () </T (9(@) =g(®)" " (g() =g (M) g (t)dt) dr

(by [10])

! : ! 9 m—1 n—1
- W/a Fna e </g(r) (g (@) —2)" " (z=g(n) dz) dr

ot [ F 08 O @) - gy ar

m—l—n)
:m/ (9(@) =g ()" () f (D)dr = (T F) (@), (85)

proving the claim. m
We need

Definition 14 Let [a,b] C R, (X,|||) a Banach space, g € C*([a,b]) and
increasing, f € C([a,b],X), v > 0.

We define the right Riemann-Liouville generalized fractional Bochner inte-
gral operator

1

b
(oo f) (2) = m/ (9(2) =g ()" g (2) f (2) dz, (86)

YV x € [a,b], where T' is the gamma function.
The last integral is of Bochner type. Since f € C([a,b],X), then f €

Lo ([a,b],X). By Theorem 11 we get that (Jg’f;gf) € C([a,b],X). Above
we set Jé)i;gf := f and see that (Jé’i;gf) (b) = 0.

We derive

18



Theorem 15 Let all as in Definition 14. Let a, 8 > 0 and f € C([a,b],X).
Then

(T ligf) @) = (B250) @) = (B I 0d) @), (87
vV z € [a,b].
Proof. We have that

(T ) (@) = - (89)

b b
[ -9 g ( IR R A dT> it =

b b
m / / Xt (1) (0 () = g @) (9(7) — g ()71 g/ (1) g’ () £ () drt

(here x(; ) is the characteristic function, we use Fubini’s theorem from [9], p.
93, Theorem 2)

_é ’ ! _ a—1 _ B—=1 /
_1“(04)1“(5)/1c (/m (9()—g@)"  (9(r) —g(1)) g(t)g(r)f(r)dt)dr

B 1 b ) . - .
r(oé)r(g)/xf(ﬂg(ﬂ</x (9(1) =g ®))" " (9(t) — g(2)) ()dt)d’r

(89)
(by [10])
g(7)
)P Y g @) rdze | dr
/f (/m 6 -2 (=g @) d)d
(6) _ z a+pB—1 -
v | 109 0T ) g
_ 1 a+B-1 a+ﬁ
M/ (9(1) =g @) g (1) f () dr = (F0F) @), (90)
proving the claim. m
We need

Definition 16 Let o > 0, [a] = n, [-] the ceiling of the number. Let f €
C" ([a,b], X), where [a,b] C R, and (X,|||) is a Banach space. Let g €
C' ([a, b)), strictly increasing, such that g1 € C™ ([g (a),g (b)]).

We define the left generalized g-fractional derivative X -valued of f of order
a as follows:

(D20al) @) = s [ 6@ =g @) (7o) (w0 ar

(91)
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YV x € [a,b]. The last integral is of Bochner type.
If a ¢ N, by Theorem 10, we have that (Dg.,f) € C ([a,b], X).
We see that

(o ((Feg™) W og)) (@) = (Diyyf) (@), Vaelat].  (92)
We set
Dy yf @)= ((fog™) " og) (@) €C(lab],X), neN,  (93)

D2+;gf (iL') = f(x)v Vaze [aab}'
When g = id, then
DSy.of = Dy af = D2f, (94)

the usual left X -valued Caputo fractional derivative, see [4].
We need

Definition 17 Let o > 0, [a] = n, [-] the ceiling of the number. Let f €
C" ([a,b], X), where [a,b] C R, and (X, |||) is a Banach space. Let g €
C! ([a,b]), strictly increasing, such that g=* € C™ ([g (a), g (b)]).

We define the right generalized g-fractional derivative X -valued of f of order
a as follows:

b (n)
(Di_ o f) (x) = 7/ (g —g@)" " g (1) (fog )" (g(t) dt,

YV x € [a,b]. The last integral is of Bochner type.
If « ¢ N, by Theorem 11, we have that (D?f;gf> € C([a,b],X).
We see that

Ta (0" (Fog™) ™ og) (@) = (Di_yf) (@), a<z<b (%)
We set
Dy yf (@)= (1" ((fog™")"0g) (#) € C([a,], X), nEN,  (97)

Dy_yf (x) == f(z), Yz €lab].
When g = id, then

Dl?*?Qf (.’17) = Dl(;:;idf (.’IJ) = Dl?—fa (98)
the usual right X -valued Caputo fractional derivative, see [2]

We give
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Theorem 18 Let o« > 0, n = [a], and f € C" ([a,b],X), where [a,b] C R
and (X, ||-|) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
971 €C"(lg(a),g®))). a <z <b. Then

f o)+ 3 IO (0 2O g 0y 4 (99

7!
1 g(z) ot . »
m /g(a) (9(@)=2) ((Da+;gf) °9g9 ) (2) dz.

Proof. We have that
(‘]g;ng-i-;gf) (z) = (Jg;g (Jt?;;a ((f Og_l)(n) Og))) (z) =
(Jas=((reg™) ™ og)) @ = (g ((Fog™) ™ og)) @) = (100)

i [ @@ g @ (o) o) W

We have proved that

(U Peal) @) = oot [ @@ =0 @) @ ((Foa ™)™ 0g)
’ (101)
=R, (a,z,9), alla <z <b.
But also it holds
R, (a,z,9) = (Jc?;gDS-&-;gf) (z) = (102)
%a) / (9() — g (1) g (1) (D2, f) (8) i,

all a < x < b, proving the claim. m
We give

Theorem 19 Let o« > 0, n = [a], and f € C" ([a,b],X), where [a,b] C R
and (X, |||) is a Banach space. Let g € C* ([a,b]), strictly increasing, such that
971 €C"(lg(a),g®))). a <z <b. Then



1 b ot
W/ (9() =g @) ¢ (1) (DE_p f) (1) dt =
)+ Z i s O (Fog™) ™ (g () + (103)
g(b)
/( ) ) (Df_yf) 09 1) (2)d.

Proof. We have that
(D) @) = (1" (T (2 (Fog) ™ 09))) @)= (104)
0" (T ((Feg™) ™ eg)) (@) = (1" (i ((Fog™) M 0g)) (@) =

b
V' gy [ @O =9@ e @ ((Fog™) og) =
(_1)2n ‘ n—1 4 _1\(n) B
S [ @0y @ ((oa™)™ 0g) (101 =
ﬁ /bz (9@) g @) o ) ((foa™)" o) (1)dt = Ry (b.z.g)
That is
Ry (b,,9) = (Ji_g Diif) (&) = (105)
1 ’ a—1
W/ () = g (@) g (1) (Df_y f) (),

all @ < z < b, proving the claim. m

Let g : [a,b] — R be a strictly increasing function. Let f € C™ ([a,b], X)),
(X, ||l is a Banach space, n € N. Assume that g € C!([a,b]), and g~ €
C" ([9(a), g(b)]). Calll:= fog~':[g(a),g(b)] — X. Itis clear that [,’, ...,1("™)
are continuous functions from [g (a), g (b)] into f ([a,b]) C X.

Let v > 1 such that [v] = n, n € N as above, where [-] is the integral part of
the number.

Clearly when 0 < v < 1, [v] = 0. Next we follow [3].

I) Let h € C([g(a),g (b)],X), we define the left Riemann-Liouville Bochner
fractional integral as

(JZh) (2) := ﬁ / (z—t)"" " h(t)dt, (106)

for g (a) < 2z < z < g (b), where I is the gamma function; I' (v) = [ et~ 'dt.
We set J;°h = h.
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Let o := v—[v] (0 < o <1). We define the subspace Cy, , ([g (a), g (b)], X)
of O ([g (a) , g (b)), X), where 20 € [a,5]: C% ([g (@) g (B)], X) =
{hec(g(@),g®),%): R € C ([g (o) .9 ()], X) |

Solet h € Cy .,y ([g9(a),g ()], X), we define the left g-generalized X-valued
fractional derivative of h of order v, of Canavati type, over [g (zo),g (b)] as

/
Db = (S D) (107)
Clearly, for h € Cy () ([9(a) g (b)], X), there exists
v 1 d [* —a (v
(Phen) &) = Fi—ay / L R CLA D
Zo

for all g (zg) <z <g(b).
In particular, when fog~! € Chizo) (19 (a), g (b)], X), we have that

(Diay (Fog7™) (=) = F(ll—a);z /g(zo) (z=t) " (fog )™ @) at,
(109)
for all g (z9) < z < g(b). We have that Dy, (fog™") = (fogfl)(”) and
Dy ) (fog™)=fog™! see 3]
By [3], we have for fog™! € Chizo) (9 (@) ;g (b)], X), where 2o € [a,0] is
fixed, that
(i) if v > 1, then

-1 p o —1y(R) .
(Fos )= (fog )k' @) (. o w4
k=0 :
1 : v—1 v _1
I'(v) /g(zo) (z—1) (Dg(l'o) (fog )) (t) dt, (110)

all z € [g(a),g(b)] : 2> g(x0),
(i) if 0 < v < 1, we get

(o5 ) = 715 / ( (om0 (D (Tog ™)) G (1)

all 2 € [g(a) g (B)] : 2 > g (w0)
We have proved the following left generalized g-fractional, of Canavati type,
X-valued Taylor’s formula:

Theorem 20 Let fog™' € C’;’(mo)

([g(a),g(b)],X), where xo € |a,b] is fived.
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(i) if v > 1, then

f@)—fleo)=Y I (g(2) — g (20))* +
k=1
L " v—1 v _
T'(v) L(wo) 9 (@) =1 (Dg(wo) (fog 1)) () dt, (112)

all z € [a,b] : x > xo,
(i1) if 0 < v < 1, we get

1 g() v y 1
F@ =5 [ @0 (D (Feg™)) a1y

all € [a,b] : x > x.
IT) Let h € C ([g (a), g (b)], X), we define the right Riemann-Liouville Bochner
fractional integral as
(JZ_h) (z) == N (t—2)"""h(t)dt (114)
o ST L ’

for g (a) < z <z < g(b). We set J2 _h = h.
Let o := v—[1] (0 < < 1). We define the subspace Cg, \_ ([g(a), g (b)], X)
of C" ([g(a), g (b)],X), where zo € [a,]] :

ng(ro)— ([g(a),g(b)],X):=

{hec(lg(@),g®),X): 150 D € €' ([g (@), g ()], )} (115)
So let h € C¥

o) ([9(a),g(b)], X), we define the right g-generalized X-
valued fractional derivative of h of order v, of Canavati type, over [g (a), g (x0)]

as

v P n—1 11—« v !
DYy = (~1) (Jg(xo)_h([ 1)) . (116)
Clearly, for h € Cy, ) ([g(a),g(b)],X), there exists
v _ T d /g(m —a ()
(Dg(zo)fh) (=) =1 =y (t —2)"* D (1) at, (117)

for all g(a) <z <g(xg) <g(b).

In particular, when fog~! € C (g (a),g (b)],X), we have that

xo)—

_qynt 9(x0)
(DZm)- (f 0971)) (=) = 12(11)_@;2:[ (t—2)" (fog )" W at,
(118)
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for all g (a) <z < g(x0) < g(b).
We get that

(D;L(zo)— (fo 9*1)) (2) = ()" (fog ™)™ (2) (119)

and (DS(%F (f og_l)) (2)=(fog™")(2),all z € [g(a),g (b)], see [3].

By [3], we have for fog™! € Cowo)— ([g(a),g(b)],X), where z¢ € [a,b] is
fixed, that

(i) if v > 1, then

RN TPENCYN
(rog )=y, LWl oyt
k=0 )

all z € [g(a),g(0)] : 2 < g (20),
(i) if 0 < v < 1, we get

_ 1 ol b1 _
(s @ =gi7 [ =2 (Dhoy- Goa™)) 0t (121)
all z € [g(a),g(d)] : 2 < g (x0).
We have proved the following right generalized g-fractional, of Canavati type,
X-valued Taylor’s formula:

Theorem 21 Let fog™! e Cizo)— (9 (a) g (b)], X), where o € [a,b] is fived.
(i) if v > 1, then

1 g(xo) . ) B
T (v) /g@) (t=g() 1(Dg(wo)f (fog ))(t)dt, (122)

all a < x < xg,
(ii) if 0 < v < 1, we get

1 g(zo) b1 , o
F@ =gy [ € 0@ T (D (reg ) @ (29

all a < x < xg.
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III) Denote by
Diteoy = Dotwoy Doy zo) - Py(ze) (m-times), m € N. (124)
Also denote by
Jg(zo) — jo(wo) yalwo)  j9(x0)  (1y_times), m € N. (125)
We need

Theorem 22 Here() < v < 1. Assume that (D;’%Z ) (fo g*1)> € Cllrpy (l9(a) g (b)], X),
where xg € [a,b] is fized. Then

(e Dy (Fog™)) (9@) = (JE80, DIEEY” (Fog™)) (g () =0,

(126)
for all xg < x <b.
Proof. We observe that (I := fog™!)
(Jae Dy @) (9 (@) = (250, DS 1) (9 (2) =
(7882 (Dgity () = T DG (1)) (g () = (127)

(722 (D5t 0 = (22D ) (Pt 1) 090971))) (00 =
(7852 (D 0 = (Dt ) (0 @) = (7252 () (9 (2) = 0

[
We make

Remark 23 Let0 < v < 1. Assume that (D;’ZT ) (fo gil)) € Ciupy (l9(a), g (D)], X)),
xg € [a,b], for alli =0,1,...,m. We have that

S [ Di ) (Fog7) (90D - (FG, DS (Fog7) (9/a))] =0

=0

(128)
Hence it holds
F @) = (T, D (Fog7™") ) (9 @) =0, (129)
for all xog < x <b.
That is
fle)= (J(gvgﬁi) 2 (f°9_1)) (9 (), (130)

for all xg <z <b.
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We have proved the following modified and generalized left X-valued frac-
tional Taylor’s formula of Canavati type:

Theorem 24 Let0 < v < 1. Assume that (D;lfmo) (fo g’1)> € CYroy (g (a) g (0)], X),
xg € [a,b], fori=0,1,...,m. Then

g9(z)
F@ = F i, 0@ = (D (rea™)) ()
(131)

all zg <oz <b.
IV) Denote by

Dya Dg(ﬂfo) Dg(fo) Dy

9(x0)— = o(z)— (m times), m € N. (132)

Also denote by

Jg(ro)— = Tg(wo)—Tg(mo)— I (m times), m € N. (133)

g g(zo)—"g g(xo)—

We need

Theorem 25 Let0 < v < 1. Assume that (Dgf;o)_ (fo g—l)> € Clro)— ([g(a),g ()], X),
where xg € [a,b] is fized. Then

( o) Dglroy— (fo 9_1)) (9 (2)) - (Jﬁjf_)”D;’[;ﬁ” (fo g‘l)) (g(z)) =0,
(134)
for all a < x < xy.

Proof. We observe that (I := fog™!)
¥ v (m+1)v {(m+1)v o
(30D~ ©) o ) = (T2 DL ) (o () =

(ot (D3izy— ) = Ty DS ) (9 (2)) =

(T (D= O = (Jatay-Pienr—) (P3i- @) 090971 )) (9 (sz>> -
135
(Jatzy- (Paty- 0 = Diizy— 1)) (9 () = T2, (0) (g () = 0.
) We make

Remark 26 Let0 < v < 1. Assume that (Dg(x ) (fo gil)) € Cyiuoy— (l9(a), g (0)], X),
xo € [a,b], for alli=0,1,...,m. We have that (by (134))

>~ [ (Fiten iy (Foa™)) (g @) = (I DY (Foa™) (o @))] =
= (136)

27



Hence it holds

F (@) = (JGE DY (Fog™)) (9(2) =0, (137)
foralla <x <xzy<b.
That is
7 (@)= (JSE DS (Fog™)) (g (@), (138)

foralla <x <xzg<b.

We have proved the following modified and generalized right X-valued frac-
tional Taylor’s formula of Canavati type:

Theorem 27 Let0 < v < 1. Assume that (D;”(g;o)f (fo g_1)> € CY 10— ([g (a),g ()], X),

xg € [a,b], for alli=0,1,...,m. Then

g(zo)
P = f e L, @ (O (o) (e
(139)

alla <z <zxg<h.

From Theorem 18 when 0 < o < 1, we get that

(I54gDiyig f) () = f(2) = f(a) =
1 o1 g § B
m/ g (1) (D) () dt = (140)
1 N .
F7) 9(a) ((Da+ gf) °g ) (2)dz,

and by Theorem 19 when 0 < a < 1 we get

(Il?f;ngf;gf) (z)=f(z) - f(b)=

1 ’ a—1
@/ (9(t) =g @)™ ¢' (1) (Dip ) (1) dt = (141)
g(b)
o I M ERSIOES

all a < x <.

Above we considered f € C!([a,b],X), g € C*([a,b]), strictly increasing,
such that g7 € C* ([g (a), g (b)]).

Denote by

Dna . DO(

g - ot:gDot.g-Day.y (ntimes), n € N. (142)
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Also denote by
Ity =10y Iy g Aoy (n times). (143)

Here to remind
1 v a—1
(I200f) ) = 5 / (@) —g )¢ ®) f W) dt, z>a  (144)

By convention I9, ., = DY, ., = I (identity operator).
We need

Theorem 28 Let 0 < a<1,neN, f € C'([a,b],X), g € C([a,b]), strictly
increasing, such that g=* € C*([g(a),g (b)]). Let Fy, := DF%. f, k =n,n+1,
that fulfill Fy, € C ([a,b],X), and F,, € C* ([a,b],X).

Then

(124D f) (@) = (155" DU ) () = o) 9T (e 1) a),

atigTatig atig a+;g T (na+1) a+;g
(145)
all x € [a,b)].

Proof. By semigroup property of I¢,. , we get
no na n+1l)a +1
(Ia+;gDa+;gf) (z) - (Irg—&-;g) Dt(zr-b&-;g)af) (33) =

no no o (n+1)a _
(IaJr;g (Da+;gf ~LavigDasyg f)) () =

(I;LJOFZ;Q (Dgi:gf - (13+;9Dg+;9) (Dgi;gf))) () (1é0)
(Igf;g (Dgi;gf - Dgi;yf + Dgi;gf (a,))) ()
(125 (D2, f (@) (2) = (D25 f (a)) (125, (D) () = (146)

[notice that

(1204) ) = 75 / N9 g ) (yde = I IS gy

Hence

(12,1 @) = 75 [ @ -s0r g a0 =9 @),

g(x)
S — / (@) -2z g@)© D ar = (148)
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That is 0@ ( ))2a
a _ gx)—gla
(Iz-i-;gl) (.’ﬂ) - T (204 i 1) ’
etc.
(P2, f @) WO (149)

proving the claim. m
We make

Remark 29 Suppose that Fj, = Dsi;gf, fork=1,...n+1; are as in Theorem
28,0 < a < 1. By (145) we get

n

> (L, Do f) @) = 155" DI (@) = (150)
1=0

Z W (szof%;gf) (a).

That is

f (x) _ (I(n+1)OéD(n+1)af) (x) _ (g (x) —9g (a))w (Dia f) (a) ) (151)

a+;g a+;g — T (ia + 1) a+;g

Hence

Fo) =Y I (Dl 1) (@ + (K57 DF) () = (152)
=0

; ia+1)
n (g (.7,‘) —g (a))ux .
2 Tty Pitl) @+ By (), (153)
where
Ry (a,2) = s /x (9(x) — g ()" g (1) (D(”{rl)af) (1) dt.
’ , F((n+ 1) Ot) a a+;9

(154)

(there D(s?j:;)af is continuous over [a,b].)

We have proved the following g-left generalized modified X-valued Taylor’s
formula.
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Theorem 30 Let 0 < a <1, neN, f € C!([a,b],X), g € C ([a,b]), strictly
increasing, such that g=' € C'([g(a),g(b)]). Let F}, := D{ji;gf, k=1,..,n,
that fulfill Fy € C ([a,b],X), and F,+1 € C ([a,b], X).

Then )
(9 (2) —g (@)™
= Do,
/(@) 22 T(ia+1) (D) (@) +
s | @ =g @) 0 (D) (a (15)
L((n+1)a) /s ot
vV z € [a,b].
Denote by
by = Dy Dy Dy, (n times), n € N. (156)
Also denote by
It = g Iy, (n times). (157)

Here to remind

1 b 1
(I o) @) = 7 | @O -9@1 g O F W v (158)

(@)
‘We need

Theorem 31 Let f € C'([a,b],X), g € C'([a,b]), strictly increasing, such
that g=* € C*([g(a),g (b)]). Suppose that Fy, := D{ff;gf, k=mn,n+1, fulfill
F, € C(la,b],X), and F,, € C* ([a,b],X),0<a<1,neN.

Then

(15,050 1) (0) = (120D ) () = L= (e ) ).
(159)

Proof. By semigroup property of Iy ., we get

(124 D52 f) @) = (15 D7 F) (@) =

(122 (Dizf = 1y DY) ) ) =

(I3 (Dp2 o f — (I, D5y) (D32, 1)) () "= (160)

(Il?fa;g (Dgf;gf = DyZ f+ Dy%y (b))) (z) =
(172, (Dj=, £ ) (@) = (Dpe, £ ) (22, () (@) = (161)
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[Notice that

b
(12,1) @):% / (9(t) — g (@) g (t)dt = (162)

Thus we have

(15 g1) () = (ﬁ)(;i%)) (163)
Hence it holds
b _ [e3%
(12,1 @) = 77 / R O e e
b
a+1 / g(t) =g ()" g (t)dt =
“ o 1
/( )T (2 — g (2))* e =
1 ( DT (@) .1 )
Tt eiD Taarn YO - 9@ =rarrp @® -g@)™,
(164)
etc.]
nex (g(b) —g ()™

proving the claim. m
We make

Remark 32 Suppose that Fj, = Dfﬁ‘;gf, for k = 1,...,n+ 1; are as in last
Theorem 31, 0 < a < 1. By (159) we get

n

D (Do) @)~ I DI @) = (6

i=0
n b) — 1ot )
> Rt (D, 0),
i=0
That is (notice that Iy . ,f =Dy . f=f)

(g(b) — g (x)

f (@)= (1 Do) (@) = Faagn ~ D) ®. (o)

I

I
=)

7
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F@ =3 WO 90T (e gy )+ (100D ) (@) = (168)

—~ T(ia+1)
> P I (D2, 1) )+ R, (0., (169)
where
b
Ry (@) = mromray . @0 —9@)™ g @) (D[ ) @)

(170)
(there Déi';l)af is continuous over [a,b].)

We have proved the following g-right generalized modified X-valued Taylor’s
formula.

Theorem 33 Let f € C' ([a,b],X), g € C'([a,b]), strictly increasing, such
that g~ € C'([g(a),g(b)]). Suppose that Fy := fo‘;gf, kE=1,...n, fulfill
F, € C([a,b],X), and F, 41 € C([a,b],X), where 0 < a <1, n € N.
Then ]
—(g(b) =g (@)
= D,

7

_
F'((n+1)a)
V€ lab.

b
/ (9(0) —g @)™ g @) (D0 F) (e, (17

For differentiation of functions from real numbers to normed linear spaces
the definition is the same as for the real valued functions, however the limit and
convergence is in the norm of linear space (X, ||-]]).

We need

Theorem 34 Let 0 < s < z and f € Ly ([0,2],X), r > 0, (X,|]) is a
Banach space. Define

F(s) = /O S () dt, (172)

the last integral is of Bochner type.
Then there exists

F'(s) = r/os (s—t)" ' f(t)dt, allse(0,z]. (173)
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Proof. Fix s € [0, 2] and notice that

x

F(s0) = / Moot f(t)dt = / Nowsa) (£) (s0 — 1) f () dt.

We call g (s,t) == x[o,4 () (s — t)" f (t), which is a Bochner integrable function
for every s € [0, x], x is the indicator function.
That is, g(s0,t) = X[o,s0 (t) (S0 =1)" f(t), all t € [0,z], and F(sg) =

fox g (so,t)dt.
We would like to study if there exists

) sorn (0) (S0 + R —1)" = x[0.49) (1) (50 —1)"
ggS’;),t) — (%{%X[O“ +n) () (50 }3 X[0,50] (t) (S0 — 1) ) (174)

We distinguish the following cases.
(1) Let x > t > sg; then there exist small enough h > 0 such that ¢ > sg +h.
That is,

X[0,5041] () = X[o,50) (1) = 0.
Hence, there exists
ag (307 t)
ds

(2) Let 0 <t < sp; then there exist small enough h > 0 such that ¢ < so =+ h.
That is

=0, allt:s0 <t <. (175)

X[0,50+h] (£) = X[0,50] (t) = 1.

In that case

W _ f(t) (A%(SO +h—t)h— (30 _t) ) _ 7"(80 7t)'r‘71f(t)7 (176)

exists for almost all £ : 0 < t < s¢.
(3) Let t = sg. Then we see that

99+ (s0,50) _ £ (s0) ( lim hr) = f(s0) ( lim hr1> : (177)

0s h—0+ h h—0+

The last limit does not exist if 0 < r < 1, equals f(so) if r = 1 and may not
exist, and equals 0 if r > 1.
Notice also that

dg— (50, 50) . X[0,s0+h] (s0) " . r—1
S B0 — f (so) (Jim SR (o) (lim X agamh ) =0,

by X[0,50+h] (s0) =0, h <0.
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That is,
dg- (s0, 50)
0s
(s0,t)

In general as a conclusion we get that SQT

=0. (178)

exists for almost all ¢ € [0, z] .
Next we define the difference quotient at s,

DY, (h.t) = f (1) (X[o,swh] (8) (s0 +h — ’2 ~ Xjo.s0] () (0 t)r> . (179)

for h # 0, and DJ_(0,t) := 0.
Again we distinguish the following cases.
(1) Let >t > sg; then there exist small enough h > 0 such that ¢ > so % h.
Clearly then Dg (h,t) = 0.
(2) Let 0 < t < sp; then there exist small enough ~ > 0 such that ¢ < so £ h.

Thus , .,

DY (ih,t):f(t)<(80ih_t) —(50=t) ) (180)

0 +h

Call p :=s9 —t > 0; clearly p < z. Define

o (1) = (,O-l-hi); - _ (so—l-h—t);— (so—t)" (181)
for h close to zero, r > 0.

That is, DY (h,t) = f(t) ¢ (t). If r =1, then ¢ (h) =1 and
DY (h,t) = f(t). (182)

We now treat the following subcases.
(2 (1)) If r > 1, then v (p) := p", 0 < p < z, is convex and increasing. If
h > 0, then by the mean value theorem we get that

o (h) <ra" L.

That is,
DS, (h,&)[| < v f )] (183)

If h < 0, then, similarly, again we get

P et h)

cp(h) _h <rx
That is, for small |h| we have
DS, (ht)[| < v M If @), 721 (184)

(2 (i) 0 < r < 1, then v (p) := p", 0 < p < z is concave and increasing.
Let h > 0; then ¢ (h) < p"~! = (so —¢)" " and for h < 0, again ¢ (h) < p"~! =
(80 - t)r_l .
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That is
IDg, ()] < (so =) £ @) (185)
for small |h].
(3) Case of t = sp; then
DS (h, s0) = f (s0) "%, for h >0, (186)
and
DY (h, s0) =0, for b <O0. (187)

So, if r > 1 we obtain
D, (hyso)|| < IIf (so)] =", (188)

for small |h].
If 0 < r < 1, then for small . > 0 the function D¢ (h, s¢) may be unbounded.
In conclusion we get:
(I) For r > 1, that

| DY, (h,t)|| < ra” 1| f]l oo < 4o00. (189)
for almost all ¢ € [0, z].
Hence 99 (s0.1)
g 507t r—1
< 1
|20 < vt 1. (190)

for almost all ¢ € [0, z].
(I) For 0 < r < 1, that

| DY, (B, t)|| < A(t), for almost all ¢ € [0, 2], (191)
where
(so — t)r_l I1f (t)H ;o 0=t <so,

A(t) = 192
*) {O7 for s <t <. (192)

Hence it holds

4
Hag(;o’)H < A(t), for almost all £ € [0, 2] . (193)
s

Clearly A is integrable on [0,z]. Then by Theorem 90, p. 39, [8], we get that
% defines a Bochner integrable function, and there exists

T 9 ’ S0 . T
F’(so):/o g(;smdt:r/o (50— 1) 1f(t)dt+/300dt

- /0 (50—t £ (1) d. (194)

That proves the claim. m
We need
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Theorem 35 Let © < s < 0 and f € Ly ([2,0],X), r > 0, (X,|]]) is a
Banach space. Define

0
G<s>:/ (t— s (1) dt,

the last integral is of Bochner type.
Then there exists

0
& (s) = —r / (t— )" f (1) dt, (195)

all s € [z,0].

Proof. Fix sg € [z,0] and notice that

0 0
G (s0) = / (t— s0)" f (£)dt = / Xiso.o) (1) (E — 50 f (1) dt,

S0 T

where x is the indicator function.
We call
g (Sa t) = X1s,0] (t) (t - S)T f (t) )
which is a Bochner integrable function for every s € [z,0]. That is, g (so,t) =

X[s0,0] () (t—s0)" f(t), all t € [z,0], and G (sq) = f;jg (so,t) dt.
We would like to study if there exists

99 (s0,t) _ £ (Hm X ()5 1n,0) (=80 = 1) =X ()5,.07 (t = 50)T>

Os h—0 h - (196)

We distinguish the following cases.
(1) Let & < t < s¢; then there exist small enough h > 0 such that ¢t < s+ h.
That is,

X[so%h,0] (t) = Xls0,0] (t) =0.
Hence, there exists
a.g (SOa t)
s

(2) Let sg < t < 0; then there exist small enough A > 0 such that ¢ > sg £ h.
That is

=0, allt:z <t < sp. (197)

X[so4h,0] (£) = Xsg,0) () = 1.

In that case

D e ]
(198)
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exists for almost all t: s <t < 0.
(3) Let t = sg. Then we see that

Also we get
o ) = (3 ) -
=G0 (im0 ) = =1 (o) i ) (200)

The last limit does not exist if 0 < r < 1; equals —f (sg) if 7 = 1 and may not
exist; and equals 0 if r > 1.
In general as a conclusion we get that w exists for almost all ¢ € [z, 0].
Next we define the difference quotient at sq,

DI (h,t):= f(t) (X[So+h,0] (t) (t —s0 — h}ir — Xso,0] (1) (t — 50)7“>

, (201)

for h # 0, and Dg (0,t) := 0.
Again we distinguish the following cases.
(1) Let & < t < s¢; then there exist small enough h > 0 such that ¢t < s+ h.
Clearly then DY (h,t) = 0.
(2) Let sp < t < 0; then there exist small enough h > 0 such that ¢ > so £ h.
In that case

(t—(s0£h)" — (t—s0)"
0 o 0 ) (202)

D3, (ht) = 1)
Call p:=1t— 59 > 0; clearly 0 < p < |z|.

Pefine (b —p (¢ B (t— s0)
_(p=h)"—p" (t—so—h)"—(t—so

for h close to zero, r > 0.
That is,

DY, (ht) = f(#) @ (t) -
If r =1, then ¢ (h) = —1 and

Df, (h,t) = =f(t).

We now treat the following subcases.
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(2 (i)) If r > 1 and |h| small, then by the mean value theorem we get
IDS, ()|l = 11f @)l e @ < 1f @l 727 |2 (203)
That is, for » > 1 and small |h| we obtain
DS, (R )| < r2 2l |LF (@) (204)

(2 (ii)) If 0 < r < 1 and |h| small we get the following:
The function 7 (p) := p", 0 < p < |z| is concave and increasing. Let h > 0;

then (o by
pr—(p— r—1 r—1
h)|=——F—F"< =(r—s , 205
o) = =l < = (0= s0) (205)
and for h < 0, again
(p=h)"=p" re1
oh)|=+—~— <p"" T =(t-s . 206
Therefore we obtain
DS, (ht)[| < If D (= s0)" ", (207)
for 0 < r < 1 and |h| small.
(3) Case of t = sp; then
DY (h,s0) = —f (so) """, for h <0, (208)

and
DY (h,s0) =0, for b > 0.

So, if > 1 we obtain
1Dg, (B so)|| < £ (so)ll |, (200)

for small |h].

If 0 < r < 1, then for small |h| with h < 0, the function DY (h,so) may be
unbounded.

In conclusion we get:

(I) For r > 1, that

1D, ()| < 727 2l | £l < Hoc, (210)

for almost all t € [z,0].
Hence

dg (so0, 1) re1 =1
— I <
H 55 H <2 2| | fll o s (211)

for almost all ¢ € [z,0].

39



(I) For 0 < r < 1, that

| DY, (h,t)|| < A(t), for almost all t € [z, 0],

where
0, forxz<t<sg
A(t) =4 =t =00 212
“ {Ilf(t)ll(t—SO) Tos<i<o (212)
Hence it holds
9] t
Hg((;;’)” < X (t), for almost all t € [z,0]. (213)

Clearly ) is integrable on [z, 0].
Then by Theorem 90, p. 39, [8], we get that % defines a Bochner
integrable function, and there exists

G’ (s0) = /10 Wdt =—r /O (t—s0)" " f(t)dt + /SO 0dt (214)

S0 xT

0 -
- _r/ (t—s0)" " f(t)dt.

S0
That proves the claim. m
We mention

Definition 36 Let U C R be an interval, and X be a Banach space, we denote
by L1 (U, X) the Bochner integrable functions from U into X.

‘We need

Definition 37 Letn € Ry, and [a,b] C R, X a Banach space, and Ly ([a,b] , X).
The Bochner integral operator
1 * n—1
" = —1 t)dt 21
(Jo'f) () F(n)/a (@ —1)" " f(t)dt, (215)

for a < x <b, is called the Riemann-Liouville fractional Bochner integral oper-
ator of order n, where I' is the gamma function.
Forn =0, we set JO := I, the identity operator.

We give
Theorem 38 ([/]) Let m,n € Ry and f € Ly ([a,b],X). Then
TG f = I = T, (216)

holds almost everywhere on [a,b] .
If f € C([a,b],X) or m+mn > 1, then identity in (216) is valid everywhere
on [a,b].
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‘We make

Definition 39 Let [a,b] C R, X be a Banach space, v > 0; n:= [v] € N, [-] is
the ceiling of the number, f : [a,b] — X. We assume that f™ € Ly ([a,b], X).
We call the Caputo-Bochner left fractional derivative of order v:

1

(DL f) (z) = 1) /w (z—t)"" O )dt, Vaelab. (217)

If v € N, we set DY, f := f@) the ordinary X -valued derivative, and also set
DY, f = f.
We need

Definition 40 Leta > 0, [a,b] C R, X is a Banach space, and f € Ly ([a,b], X).
The Bochner integral operator

1

(1D @) =y [ = e (218)

YV x € [a,b], where T' is the gamma function, is called the Riemann-Liouville
right fractional Bochner integral operator of order c.
For a =0, we set I} := 1 (the identity operator).

We mention
Theorem 41 ([2]) Let o, >0, f € L1 ([a,b], X). Then
n =5t =1 1 g, (219)

valid almost everywhere on [a,b] .
If additionally f € C ([a,b],X) or a4+ B > 1, then we have identity true on
all of [a,b] .

‘We need

Definition 42 Let [a,b] C R, X be a Banach space, o > 0; m := [a], ([-] the
ceiling of the number). We assume that f'™ € Ly ([a,b], X), where f : [a,b] —
X. We call the Caputo-Bochner right fractional derivative of order a:

(Di_f) (@) := (=) [ f ) () (220)

i.e.

J— m b
(D f) (z) := (1))/ (J—z)" " M () dJ, Yz elab). (221)

I'(m-«

We observe that D" f (z) = (=1)™ f0™) (z), form € N, and DY_f (z) = f (2).
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We consider (a > 0)
D}Y .= D2, Dg,..Dg, (n-times), n € N. (222)
Also denote by
Jp = JYJE LTS (n-times). (223)

Similarly we consider
Dy® =Dy Dy ...Dy_ (n-times), (224)

and

=5 . I (n-times). (225)

Next we apply Theorems 30, 33, when g =identity map.
We have the following left modified X-valued Taylor’s formula.

Theorem 43 Let 0 < a < 1,n €N, f € C'([a,b],X). Fork =1,...n, we
assume that DX f € C* ([a,b], X) and Dgﬂ)af € C([a,b],X).
Then

F =Y S (D) )+

; z . (n+1)a—1 (n+1)e . a
F<<n+1>a>/a (@ ~1) (D& er) at, vaefnb. (226

We have also the following right modified X-valued Taylor’s formula.

Theorem 44 Let 0 < a < 1,n €N, f € C'([a,b],X). Fork =1,...n, we
assume that D f € C* ([a,b], X) and Dé’iﬂ)af € C([a,b],X).
Then

(za+1

i 0= (pie ) 1)+

b
m/ (t— x)(nJrl)afl (DEET_L'H)O‘f) (t)dt, ¥V x € [a,b]. (227)

We give

Theorem 45 Let 0 < a < 1, f € C™ ([a,b],X), where (X, ||]|) is a Banach
space, m € N. Assume that D**f € C'([a,b],X), k = 1,...,n, n € N and
Doy ¢ C ([a,b], X). Suppose that (D% f) (a) =0, fori=0,2,3,...,n. Let
v > 0 with [v] =m < n+1, such that m < (n+ 1) «, equivalently o >
Then

_m_
n+1-°

(D1, f) (z) = F((n—l—i)a—'y) /m (2~ )02 (DG 7 (1) di, (228)

V x € [a,b]. Furthermore it holds (D1.f) € C ([a,b],X).
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Proof. Here we have that

(Dg.f) (@) = I’(l;—a) /aw (x — t)_o‘ f@)dt, Vaxelab. (229)
‘We observe that
ID%0) @ < =y [ =07 17 @l (230)
1 C ,
< rama ([ @07 ) 171 o
St Gl < too. (231)
Fl—a)(1—a)" "e=ledhX) ™ T(2_q) Loo([a,0],X) ’
Hence
(D) (@) = 0,
that is

(D2 f) (a) = 0. (232)

The left Caputo fractional derivative of order - is given by

1 T
Dl f=——— — )" ) @y ag = (g e b
T AR A ARICT Y G y@,w62¥;
which exists everywhere over [a, b].
We set D™ f = f("™), m € N.
By Theorem 43 we obtain

1 * (n+1)a—1 ( (n+1)a )
= —t D., t)dt, V ,b].
F@) = rra [ @) £) @, ¥aela
(234)
By Theorem 34, when (n+1)a — 1 > 0, equivalently when « > n%_l, we get

that there exists

! _ ((’I’L + 1) a — 1) * (n+1)a—2 (n+1)a
f(x)—m/a (x—1) (D*a f)(t)dt, V€ [a,b].
(235)
If (n4+1)a— 2 > 0, equivalently, if a > n%rp we get that there exists
v,y ((m+a-1((n+1)a-2) [* (n+1)a—3 [ ~(n+D)a
1 () = e CEs i | @0 (D) (t)(dt, |
236

Vaelab.
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m

In general, if (n + 1) a — m > 0, equivalently, if o > e

exists

we get that there

I (n+1)a—4)

f(m) (.Z‘) _ j:1F ((n - 1) a) /CE (x B t)(n+1)a—m—1 (DiZ—H)af) (t) dt,

(237)
Vo€ la,b].
By Theorem 10, we get that (™) € C ([a,b],X).
By (215), we derive
[I(n+)a=-/)I((n+1)a—m)
(m) () — I=1 (n+1)a—m) { p(n+ha
J@) T((n+1)a) (Ja (D*“ f)) (z)
(238)
— (Jé(nJrl)ozfm) (D£Z+l)af>) (Jf) .
We have proved that
£ (z) = (Jlg(n—&-l)a—m) (D»(:;H)af)) (z), Vaelab]. (239)

We have that (case of y < m)
(D) @) = (770 (@) = (S gfrnem (D) ) (@) (240)

= (s (D)) (@),

That is
(D2,0) (@) = (S0 (D f) ) (@), Yo elad].  (241)
I.e. we have found the representation formula:
1 x
5 _ _ pnntDa—y=1 (H(nt+l)a
(DD @) = rrra=s /. @9 (D8 5) 0y at

(242)
V€ la,b].

The last formula (242) is true under the assumption (n+1)a > m, and
since m >+, it implies (n + 1)@ > v and (n+ 1) @ — v > 0. Furthermore, by
Theorem 10, we get that (D1, f) € C([a,b],X).

The theorem is proved. m

We continue with

Theorem 46 Under the assumptions of Theorem 45, and when Vni’? <a<l,
we get that

(D21) (@) =

1
((n+1)

e A R CEAR [OI
‘ (243)
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Vz € [a,b], and (ngf) € C(ab],X).

Proof. Call A == (n+1)a—vy—1,ie. A+1=(n+1)a— 1, and call
0 := (n+1) . Then we can write

1 z A S5
o - - —
(DD @) =ty [ @0 (DL Od vacll.  eu)

If A > 0, then

A ¥ _
0% / _ A1 k)
(Dl @) = oy | =0 (DL @ Vaelon. (@
IfA—1>0, then

DLl @) =gy | @0 (DL @ Vacladl.  (210)
If A\—2 >0, then
(DLNHP () = W /m (z =) (DS, f) (t)dt, ¥z € [a,b].

(247)
ete.
In general, if A — m + 1 > 0, then

(D2 ) () = 2ADA=D . A -m+1)

[ =0t ) 0

T(A+1)
(248)
_ A=A -2) ...F((AA—KI)JF DT A—m+1) (Jy_mﬂ) (Diaf)) ()
- (Jy—m“) (D2, f)) (z), V€ lab. (249)
That is, if A\ —m + 1 > 0, then
(D10 (2) = (O™ (D3, 1)) (@), Vwelab].  (250)
We notice that
(D%f) (@) = (D%, (D2,)) (@) = (177 (D)) (@) = (251)
(ST (D2 f)) (@) = (Ja 7 (D2 S)) (2) =
(Jr Dot (D ) ) (@) = (D (DL)) (@), (252)
That is
(D2)) (@) = (70022 (DL ) ) (@), ¥ a e [ab], (253)
under the condition X5 < a < 1.
The theorem is proved. m
We give
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mi <1,

Theorem 47 Under the assumptions of Theorem 45, and when ]

we obtain that

1
T((n+1)

(D f) (z) = o3 /I (z — ¢)(+Da=3r-1 (D£2+1)af) () dt,
’ (254)

V2 € [a,b], and (Di":gf) e O ([a,b], X).

Proof. Call p:=(n+1)a—2y—1,ie. p+1=(n+1)a—2v, and call
0 :=(n+1)«a. Then we can write

(P20 @) = 7057 | Cw— ) (D%f) (0 dt, Yoelad.  (259)
If p > 0, then
(Df;’f)/ () = T (pp+ 0 /uL (z—t)"" (D2.f) ) dt, ¥V x€lab]. (256)

If p—1>0, then

(D% f)" (x) = 16((Z+3/a (z —t)" 2 (D2, f) (t)dt, ¥V a€la,b]. (257)

If p—2 >0, then

plp—1)(p—2)

2y (3) _
(D*af) (.’E)— F(erl)

/ Cw— ) (DO F) (O dt, Ve ah).
‘ (258)
etc.

In general, if p —m + 1 > 0, then

(Dizf)(m) (LE) _ p(pf 1) (P* 2) (P* m + 1) /z (l’ _ t)(p—m+1)—1 (Diaf) (t) dt

I'(p+1)
(259)
plp=1)(p=2)..(p—m+ T (p—m+1) r (,_pn
= o) (Je=m0 (D2, ) ) (@)
- (Jgp—m“) (D2, f)) (z), Vaelab. (260)
That is, if p —m + 1 > 0, then
(D2 1)™ (@) = (S (D, f)) (@), Ve elatl.  (261)

We notice that
(D5 1) @) = (P2, (D) @) = (77 (02N ™) @) = (262)
(T (DI, ) (@) = (J7H (D2))) (@) =
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(021 (D3, 1)) (@) = (a0 (DG ) ) (@) (26

.. 2
That is, if ":;17 < a<l1, we get

(D3 f) (z) = (Jé”“)a*“ (D&T”C’ f)) (z), Yaelab. (264)

The theorem is proved. m
In general, we derive the iterated left fractional derivative formula:

Theorem 48 Under the assumptions of Theorem 45, and when W <
a <1, keN, we obtain that
1 x
Dk — _ p)(ntDa—ky—1 (Di2+1)a ) O dt
(D) () F((n+1)a—k7)/a(m ) 7)) dt,
(265)

V2 € [a,b], and (fogf) € C([a,b], X).
We give

Theorem 49 Let 0 < o < 1, f € C™ ([a,b],X), where (X, |]|) is a Banach
space, m € N. Assume that DE*f € C! ([a,b],X), for k =1,..,n, n € N and
Déﬁﬂ)af € C([a,b],X). Suupose that (Di* f) (b) =0, i = 0,2,3,...,n. Let
v >0 with [v] = m <n+ 1, such that m < (n+ 1) a, equivalently, o > 2=

h n+1-°
Then
_ 1 b (n+l)a—vy—1 (n+1)a
(07N @) = gy [ = (00 0) (e
(266)
V x € [a,b]. Furthermore it holds (D]_f) € C ([a,b],X).
Proof. Here we have that
-1 b W
(D81 @) = ey [ U=0 S (al Veelad.  (6)
We observe that
1 b
b )| € 57— —x)
|05 1) @) < s [ =0 WF D 26
1 b W ,
< Ti—a) (/x (J —x) dJ) 1M e (a1, )
bh— 11—« ,
= (11(23:_)(1) 1M o ([, %) < o0
Hence
1(D5_f) B[ = o, (269)
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that is
(D{j‘ff) (b) =0. (270)
The right Caputo fractional derivative X-valued of order ~ is given by

(_1)77L
I'(m—7)

(D7) (2) = / (= 2)" ) () dz Vo e [a,b],  (271)

Notice that
(D}_f) (x) = (=1)" 1" ™) (z), Y€ [a,b]. (272)

We set D)_f = f, and (Dj" f) (z) = (=1)" f(™) (2), for m € N, V z € [a,}].
By (227) we obtain

f @)= s

b
m/ (z— x)(n-‘rl)a—l (Dl(ﬁﬂ)af) (2)dz, Vaclab.

(273)
Call 6 := (n+ 1) o, then we have

<>—l/b< )DL ) () dz, Ve fab] (274)
f:c—l_‘((;) ’ z— v—f) (2) dz, x € |a,b].

By Theorem 35, when 6 — 1 > 0, we get that there exists

(—1) (6 —1

f(z) = % G ) / (z—2)° 2 (D)_f) (2)dz, ¥xelab]. (275)

If 6 —2 >0, then

12 (5 — _ b
' (z) = 1) (5F (51)) (0-2) /x (z—2) 2 (DJ_f) (2)dz, ¥V x€l[a,b].
(276)
we get that there exists

m

In general, if § —m > 0, equivalently, if o > TR

D)™ 1 (65— 3)

b
£ (z) = 11?;) / (z—2)" " (DY_f) (2)dz, V€ la,b].
’ (277)
By Theorem 11, we get f(™) € C ([a,b],X) .
By (218), we derive
()™ T1 (6= )T (0 —m) (L=" (D§_f)) (=)
£ (@) = L (278)

I'(9)

= ()" (=™ (DS_f)) (), Y aelab].
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We have proved that
F (@) = ()™ (52" (D)) (2), V@ € [a,b]. (279)

We have that (case of v < m)

(D) @) = (=)™ (77 (@) = (=1 (7 (1= (D)) (=)

(280)
_ (zg:V (Dg,f)) (z), Vaelab.
That is
(D_f) (@) = (R0 (D02 r) ) @), Yaelad].  (281)
Le. we have found the representation formula:
(1) @)= prra—y [ 0 (D) ()
(282)

Vxelab.

The last formula (282) is true under the assumption (n+ 1)« > m, and
since m > =, it implies (n + 1)a > v and (n+ 1) o — v > 0. Furthermore, by
Theorem 11, we get that (D}_f) € C ([a,b], X).

The theorem is proved. m

We continue with

Theorem 50 Under the assumptions of Theorem 49, and when % <a<l,
we get that
2 1 ’ (n+1)a—2v—1 [ (n+1)
(03 @ = sa=s | G- ) () d
(283)

Y z € [a,b]. Furthermore it holds (Dilf) € C(la,b],X).

Proof. Call A := (n+1l)a—vy—1,ie. A+1=(n+1)a— 1, and call
0 := (n+1) . Then we can write

b
(Dy_f) (z) = 11()\1_~_1)/ (z —x)* (Dg_f) (2)dz, V€ la,b]. (284)
If A > 0, then
B b
(Dgff)/ (z) = I‘(()\l—?—)\l)/ (z—a) " (Dgff) (2)dz, ¥V x €la,b]. (285)
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If A\—1>0, then

T2y 1) b
(DZ_f)” (z) = (112(;\5_)\1)1)/ (z — SE)A_Q (Dg_f) (2)dz, V x€la,b].
(286)
IfA—2>0, then
1) _ _ b
(Dg,f)(S) (z) = 1) AP(()\)\ +11))()\ 2) / (z — x)/\_?’ (Dgff) (2)dz, V x € a,b].
(287)

etc.
In general, if A\ — m + 1 > 0, then

(D1_f)"™ (x) =

(=D A(A IZ((§\+i))(A +1)/I (Z_x)()\ m+1) (D;f,f) (2) dz
D)™ AN =D A=2) .0 —m+ )T (A —m+1) (J;i*’”*” (Dg,f)) ()
- T(A+1)
(288)
= ()" (12 (D)) (@), ¥ w € fat)].
That is, if A—m + 1 > 0, then
(D3N @) = (0" (B (D) f)) (0), Veelatl.  (289)
‘We notice that
(D321) @) = (D (DY) (@) = ()" (5 (D)™ () =
(1™ (R (D) (@) = (B (D)) (@) = (290)
(Ilgrl-i-l)a—y—l—w-i-l (D;‘f_f)) (z) = (IISTH)Q_% (D;‘f_f)) (),
V€ lab.
That is
(Dil f) (z) = (Igi“)“*” (Dé’i*”“ f)) (z), Yzelab), (201)

under the condition % <a<l.
The theorem is proved. m
We give
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m—+2~y

Theorem 51 Under the assumptions of Theorem 49, and when o <a<l,
we get that
1 b
D3 ) _ / (i la—3y-1 (D(n+1)a > d
(P1) @ = s na=s L 9 ) () dz,
(292)

Yz € [a,b], and (Dizf) € C(jab], X).

Proof. Call p:=(n+1)a—2y—1,ie. p+1=(n+1)a— 2y, and call
again 0 := (n + 1) . Then we can write

2y 1 ’ p
(Db_ f) (z) = TPy / (z—2)" (D{_f) (2)dz, Yaelab]. (293)

If p > 0, then

’ _ b
(Dgif) () = F((p1—|)—p1) /I (2 — x)pﬁl (Dgff) (2)dz, ¥z €la,bl. (294)

If p—1 >0, then

" _1)2 _ b
(Diif) (x) = WL (z— )2 (D)_f) (2)dz, Y€ [ab].
(295)

If p—2 >0, then

_1)3 _ _ b
(Dgif) @ (z) = (=D7ple=1(p=2) / (z—z)" 3 (Dgff) (2)dz, YV x € la,b].

L'(p+1)
(296)
etc.
In general, if p —m + 1 > 0, then
(077) ™ @) =
D" plp=1)(p=2)..(p—m+1) [* (p—m+1)—1
Tt /w (z —x) * (Dgff) (2)dz
(297)
D=V (p=2) e (p=m+ DT (p—m+1) (L2 (D)_f)) (@)
a L (p+1)
= ()" (12" (Df)) (@), V€t (298)
That is, if p—m + 1 > 0, then
(07) " @) = O™ (10 (D)) @), Yaelad. (200

o1



‘We notice that

(0121) @) = (D1 (p221)) @) = (0™ (577 (3) ™) ) =
(=0 (B = (D)) @) = (527 (D)) (@) = (300)
(Iéﬁ*”"‘“‘l‘”“ (D{jﬁ”‘sf)) (z) = (I,ﬁﬁ*”“‘?’” (D}jj“)“f)) (z), Yz €lab].
That is, if m+2'y <a<l1, we get
(Dg"lf) (z) = (Igﬁ“)“*“ (Dé’i*”"‘ f)) (), Yzelab. (301)

We have proved the theorem. m
In general, we derive the iterated right fractional derivative formula:

m+(k—1)y

Theorem 52 Under the assumptions of Theorem 49, and when ] <
a <1, ke N, we get that:
(Dkwf) () = 1 /b (o z)(n+1)a_k»y_1 (D(n—i-l)af) (2) dz
b= F((n+)a—ky) J, b— ’
(302)

YV z € [a,b], and (ijf) € C([a,b],X).
Next we give a related generalized fractional Ostrowski type inequality:

Theorem 53 Let g € C! ([a,b]) and strictly increasing, such that g=* € C* ([g (a), g (b)]),
and 0 < a < 1, n € N, f € C([a,b],X), where (X,]||) is a Banach space.
Let xg € [a,b] be fived. Assume that F° = = Dk>_f fork = 1,..,n, ful-

ro—;g

fill B € C'(la,b],X) and F9, € C([a xo), X) and (D;?)fgf)( 0) = 0,
1=1,..,n
Similarly, we assume that G}.° = Dljsq_ of s for k = 1,....n, fulfill G}* €

C* ([z0,b], X) and G7% € ([x0,b],X) and (D, f) (x0) =0,i=1,...,n

Then e
b
o [ @ f ) 1

S—aT(ntDatl)

{@aﬁ—gmw%“”a )| DG
[0,0]
(9/(w0) = 9.(a) " (w0 —a) [ D] ]}. (303)
00, |a,To
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Proof. By (171), we obtain

F)-f @) = iy [ @O - a@) ™0 g 0 (04508 (e

s a)
(304)
YV x € [a,zo] -
Hence it holds
If (@) = f (wo)l] <

m / P90 - g @) g 0 [(DSeer) @] ae < (305)

(n+1)af

Zo—39g

sorfao] (g (o) — g (z))"THe
H+1)a) (n+la
We have proved that

(m))(n-i-l)oz (n+1)a
To—39

If (z) = f (x0)]| < (9 (z0) — g

T((n+1)a+l) (306)

00, [a,z0]

Y x € [a,zo) .
Also, by (155), we obtain

P10 = e [ 0@ =9@) g @) (DL ) 0
" (307)
V.’EE[x(),b].
Hence
(g(z)—g (fo))(nﬂ)a (n+1)o
I @) - f o)l < Ut ol eos)
YV x € [z0,b].
Next we see that
b
e [t seo)| = | [ e - sew] <
(wo)|| do = (309)
bia{/a I @)~ f a0 \dx+/ I @)~ £ (o |dac}_
1 o 2) — o ()P (n+1)a
<b—a>r<<n+1>a+1>{</a (g (z0) =9 (=) d> Do 510
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0

’ 1
’ (/ (g (x) — g ()" dx) HD:(,:Zi;g)af

| <
00,[zg,b]

{toa0) = 9 @)™ (a0 - ) | D511

‘OO,[:L‘(),b]} ’

One can prove many analytic inequalities based on this Banach space setting

1
b—a)T (n+Da+l)

‘007[a,x0]

(311)

+ (9 (b) = g (20)) "V (b= wo) | DGTL" f

proving the claim. m

and our many results presented here. Since this article turns out to be very long
we choose to omit this interesting task leaving it to others.

4 Applications

We make
Remark 54 Some examples for g follow:

g(x)=z, x€]la,bl,

g(z)=e*, z€la,b CR, (312)

also
igi ; EZLQ;, when z € [a,b] == [-5 +¢&,5 —¢], € >0 small, (313)

and
g (z) =cosz, when x € [a,b] ;= [1+¢,2m —¢], € >0 small. (314)

Above all g’s are strictly increasing, g € C* ([a,b]), and g=1 € C™ ([g (a), g (b)]),
for any n € N.

We give

Theorem 55 Let n € N and f € C™ ([a,b],X), where [a,b] C R and (X, |-|))
is a Banach spacze. Let any .,y € [a,b]. Then

f@ =1+ Y Co om0 4 Ry (), (1)
where
Ry (y,z,€') o i il /yz (e —e)" Y(foln)™ (e") e'dt = (316)
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Proof. By Corollary 9, for g (t) = ¢t. m

We give
Theorem 56 Here [a,b] C R, (X,]]|) is a Banach space, F : [a,b] — X. Let
r>0and F € Ly ([a,b],X) and

G(s) = / (5 — ) TP (1) dt, (317)
all s € [a,b]. Then G € AC ([a,b],X) forr > 1 and G € C ([a,b],X) for
€(0,1).
Proof. By Theorem 10. m
We present
Theorem 57 Let a > 0, n = [a], and f € C" ([-% +¢,% —¢|,X), where
€ >0 is small, and (X, ||-||) is a Banach space, =5 +e<x <5 —¢
Then
S e (<) L w (o
1= ( 48 BT o (1))
= (318)

1 v . . a—1 o
/ .. (sinz —sint)™" " cost (D(_%+E)+;Sinf) (t)dt
-
n—1 . .
(sinz —sin (=% +¢)) NG 0
+i:1 ] (fosm ) (sm(—§+€))+

g

&h
/|\
vl 3
_|_
m
N——

1 /:i” (sinz — 2)°! ((D?—%+e)+;sinf) © Sin_l) () dz.

r (Oé) in(ngre)
Proof. By Theorem 18. m
We continue with

Theorem 58 Let « > 0, n = [«], and f € C" ([
e >0 is small, and (X, ||-||) is a Banach space, —% +5 <z<§-—e

s+e 3 75] ,X), where

Then

() S 5

f(x) =
/’2’ (tant — tanz)* " sec? ¢ (Défg),;tanf) (t)dt = (319)
- B o )
i=1

™

tan 2 =
— / (z — tanz)” ((D
I'(a) 3¢

tanx



Proof. By Theorem 19. m
We derive

Theorem 59 Let 0 < a <1, n e N, f € C'([a,b],X). Let Fy, := DI . f,
k=1,...,n, that fulfill F}, € C* ([a,b], X) and Fp11 € C([a,b],X). Then

> e @+ (320)

1=0

; /x (eﬂf _ et)(n-i-l)a—l et (D(n+1)af) (t) dt
I'((n+1)a) /o ot ’
vV z € [a,b].
Proof. By Theorem 30. m
We further have

Theorem 60 Let 0 < a < 1, n € N, f € Cl([—g—kag—s],X), e >
0, small. Suppose that Fj := D’(“f f, for k = 1,....n, fulfill F}, €
2

z —6)—;tan

Ct ([—g Jre,gfe] ,X) and Fp 41 Gc([,ngs,g,s] 7X). Then

95 oy ) (e o

=0

(5-<)
ML (nt—tana)* 7 e (2 ) 0

Vie[-Z+e L —¢l.

Proof. By Theorem 33. m
We give the following Ostrowski type fractional inequality:

Theorem 61 Let 0 < a < 1, n € N, f € C'([a,b],X), where (X, |||) is
a Banach space, zo € [a,b]. Assume that F'° := DKo . f fork =1,..,n,

ro—;
fulfill F,f“ € C' ([a, o], X) and F,,%, € C ([a,xo], X) and (Di‘z‘_ etf) (z0) =
1=1,.
Szmzlarly, we assume that G}° = Dk§+ o fs for k= 1,..n, fulfill G{° €
C (20, b], X) and G, € C ([xo,b], X) and (Dm +etf) (z ) —0,i=1,...n
Then

1
= b—a)T(n+1Da+1)

b
o [ T @ f ) (322)

{(eb . e:po)(nJrl)a (b — o) HD(7L+1)af

zo+;et

’00’[960,17]

0, arg]}.

(egpo —e )(’I‘L+1 HD(TL—‘rl
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Proof. By Theorem 53 for g (t) = e!. m
We finish with

Theorem 62 Let 0 < a < 1, n € N, f € C'([r+¢&,2n—¢],X), ¢ > 0
small, where (X,||-||) is a Banach space, xy € [7+¢,2m —¢]. Assume that
F7P0 := Dke [, for k=1,..n, fulfill F° € C*([r +¢,20],X) and Fiy, €

To—;CoS i
C([r+e,20],X) and (D2 _..oof) (x0) =0, i=1,...,n.

Tro—
Similarly, we assume that G}° = D§3+;cosf’ for k =1,...,n, fulfill G;° €
C! ([xo, 27 — €], X) and Gy € C([zo,2m — €], X) and (Dzz(;+;cosf) (z9) =0,
1=1,..,n.

Then

1
= (mr=2e)T((n+1)a+1)

2w—e
o [ f@de )

T =2 Jr1e

+

xo+;cos

{(cos (2w —¢€) — cos xo)(nﬂ)o‘ (2m — e — x9) HD("H)O‘f

‘OO,[:E(),QTK‘*E]

(cos g — cos (1 + &))" TV (mg — 7 — &) HD(nH)af ‘ [ ]} : (323)
oo, |m+¢€,70

To—;Cos

Proof. By Theorem 53 for g (t) = cosine. m
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