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Abstract

Here we present a general fractional analysis theory for Banach space
valued functions of real domain. A series of general Taylor formulae with
Bochner integral remainder is presented. We discuss the continuity of gen-
eral Riemann-Liouville Bochner fractional integrals and we prove their
semigroup property. Then we introduce the right and left generalized
Banach space valued fractional derivatives and we establish the corre-
sponding fractional Taylor formulae with Bochner integral remainders.
Furthermore we study the iterated generalized left and right fractional
derivatives and we establish Taylor formulae for the case, and we �nd in-
teresting Bochner integral representation formulae for them. We study the
di¤erentiation of the left and right Riemann-Liouville fractional Bochner
integrals. At the end we give Ostrowski type inequalities on this general
setting, plus other interesting applications.

2010 AMS Subject Classi�cation: 26A33, 26D10, 46B25, 46E40.
Key Words and Phrases: Right and left and iterated generalized frac-

tional derivatives, generalized Taylor�s formulae, generalized fractional Taylor�s
formulae, Banach space valued functions and Bochner integral, integral inequal-
ities.

1 Introduction

An account of our work follows: This paper deals with essential aspects of
fractional analysis for Banach space valued functions of a real domain. We
pursue our results to the greatest possible generality within our setting�s limits.
The related Fundamental Theorem of Calculus (FTC), by [12], Theorem 2 here,
plays a pivotal role in this article, without it would not have been written.
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Based on this we produce various very general Taylor formulae with integral
remainders, these are with respect to a parameter function, see Theorems 3, 4,
5, 6, 7, and Corollaries 8, 9. In all these the Hausdor¤ measure is the key to
generality. All the above so far belong to section 2, about auxiliary results.
The main results in section 3 unfold by giving �rst some continuity the-

orems for parameter function Bochner integrals involving a general fractional
kernel and de�ning functions of the second parameter variable, see Theorems 10,
11. We next de�ne the right and left Riemann-Liouville generalized fractional
Bochner integral operators, see De�nitions 12, 14, and we prove the semigroup
property under composition over continuous Banach space valued functions, see
Theorems 13, 15.
Then based on the last we de�ne the Banach valued right and left generalized

fractional derivatives, Caputo style, see De�nitions 16, 17. The next step is to
give related generalized fractional Taylor formulae, see Theorems 18, 19.
We continue with the Canavati style ([7]) generalized fractional Calculus

for Banach space valued functions. We introduce the generalized related right
and left fractional derivatives and produce Taylor formulae, see Theorems 20, 21.
We continue with the Canavati type iterated fractional integrals and derivatives,
right and left with a parameter function. The results are right and left iterated
fractional Taylor formulae of Canavati type, see Theorems 24, 27.
We continue with right and left iterated fractional Taylor formulae of Caputo

type, see Theorems 30, 33. We apply these when the parameter function is the
identity map, see Theorems 43, 44.
Then we establish some very important di¤erentiation theorems, see Theo-

rems 34, 35, regarding di¤erentiation of right and left Riemann-Liouville frac-
tional Bochner integrals. Based on the last properties we develop representation
formulae for the right and left iterated fractional derivatives of Caputo type for
Banach space valued functions, see Theorems 45, 46, 47 and 48, and Theorems
49, 50, 51 and 52. Our results potentially have great applications in the theory
of fractional ordinary and partial di¤erential equations, analytic inequalities,
approximation theory, and in general computational analysis.
Due to the length of article we only give applications to the well-known

Ostrowski inequalities, here at the fractional level, generalized, and for Banach
space valued functions. We present the general Theorem 53, then we apply
this Ostrowski inequality for speci�c parameter functions such as et, cos t, see
Theorems 61, 62.
We also give applications of our major fractional Taylor formulae, see The-

orems 55, 56, 57, 58, 59, 60, the parameter functions now are et; sin t; tanx.
Applications belong to section 4.
Overall we feel this article opens new research frontiers in the fractional

calculus study and many papers can be written based on it.
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2 Auxilliary Results

All integrals here are of Bochner type, see [9]. We need

De�nition 1 ([12]) A de�nition of the Hausdor¤ measure h� would go as fol-
lows: if (T; d) is any metric space, A � T and � > 0, let � (A; �) be the set of all
arbitrary collections (C)i of subsets of T , such that A � [iCi and diam (Ci) � �
for every i. Now, for every � > 0 de�ne

h�� (A) := inf
nX

(diamCi)
� j (Ci) 2 � (A; �)

o
: (1)

Then there exists lim�!0 h
�
� (A) = sup�>0 h

�
� (A) and h� (A) := lim�!0 h

�
� (A)

gives an outer measure on power set P (T ) which is countable additive on the
�-�eld of all Borel subsets of T .
If T = Rn, the Hausdor¤ measure hn, restricted to the �-�led of the Borel

subsets of Rn, is identical to the Lebesgue measure on Rn up to a constant
multiple. In particular, h1 (C) = � (C) for every Borel set C � R, where � is
the Lebesgue measure on R.

We also need

Theorem 2 ([12]) (Fundamental Theorem of Calculus) Suppose that for the
given

f : [a; b]! X, (X; k�k) is a Banach space,

there exists F : [a; b]! X, which is continuous, the derivative F 0 (t) exists and
F 0 (t) = f (t) outside a �-null Borel set B � [a; b] such that

h1 (F (B)) = 0:

Then f is a strongly �-measurable and if we assume the Bochner integrability
of f ,

F (b)� F (a) =
Z b

a

f (t) dt: (2)

We have

Theorem 3 Let n 2 N and f 2 Cn�1 ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach space. Let g 2 C1 ([a; b]), such that g�1 2 Cn (g ([a; b])). Set

F (x) :=
n�1X
i=0

(g (b)� g (x))i

i!

�
f � g�1

�(i)
(g (x)) ; 8 x 2 [a; b] : (3)

Assume that
�
f � g�1

�(n)�g exists outside a � (Lebesgue measure)-null Borel set
B � [a; b] such that h1 (F (B)) = 0. We further assume the Bochner integrability
of
�
f � g�1

�(n) � g:
3



Then

f (b) = f (a) +
n�1X
i=1

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a))+ (4)

1

(n� 1)!

Z b

a

(g (b)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx:

Proof. We get that F 2 C ([a; b] ; X) : We get that

F 0 (x) =
(g (b)� g (x))n�1

(n� 1)!
�
f � g�1

�(n)
(g (x)) g0 (x) ; (5)

8 x 2 [a; b]�B. Also F 0 is Bochner integrable.
Notice that F (b) = f (b), and

F (a) =

n�1X
i=0

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a)) : (6)

We have (by Theorem 2)

F (b)� F (a) =
Z b

a

F 0 (t) dt: (7)

Thus

f (b)�
n�1X
i=0

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a)) = (8)

1

(n� 1)!

Z b

a

(g (b)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx;

proving the claim.
We have

Theorem 4 Let n 2 N and f 2 Cn�1 ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach space. Let g 2 C1 ([a; b]), such that g�1 2 Cn (g ([a; b])). Set

F (x) :=
n�1X
i=0

(g (a)� g (x))i

i!

�
f � g�1

�(i)
(g (x)) ; 8 x 2 [a; b] : (9)

Assume that
�
f � g�1

�(n)�g exists outside a � (Lebesgue measure)-null Borel set
B � [a; b] such that h1 (F (B)) = 0. We further assume the Bochner integrability
of
�
f � g�1

�(n) � g:
Then

f (a) = f (b) +
n�1X
i=1

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+ (10)

1

(n� 1)!

Z a

b

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx:
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Proof. We get that F 2 C ([a; b] ; X) : Then we have

F 0 (x) =
(g (a)� g (x))n�1

(n� 1)!
�
f � g�1

�(n)
(g (x)) g0 (x) ; (11)

8 x 2 [a; b]�B. Also F 0 is Bochner integrable.
Notice here F (a) = f (a), and

F (b) =
n�1X
i=0

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b)) : (12)

We have (by Theorem 2)

F (b)� F (a) =
Z b

a

F 0 (t) dt: (13)

That is, we obtain

n�1X
i=0

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b))� f (a) = (14)

1

(n� 1)!

Z b

a

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx =

� 1

(n� 1)!

Z a

b

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx:

proving (10).
In Bochner integrals the change of variable is a questionable matter, a posi-

tive answer follows:

Theorem 5 Let ' be a strictly increasing function in C1 ([a; b]), and ' : [a; b]!
[�; �] with ' (a) = �, ' (b) = �, a < b. Assume that '�1 2 AC ([�; �]) (ab-
solutely continuous functions). Let F : [�; �]! X be continuous, where (X; k�k)
is a Banach space. Assume that the derivative F 0 exists outside a � (Lebesgue)-
null Borel set W � [�; �] such that h1 (F (W )) = 0, and F 0 is Bochner inte-
grable.
Then Z '(b)

'(a)

F 0 (t) dt =

Z b

a

F 0 (' (t))'0 (t) dt: (15)

Proof. By Theorem 2, we get that

F (�)� F (�) =
Z �

�

F 0 (t) dt: (16)
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I.e.

F (' (b))� F (' (a)) =
Z '(b)

'(a)

F 0 (t) dt: (17)

Consider the function

H (t) := F (' (t)) , a � t � b:

Then H : [a; b]! X is a continuous function.
Then the derivative H 0 (t) = F 0 (' (t))'0 (t) exists outside the �-null Borel

set (see [11], p. 108, exercise 14) B := '�1 (W ) � [a; b], such that

h1 (H (B)) = h1
�
H
�
'�1 (W )

��
= h1

�
F
�
'
�
'�1 (W )

���
= h1 (F (W )) = 0:

That is h1 (H (B)) = 0:
Here H 0 is Bochner integrable by:





Z b

a

H 0 (t) dt






 �
Z b

a

kH 0 (t)k dt =
Z b

a

kF 0 (' (t))k'0 (t) dt (by [6], [10]) (18)

=

Z �

�

kF 0 (t)k dt <1:

Again by Theorem 2, we get that

F (�)� F (�) = F (' (b))� F (' (a)) = H (b)�H (a) = (19)Z b

a

H 0 (t) dt =

Z b

a

F 0 (' (t))'0 (t) dt;

proving the claim.
Using the methods of Theorem 5 we get

Theorem 6 Let n 2 N and f 2 Cn�1 ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that g�1 2
Cn ([g (a) ; g (b)]). Set

G (z) :=
n�1X
i=0

(g (b)� z)i

i!

�
f � g�1

�(i)
(z) ; 8 z 2 [g (a) ; g (b)] : (20)

Assume that
�
f � g�1

�(n)
exists outside a �-null Borel set W � [g (a) ; g (b)]

such that h1 (G (W )) = 0, and
�
f � g�1

�(n)
is Bochner integrable.

Then

f (b) = f (a) +
n�1X
i=1

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a)) +Rn (a; b; g) ; (21)
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where

Rn (a; b; g) :=
1

(n� 1)!

Z b

a

(g (b)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx

=
1

(n� 1)!

Z g(b)

g(a)

(g (b)� z)n�1
�
f � g�1

�(n)
(z) dz: (22)

Proof. Notice that G 2 C ([g (a) ; g (b)] ; X) :We also notice the existence of

G0 (z) =
(g (b)� z)n�1

(n� 1)!
�
f � g�1

�(n)
(z) ; (23)

8 z 2 [g (a) ; g (b)]�W , and furthermoreG0 is Bochner integrable over [g (a) ; g (b)] :
By Theorem 2 now we get that

G (g (b))�G (g (a)) =
Z g(b)

g(a)

G0 (t) dt = (24)

1

(n� 1)!

Z g(b)

g(a)

(g (b)� z)n�1
�
f � g�1

�(n)
(z) dz:

Here we have
G (g (b)) =

�
f � g�1

�
(g (b)) = f (b) ;

and

G (g (a)) =
n�1X
i=0

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a)) : (25)

We have proved that

f (b) = f (a) +

n�1X
i=1

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a))+ (26)

1

(n� 1)!

Z g(b)

g(a)

(g (b)� z)n�1
�
f � g�1

�(n)
(z) dz:

Consider the function

H (x) := G (g (x)) ; a � x � b;

then H : [a; b]! X is a continuous function.
Then the derivative H 0 (x) = G0 (g (x)) g0 (x), exists outside the �-null Borel

set (see [11], p. 108, exercise 14) B := g�1 (W ) � [a; b], such that

h1 (H (B)) = h1
�
H
�
g�1 (W )

��
= h1

�
G
�
g
�
g�1 (W )

���
= h1 (G (W )) = 0:

(27)
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That is h1 (H (B)) = 0:
Here H 0 is Bochner integrable by:





Z b

a

H 0 (t) dt






 �
Z b

a

kH 0 (t)k dt =
Z b

a

kG0 (g (x))k g0 (x) dx (by [10]) (28)

=

Z g(b)

g(a)

kG0 (t)k dt <1:

Again by Theorem 2, we get that

G (g (b))�G (g (a)) = H (b)�H (a) =
Z b

a

H 0 (t) dt =

Z b

a

G0 (g (t)) g0 (t) dt: (29)

Finally we see that

f (b)�
n�1X
i=1

(g (b)� g (a))i

i!

�
f � g�1

�(i)
(g (a)) = (30)

1

(n� 1)!

Z b

a

(g (b)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx;

proving the claim.
Using methods from Theorem 5 we get

Theorem 7 Let n 2 N and f 2 Cn�1 ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that g�1 2
Cn ([g (a) ; g (b)]). Set

G (z) :=

n�1X
i=0

(g (a)� z)i

i!

�
f � g�1

�(i)
(z) ; 8 z 2 [g (a) ; g (b)] : (31)

Assume that
�
f � g�1

�(n)
exists outside a �-null Borel set W � [g (a) ; g (b)]

such that h1 (G (W )) = 0, and
�
f � g�1

�(n)
is Bochner integrable.

Then

f (a) = f (b) +
n�1X
i=1

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b)) +Rn (b; a; g) ; (32)

where

Rn (b; a; g) :=
1

(n� 1)!

Z a

b

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx

=
1

(n� 1)!

Z g(a)

g(b)

(g (a)� z)n�1
�
f � g�1

�(n)
(z) dz: (33)
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Proof. Notice that G 2 C ([g (a) ; g (b)] ; X) :We also notice the existence of

G0 (z) =
(g (a)� z)n�1

(n� 1)!
�
f � g�1

�(n)
(z) ; (34)

8 z 2 [g (a) ; g (b)]�W , and furthermoreG0 is Bochner integrable over [g (a) ; g (b)] :
By Theorem 2 now we get that

G (g (b))�G (g (a)) =
Z g(b)

g(a)

G0 (t) dt = (35)

1

(n� 1)!

Z g(b)

g(a)

(g (a)� z)n�1
�
f � g�1

�(n)
(z) dz =

�1
(n� 1)!

Z g(a)

g(b)

(g (a)� z)n�1
�
f � g�1

�(n)
(z) dz:

Here we have

G (g (b)) =
n�1X
i=0

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b)) ; (36)

and
G (g (a)) = f (a) :

We have proved that

n�1X
i=0

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b))� f (a) = (37)

� 1

(n� 1)!

Z g(a)

g(b)

(g (a)� z)n�1
�
f � g�1

�(n)
(z) dz:

That is, it holds

f (a) = f (b) +

n�1X
i=1

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+ (38)

1

(n� 1)!

Z g(a)

g(b)

(g (a)� z)n�1
�
f � g�1

�(n)
(z) dz:

Consider the function

H (x) := G (g (x)) ; a � x � b;

then H : [a; b]! X is a continuous function.
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Then the derivative H 0 (x) = G0 (g (x)) g0 (x), exists outside the �-null Borel
set (see [11], p. 108, exercise 14) B := g�1 (W ) � [a; b], such that

h1 (H (B)) = h1
�
H
�
g�1 (W )

��
= h1

�
G
�
g
�
g�1 (W )

���
= h1 (G (W )) = 0:

That is h1 (H (B)) = 0:
Here H 0 is Bochner integrable by:





Z b

a

H 0 (t) dt






 �
Z b

a

kH 0 (t)k dt =
Z b

a

kG0 (g (x))k g0 (x) dx (by [10]) (39)

=

Z g(b)

g(a)

kG0 (t)k dt <1:

Again by Theorem 2, we get that

G (g (b))�G (g (a)) = H (b)�H (a) =
Z b

a

H 0 (t) dt =

Z b

a

G0 (g (t)) g0 (t) dt: (40)

Finally, we see that

n�1X
i=0

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b))� f (a) =

1

(n� 1)!

Z b

a

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx = (41)

� 1

(n� 1)!

Z a

b

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx:

Equivalently we have

f (a) = f (b) +
n�1X
i=1

(g (a)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+ (42)

1

(n� 1)!

Z a

b

(g (a)� g (x))n�1
�
f � g�1

�(n)
(g (x)) g0 (x) dx;

proving the claim.
Based on the Theorems 3, 4 we give

Corollary 8 Let n 2 N and f 2 Cn ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach space. Let g 2 C1 ([a; b]), such that g�1 2 Cn (g ([a; b])). Let any
x; y 2 [a; b].
Then

f (x) = f (y) +
n�1X
i=1

(g (x)� g (y))i

i!

�
f � g�1

�(i)
(g (y))+ (43)

1

(n� 1)!

Z x

y

(g (x)� g (t))n�1
�
f � g�1

�(n)
(g (t)) g0 (t) dt:
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Proof. Notice in Theorems 3, 4 that F (?) = ?, where B = ?, and
h1 (?) = � (?) = 0, where � is the Lebesgue measure, and

�
f � g�1

�(n) � g is
continuous over [a; b] :
We also have

Corollary 9 Let n 2 N and f 2 Cn ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach space. Let g 2 C1 ([a; b]),strictly increasing, such that g�1 2
Cn ([g (a) ; g (b)]). Let any x; y 2 [a; b]. Then

f (x) = f (y) +
n�1X
i=1

(g (x)� g (y))i

i!

�
f � g�1

�(i)
(g (y)) +Rn (y; x; g) ; (44)

where

Rn (y; x; g) =
1

(n� 1)!

Z x

y

(g (x)� g (t))n�1
�
f � g�1

�(n)
(g (t)) g0 (t) dt = (45)

1

(n� 1)!

Z g(x)

g(y)

(g (x)� z)n�1
�
f � g�1

�(n)
(z) dz:

Proof. By Theorems 6, 7.

3 Main Results

We need

Theorem 10 Here [a; b] � R, (X; k�k) is a Banach space, F : [a; b] ! X,
g 2 C1 ([a; b]) and increasing. Let r > 0 and F 2 L1 ([a; b] ; X), and the
Bochner integral

G (s) :=

Z s

a

(g (s)� g (t))r�1 g0 (t)F (t) dt; (46)

all s 2 [a; b]. Then G 2 AC ([a; b] ; X) (absolutely continuous) for r � 1 and
G 2 C ([a; b] ; X) for r 2 (0; 1) :

Proof. Denote by kFk1 := kFkL1([a;b];X) := es sup
t2[a;b]

kF (t)kX < +1:Hence

F 2 L1 ([a; b] ; X). By Theorem 5.4, p. 101, [9], (g (s)� g (t))r�1 g0 (t)F (t) is a
strongly measurable function in t, t 2 [a; s], s 2 [a; b] :
So that (g (s)� g (t))r�1 g0 (t)F (t) 2 L1 ([a; s] ; X), see [6]. Notice for above

that we used Z s

a

(g (s)� g (t))r�1 g0 (t) dt = (g (s)� g (a))r

r
; (47)
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by [11], p. 107, exercise 13d.
1) Case r � 1. We use the de�nition of absolute continuity. So for every

" > 0 we need � > 0 : whenever (ai; bi), i = 1; :::; n; are disjoint open subintervals
of [a; b], then

nX
i=1

(bi � ai) < � )
nX
i=1

kG (bi)�G (ai)k < ": (48)

If kFk1 = 0, then G (s) = 0, for all s 2 [a; b], the trivial case and all ful�lled.
So we assume kFk1 6= 0. Hence we have (see [5])

G (bi)�G (ai) =
Z b

a

(g (bi)� g (t))r�1 g0 (t)F (t) dt�

Z ai

a

(g (ai)� g (t))r�1 g0 (t)F (t) dt =Z ai

a

(g (bi)� g (t))r�1 g0 (t)F (t) dt�
Z ai

a

(g (ai)� g (t))r�1 g0 (t)F (t) dt+
(49)Z bi

ai

(g (bi)� g (t))r�1 g0 (t)F (t) dt =

(see [1], p. 426, Theorem 11.43)Z ai

a

�
(g (bi)� g (t))r�1 � (g (ai)� g (t))r�1

�
g0 (t)F (t) dt+

Z bi

ai

(g (bi)� g (t))r�1 g0 (t)F (t) dt:

Call

Ii :=

Z ai

a

���(g (bi)� g (t))r�1 � (g (ai)� g (t))r�1��� g0 (t) dt: (50)

Thus

kG (bi)�G (ai)k �
�
Ii +

(g (bi)� g (ai))r

r

�
kFk1 := Ti: (51)

If r = 1, then Ii = 0, and

kG (bi)�G (ai)k � kFk1 (g (bi)� g (ai)) � kFk1 kg
0k1 (bi � ai) ; (52)

for all i = 1; :::; n:
If r > 1, then sinceh

(g (bi)� g (t))r�1 � (g (ai)� g (t))r�1
i
� 0;

12



for all t 2 [a; ai], we �nd

Ii =

Z ai

a

�
(g (bi)� g (t))r�1 � (g (ai)� g (t))r�1

�
g0 (t) dt = (53)

Z g(ai)

g(a)

�
(g (bi)� z)r�1 � (g (ai)� z)r�1

�
dz =

(g (bi)� g (a))r � (g (ai)� g (a))r � (g (bi)� g (ai))r

r
=

r (� � g (a))r�1 (g (bi)� g (ai))� (g (bi)� g (ai))r

r
;

for some � 2 (g (ai) ; g (bi)) :
Therefore, it holds

Ii �
r (g (b)� g (a))r�1 (g (bi)� g (ai))� (g (bi)� g (ai))r

r
; (54)

and �
Ii +

(g (bi)� g (ai))r

r

�
� (g (b)� g (a))r�1 (g (bi)� g (ai)) : (55)

That is
Ti � kFk1 (g (b)� g (a))

r�1
(g (bi)� g (ai)) ; (56)

so that

kG (bi)�G (ai)k � kFk1 (g (b)� g (a))
r�1 kg0k1 (bi � ai) ; (57)

for all i = 1; :::; n:
So in the case of r = 1, and by choosing � := "

kg0k1kFk1
, we get

nX
i=1

kG (bi)�G (ai)k
(52)
� kFk1 kg

0k1

 
nX
i=1

(bi � ai)
!

(58)

� kFk1 kg
0k1 � = ";

proving for r = 1 that G is absolutely continuous. In the case of r > 1, and by
choosing � := "

kg0k1kFk1(g(b)�g(a))
r�1 ; we get

nX
i=1

kG (bi)�G (ai)k
(57)
� kFk1 kg

0k1 (g (b)� g (a))
r�1

nX
i=1

(bi � ai) (59)

< kFk1 kg
0k1 (g (b)� g (a))

r�1
� = ";

proving for r > 1 that G is absolutely continuous again.

13



2) Case of 0 < r < 1. Let ai� ; bi� 2 [a; b] : ai� � bi� and then g (ai�) � g (bi�).
Then (g (ai�)� g (t))r�1 � (g (bi�)� g (t))r�1 ; for all t 2 [a; ai�): Hence

Ii� =

Z ai�

a

�
(g (ai�)� g (t))r�1 � (g (bi�)� g (t))r�1

�
g0 (t) dt =

((g (ai�)� g (a))r � (g (bi�)� g (a))r)
r

+
(g (bi�)� g (ai�))r

r
� (60)

(g (bi�)� g (ai�))r

r
� kg0kr1

r
(bi� � ai�)r ;

by [(g (ai�)� g (a))r � (g (bi�)� g (a))r] < 0:
Therefore

Ii� �
kg0kr1
r

(bi� � ai�)r (61)

and

Ti� � 2 kFk1
kg0kr1
r

(bi� � ai�)r ; (62)

proving that

kG (bi�)�G (ai�)k �
�
2 kFk1 kg0k

r
1

r

�
(bi� � ai�)r : (63)

The last inequality proves that G is continuous for r 2 (0; 1). The theorem is
proved.
We also need

Theorem 11 Here [a; b] � R, (X; k�k) is a Banach space, F : [a; b] ! X,
g 2 C1 ([a; b]) and increasing. Let r > 0 and F 2 L1 ([a; b] ; X), and the
Bochner integral

G (s) :=

Z b

s

(g (t)� g (s))r�1 g0 (t)F (t) dt; (64)

all s 2 [a; b]. Then G 2 AC ([a; b] ; X) (absolutely continuous) for r � 1 and
G 2 C ([a; b] ; X) for r 2 (0; 1) :

Proof. Denote by kFk1 := kFkL1([a;b];X) := es sup
t2[a;b]

kF (t)kX < +1.

Hence F 2 L1 ([a; b] ; X). By Theorem 5.4, p. 101, [9], (g (t)� g (s))r�1 g0 (t)F (t)
is a strongly measurable function in t, t 2 [s; b], s 2 [a; b] :
So that (g (t)� g (s))r�1 g0 (t)F (t) 2 L1 ([s; b] ; X), see [6].
Notice for above that we usedZ b

s

(g (t)� g (s))r�1 g0 (t) dt = (g (b)� g (s))r

r
; (65)

by [11], p. 107, exercise 13d.
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1) Case r � 1. We use the de�nition of absolute continuity. So for every
" > 0 we need � > 0 : whenever (ai; bi), i = 1; :::; n; are disjoint open subintervals
of [a; b], then

nX
i=1

(bi � ai) < � )
nX
i=1

kG (bi)�G (ai)k < ":

If kFk1 = 0, then G (s) = 0, for all s 2 [a; b], the trivial case and all ful�lled.
So we assume kFk1 6= 0. Hence we have (see [5])

G (bi)�G (ai) =
Z b

bi

(g (t)� g (bi))r�1 g0 (t)F (t) dt�

Z b

ai

(g (t)� g (ai))r�1 g0 (t)F (t) dt =Z b

bi

(g (t)� g (bi))r�1 g0 (t)F (t) dt�
Z bi

ai

(g (t)� g (ai))r�1 g0 (t)F (t) dt� (66)

Z b

bi

(g (t)� g (ai))r�1 g0 (t)F (t) dt =

(see [1], p. 426, Theorem 11.43)Z b

bi

�
(g (t)� g (bi))r�1 � (g (t)� g (ai))r�1

�
g0 (t)F (t) dt�

Z bi

ai

(g (t)� g (ai))r�1 g0 (t)F (t) dt:

Call

Ii :=

Z b

bi

���(g (t)� g (bi))r�1 � (g (t)� g (ai))r�1��� g0 (t) dt: (67)

Thus

kG (bi)�G (ai)k �
�
Ii +

(g (bi)� g (ai))r

r

�
kFk1 := Ti: (68)

If r = 1, then Ii = 0, and

kG (bi)�G (ai)k � kFk1 (g (bi)� g (ai)) � kFk1 kg
0k1 (bi � ai) ; (69)

for all i = 1; :::; n:
If r > 1, then becauseh

(g (t)� g (ai))r�1 � (g (t)� g (bi))r�1
i
� 0;
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for all t 2 [bi; b], we �nd

Ii =

Z b

bi

�
(g (t)� g (ai))r�1 � (g (t)� g (bi))r�1

�
g0 (t) dt = (70)

(g (b)� g (ai))r � (g (bi)� g (ai))r � (g (b)� g (bi))r

r
=

r (g (b)� �)r�1 (g (bi)� g (ai))� (g (bi)� g (ai))r

r
;

for some � 2 (g (ai) ; g (bi)) :
Therefore, it holds

Ii �
r (g (b)� g (a))r�1 (g (bi)� g (ai))� (g (bi)� g (ai))r

r
; (71)

and �
Ii +

(g (bi)� g (ai))r

r

�
� (g (b)� g (a))r�1 (g (bi)� g (ai)) : (72)

That is
Ti � kFk1 (g (b)� g (a))

r�1
(g (bi)� g (ai)) ; (73)

so that

kG (bi)�G (ai)k � kFk1 (g (b)� g (a))
r�1

(g (bi)� g (ai)) �

kFk1 (g (b)� g (a))
r�1 kg0k1 (bi � ai) ; (74)

for all i = 1; :::; n:
So in the case of r = 1, and by choosing � := "

kg0k1kFk1
, we get

nX
i=1

kG (bi)�G (ai)k
(69)
� kFk1 kg

0k1

 
nX
i=1

(bi � ai)
!

(75)

� kFk1 kg
0k1 � = ";

proving for r = 1 that G is absolutely continuous. In the case of r > 1, and by
choosing � := "

kg0k1kFk1(g(b)�g(a))
r�1 ; we get

nX
i=1

kG (bi)�G (ai)k
(74)
� kFk1 kg

0k1 (g (b)� g (a))
r�1

 
nX
i=1

(bi � ai)
!

(76)

< kFk1 kg
0k1 (g (b)� g (a))

r�1
� = ";

proving for r > 1 that G is absolutely continuous again.
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2) Case of 0 < r < 1. Let ai� ; bi� 2 [a; b] : ai� � bi� and g (ai�) � g (bi�).
Then (g (t)� g (ai�))r�1 � (g (t)� g (bi�))r�1 ; for all t 2 (bi� ; b]: Then

Ii� =

Z b

bi�

�
(g (t)� g (bi�))r�1 � (g (t)� g (ai�))r�1

�
g0 (t) dt =

(g (b)� g (bi�))r

r
�
�
(g (b)� g (ai�))r � (g (bi�)� g (ai�))r

r

�
� (77)

(g (bi�)� g (ai�))r

r
� kg0kr1 (bi� � ai�)

r

r
;

by [(g (b)� g (bi�))r � (g (b)� g (ai�))r] < 0:
Therefore

Ii� �
kg0kr1 (bi� � ai�)

r

r
; (78)

and

Ti� �
2 kFk1 kg0k

r
1 (bi� � ai�)

r

r
; (79)

proving that

kG (bi�)�G (ai�)k �
2 kFk1 kg0k

r
1

r
(bi� � ai�)r : (80)

The last inequality proves that G is continuous for r 2 (0; 1). The theorem is
proved.
We need

De�nition 12 Let [a; b] � R, (X; k�k) a Banach space, g 2 C1 ([a; b]) and
increasing, f 2 C ([a; b] ; X), � > 0.
We de�ne the left Riemann-Liouville generalized fractional Bochner integral

operator

�
J�a;gf

�
(x) :=

1

� (�)

Z x

a

(g (x)� g (z))��1 g0 (z) f (z) dz; (81)

8 x 2 [a; b], where � is the gamma function.
The last integral is of Bochner type. Since f 2 C ([a; b] ; X), then f 2

L1 ([a; b] ; X). By Theorem 10 we get that
�
J�a;gf

�
2 C ([a; b] ; X). Above we

set J0a;gf := f and see that
�
J�a;gf

�
(a) = 0:

We derive

Theorem 13 Let all as in De�nition 12. Let m;n > 0 and f 2 C ([a; b] ; X).
Then

Jma;gJ
n
a;gf = J

m+n
a;g f = Jna;gJ

m
a;gf: (82)
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Proof. Here a � x � b. We have�
Jma;gJ

n
a;gf

�
(x) =

1

� (m) � (n)
� (83)

Z x

a

(g (x)� g (t))m�1 g0 (t)
�Z t

a

(g (t)� g (�))n�1 g0 (�) f (�) d�
�
dt =

1

� (m) � (n)

Z x

a

Z x

a

�[a;t] (�) (g (x)� g (t))
m�1

(g (t)� g (�))n�1 g0 (t) g0 (�) f (�) d�dt

(here �[a;t] is the characteristic function, we use Fubini�s theorem from [9], p.
93, Theorem 2)

=
1

� (m) � (n)

Z x

a

Z x

a

�[�;x] (t) (g (x)� g (t))
m�1

(g (t)� g (�))n�1 g0 (t) g0 (�) f (�) d�dt

(84)

=
1

� (m) � (n)

Z x

a

f (�) g0 (�)

�Z x

�

(g (x)� g (t))m�1 (g (t)� g (�))n�1 g0 (t) dt
�
d�

(by [10])

=
1

� (m) � (n)

Z x

a

f (�) g0 (�)

 Z g(x)

g(�)

(g (x)� z)m�1 (z � g (�))n�1 dz
!
d�

=
1

� (m) � (n)

Z x

a

f (�) g0 (�)
� (m) � (n)

� (m+ n)
(g (x)� g (�))m+n�1 d�

=
1

� (m+ n)

Z x

a

(g (x)� g (�))m+n�1 g0 (�) f (�) d� =
�
Jm+na;g f

�
(x) ; (85)

proving the claim.
We need

De�nition 14 Let [a; b] � R, (X; k�k) a Banach space, g 2 C1 ([a; b]) and
increasing, f 2 C ([a; b] ; X), � > 0.
We de�ne the right Riemann-Liouville generalized fractional Bochner inte-

gral operator

�
J�b�;gf

�
(x) :=

1

� (�)

Z b

x

(g (z)� g (x))��1 g0 (z) f (z) dz; (86)

8 x 2 [a; b], where � is the gamma function.
The last integral is of Bochner type. Since f 2 C ([a; b] ; X), then f 2

L1 ([a; b] ; X). By Theorem 11 we get that
�
J�b�;gf

�
2 C ([a; b] ; X). Above

we set J0b�;gf := f and see that
�
J�b�;gf

�
(b) = 0:

We derive
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Theorem 15 Let all as in De�nition 14. Let �; � > 0 and f 2 C ([a; b] ; X).
Then �

J�b�;gJ
�
b�;gf

�
(x) =

�
J�+�b�;g f

�
(x) =

�
J�b�;gJ

�
b�;gf

�
(x) ; (87)

8 x 2 [a; b] :

Proof. We have that�
J�b�;gJ

�
b�;gf

�
(x) =

1

� (�) � (�)
� (88)

Z b

x

(g (t)� g (x))��1 g0 (t)
 Z b

t

(g (�)� g (t))��1 g0 (�) f (�) d�
!
dt =

1

� (�) � (�)

Z b

x

Z b

x

�[t;b] (�) (g (t)� g (x))
��1

(g (�)� g (t))��1 g0 (t) g0 (�) f (�) d�dt

(here �[t;b] is the characteristic function, we use Fubini�s theorem from [9], p.
93, Theorem 2)

=
1

� (�) � (�)

Z b

x

�Z �

x

(g (t)� g (x))��1 (g (�)� g (t))��1 g0 (t) g0 (�) f (�) dt
�
d�

=
1

� (�) � (�)

Z b

x

f (�) g0 (�)

�Z �

x

(g (�)� g (t))��1 (g (t)� g (x))��1 g0 (t) dt
�
d�

(89)
(by [10])

=
1

� (�) � (�)

Z b

x

f (�) g0 (�)

 Z g(�)

g(x)

(g (�)� z)��1 (z � g (x))��1 dz
!
d�

=
1

� (�) � (�)

Z b

x

f (�) g0 (�)
� (�) � (�)

� (�+ �)
(g (�)� g (x))�+��1 d�

=
1

� (�+ �)

Z b

x

(g (�)� g (x))�+��1 g0 (�) f (�) d� =
�
J�+�b�;g f

�
(x) ; (90)

proving the claim.
We need

De�nition 16 Let � > 0, d�e = n, d�e the ceiling of the number. Let f 2
Cn ([a; b] ; X), where [a; b] � R, and (X; k�k) is a Banach space. Let g 2
C1 ([a; b]) ; strictly increasing, such that g�1 2 Cn ([g (a) ; g (b)]) :
We de�ne the left generalized g-fractional derivative X-valued of f of order

� as follows:�
D�
a+;gf

�
(x) :=

1

� (n� �)

Z x

a

(g (x)� g (t))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt;

(91)
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8 x 2 [a; b]. The last integral is of Bochner type.
If � =2 N, by Theorem 10, we have that

�
D�
a+;gf

�
2 C ([a; b] ; X).

We see that�
Jn��a;g

��
f � g�1

�(n) � g�� (x) = �D�
a+;gf

�
(x) ; 8 x 2 [a; b] : (92)

We set

Dn
a+;gf (x) :=

��
f � g�1

�n � g� (x) 2 C ([a; b] ; X) , n 2 N, (93)

D0
a+;gf (x) = f (x) ; 8 x 2 [a; b] :

When g = id, then
D�
a+;gf = D

�
a+;idf = D

�
�af; (94)

the usual left X-valued Caputo fractional derivative, see [4].

We need

De�nition 17 Let � > 0, d�e = n, d�e the ceiling of the number. Let f 2
Cn ([a; b] ; X), where [a; b] � R, and (X; k�k) is a Banach space. Let g 2
C1 ([a; b]) ; strictly increasing, such that g�1 2 Cn ([g (a) ; g (b)]) :
We de�ne the right generalized g-fractional derivative X-valued of f of order

� as follows:

�
D�
b�;gf

�
(x) :=

(�1)n

� (n� �)

Z b

x

(g (t)� g (x))n���1 g0 (t)
�
f � g�1

�(n)
(g (t)) dt;

(95)
8 x 2 [a; b]. The last integral is of Bochner type.
If � =2 N, by Theorem 11, we have that

�
D�
b�;gf

�
2 C ([a; b] ; X).

We see that

Jn��b�;g

�
(�1)n

�
f � g�1

�(n) � g� (x) = �D�
b�;gf

�
(x) ; a � x � b: (96)

We set

Dn
b�;gf (x) := (�1)

n
��
f � g�1

�n � g� (x) 2 C ([a; b] ; X) , n 2 N, (97)

D0
b�;gf (x) := f (x) ; 8 x 2 [a; b] :

When g = id, then

D�
b�;gf (x) = D

�
b�;idf (x) = D

�
b�f; (98)

the usual right X-valued Caputo fractional derivative, see [2]

We give
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Theorem 18 Let � > 0, n = d�e, and f 2 Cn ([a; b] ; X), where [a; b] � R
and (X; k�k) is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that
g�1 2 Cn ([g (a) ; g (b)]), a � x � b. Then

f (x) = f (a) +

n�1X
i=1

(g (x)� g (a))i

i!

�
f � g�1

�(i)
(g (a))+

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt =

f (a) +
n�1X
i=1

(g (x)� g (a))i

i!

�
f � g�1

�(i)
(g (a))+ (99)

1

� (�)

Z g(x)

g(a)

(g (x)� z)��1
��
D�
a+;gf

�
� g�1

�
(z) dz:

Proof. We have that�
J�a;gD

�
a+;gf

�
(x) =

�
J�a;g

�
Jn��a;g

��
f � g�1

�(n) � g��� (x) =�
J�+n��a;g

��
f � g�1

�(n) � g�� (x) = �Jna;g ��f � g�1�(n) � g�� (x) = (100)

1

(n� 1)!

Z x

a

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt:
We have proved that

�
J�a;gD

�
a+;gf

�
(x) =

1

(n� 1)!

Z x

a

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt
(101)

= Rn (a; x; g) , all a � x � b:

But also it holds
Rn (a; x; g) =

�
J�a;gD

�
a+;gf

�
(x) = (102)

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt;

all a � x � b, proving the claim.
We give

Theorem 19 Let � > 0, n = d�e, and f 2 Cn ([a; b] ; X), where [a; b] � R
and (X; k�k) is a Banach space. Let g 2 C1 ([a; b]), strictly increasing, such that
g�1 2 Cn ([g (a) ; g (b)]), a � x � b. Then

f (x) = f (b) +
n�1X
i=1

(g (x)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+
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1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt =

f (b) +
n�1X
i=1

(g (x)� g (b))i

i!

�
f � g�1

�(i)
(g (b))+ (103)

1

� (�)

Z g(b)

g(x)

(z � g (x))��1
��
D�
b�;gf

�
� g�1

�
(z) dz:

Proof. We have that�
J�b�;gD

�
b�;gf

�
(x) = (�1)n

�
J�b�;g

�
Jn��b�;g

��
f � g�1

�(n) � g��� (x) = (104)

(�1)n
�
J�+n��b�;g

��
f � g�1

�(n) � g�� (x) = (�1)n �Jnb�;g ��f � g�1�(n) � g�� (x) =
(�1)n 1

(n� 1)!

Z b

x

(g (t)� g (x))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt =
(�1)2n

(n� 1)!

Z x

b

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt =
1

(n� 1)!

Z x

b

(g (x)� g (t))n�1 g0 (t)
��
f � g�1

�(n) � g� (t) dt = Rn (b; x; g) :
That is

Rn (b; x; g) =
�
J�b�;gD

�
b�;gf

�
(x) = (105)

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt;

all a � x � b, proving the claim.
Let g : [a; b] ! R be a strictly increasing function. Let f 2 Cn ([a; b] ; X),

(X; k�k) is a Banach space, n 2 N. Assume that g 2 C1 ([a; b]), and g�1 2
Cn ([g(a); g(b)]). Call l := f �g�1 : [g (a) ; g (b)]! X. It is clear that l; l0; :::; l(n)

are continuous functions from [g (a) ; g (b)] into f ([a; b]) � X:
Let � � 1 such that [�] = n, n 2 N as above, where [�] is the integral part of

the number.
Clearly when 0 < � < 1, [�] = 0. Next we follow [3].
I) Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the left Riemann-Liouville Bochner

fractional integral as

(Jz0� h) (z) :=
1

� (�)

Z z

z0

(z � t)��1 h (t) dt; (106)

for g (a) � z0 � z � g (b), where � is the gamma function; � (�) =
R1
0
e�tt��1dt:

We set Jz00 h = h:
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Let � := ��[�] (0 < � < 1). We de�ne the subspace C�g(x0) ([g (a) ; g (b)] ; X)
of C [�] ([g (a) ; g (b)] ; X), where x0 2 [a; b] : C�g(x0) ([g (a) ; g (b)] ; X) =n
h 2 C [�] ([g (a) ; g (b)] ; X) : Jg(x0)1�� h

([�]) 2 C1 ([g (x0) ; g (b)] ; X)
o
:

So let h 2 C�g(x0) ([g (a) ; g (b)] ; X), we de�ne the left g-generalized X-valued
fractional derivative of h of order �, of Canavati type, over [g (x0) ; g (b)] as

D�
g(x0)

h :=
�
J
g(x0)
1�� h

([�])
�0
: (107)

Clearly, for h 2 C�g(x0) ([g (a) ; g (b)] ; X) ; there exists�
D�
g(x0)

h
�
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)�� h([�]) (t) dt; (108)

for all g (x0) � z � g (b) :
In particular, when f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X), we have that�
D�
g(x0)

�
f � g�1

��
(z) =

1

� (1� �)
d

dz

Z z

g(x0)

(z � t)��
�
f � g�1

�([�])
(t) dt;

(109)

for all g (x0) � z � g (b). We have that Dn
g(x0)

�
f � g�1

�
=
�
f � g�1

�(n)
and

D0
g(x0)

�
f � g�1

�
= f � g�1, see [3].

By [3], we have for f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X) ; where x0 2 [a; b] is
�xed, that
(i) if � � 1, then

�
f � g�1

�
(z) =

[�]�1X
k=0

�
f � g�1

�(k)
(g (x0))

k!
(z � g (x0))k +

1

� (�)

Z z

g(x0)

(z � t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (110)

all z 2 [g (a) ; g (b)] : z � g (x0) ;
(ii) if 0 < � < 1, we get

�
f � g�1

�
(z) =

1

� (�)

Z z

g(x0)

(z � t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (111)

all z 2 [g (a) ; g (b)] : z � g (x0) :
We have proved the following left generalized g-fractional, of Canavati type,

X-valued Taylor�s formula:

Theorem 20 Let f � g�1 2 C�g(x0) ([g (a) ; g (b)] ; X), where x0 2 [a; b] is �xed.
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(i) if � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (112)

all x 2 [a; b] : x � x0;
(ii) if 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x)

g(x0)

(g (x)� t)��1
�
D�
g(x0)

�
f � g�1

��
(t) dt; (113)

all x 2 [a; b] : x � x0:

II) Let h 2 C ([g (a) ; g (b)] ; X), we de�ne the right Riemann-Liouville Bochner
fractional integral as�

J�z0�h
�
(z) :=

1

� (�)

Z z0

z

(t� z)��1 h (t) dt; (114)

for g (a) � z � z0 � g (b) : We set J0z0�h = h:
Let � := ��[�] (0 < � < 1). We de�ne the subspace C�g(x0)� ([g (a) ; g (b)] ; X)

of C [�] ([g (a) ; g (b)] ; X), where x0 2 [a; b] :

C�g(x0)� ([g (a) ; g (b)] ; X) :=n
h 2 C [�] ([g (a) ; g (b)] ; X) : J1��g(x0)�h

([�]) 2 C1 ([g (a) ; g (x0)] ; X)
o
: (115)

So let h 2 C�g(x0)� ([g (a) ; g (b)] ; X), we de�ne the right g-generalized X-
valued fractional derivative of h of order �, of Canavati type, over [g (a) ; g (x0)]
as

D�
g(x0)�h := (�1)

n�1
�
J1��g(x0)�h

([�])
�0
: (116)

Clearly, for h 2 C�g(x0)� ([g (a) ; g (b)] ; X) ; there exists�
D�
g(x0)�h

�
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)�� h([�]) (t) dt; (117)

for all g (a) � z � g (x0) � g (b) :
In particular, when f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X), we have that�
D�
g(x0)�

�
f � g�1

��
(z) =

(�1)n�1

� (1� �)
d

dz

Z g(x0)

z

(t� z)��
�
f � g�1

�([�])
(t) dt;

(118)
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for all g (a) � z � g (x0) � g (b).
We get that�

Dn
g(x0)�

�
f � g�1

��
(z) = (�1)n

�
f � g�1

�(n)
(z) (119)

and
�
D0
g(x0)�

�
f � g�1

��
(z) =

�
f � g�1

�
(z), all z 2 [g (a) ; g (b)] ; see [3].

By [3], we have for f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X) ; where x0 2 [a; b] is
�xed, that
(i) if � � 1, then

�
f � g�1

�
(z) =

[�]�1X
k=0

�
f � g�1

�(k)
(g (x0))

k!
(z � g (x0))k + (120)

1

� (�)

Z g(x0)

z

(t� z)��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt;

all z 2 [g (a) ; g (b)] : z � g (x0) ;
(ii) if 0 < � < 1, we get

�
f � g�1

�
(z) =

1

� (�)

Z g(x0)

z

(t� z)��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (121)

all z 2 [g (a) ; g (b)] : z � g (x0) :
We have proved the following right generalized g-fractional, of Canavati type,

X-valued Taylor�s formula:

Theorem 21 Let f � g�1 2 C�g(x0)� ([g (a) ; g (b)] ; X), where x0 2 [a; b] is �xed.
(i) if � � 1, then

f (x)� f (x0) =
[�]�1X
k=1

�
f � g�1

�(k)
(g (x0))

k!
(g (x)� g (x0))k +

1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (122)

all a � x � x0;
(ii) if 0 < � < 1, we get

f (x) =
1

� (�)

Z g(x0)

g(x)

(t� g (x))��1
�
D�
g(x0)�

�
f � g�1

��
(t) dt; (123)

all a � x � x0:
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III) Denote by

Dm�
g(x0)

= D�
g(x0)

D�
g(x0)

:::D�
g(x0)

(m-times), m 2 N. (124)

Also denote by

Jg(x0)m� = Jg(x0)� Jg(x0)� :::Jg(x0)� (m-times), m 2 N: (125)

We need

Theorem 22 Here 0 < � < 1. Assume that
�
Dm�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)] ; X),

where x0 2 [a; b] is �xed. Then�
Jg(x0)m� Dm�

g(x0)

�
f � g�1

��
(g (x))�

�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

�
f � g�1

��
(g (x)) = 0;

(126)
for all x0 � x � b:

Proof. We observe that (l := f � g�1)�
Jg(x0)m� Dm�

g(x0)
(l)
�
(g (x))�

�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

(l)
�
(g (x)) =�

Jg(x0)m�

�
Dm�
g(x0)

(l)� Jg(x0)� D
(m+1)�
g(x0)

(l)
��
(g (x)) = (127)�

Jg(x0)m�

�
Dm�
g(x0)

(l)�
�
Jg(x0)� D�

g(x0)

���
Dm�
g(x0)

(l)
�
� g � g�1

���
(g (x)) =�

Jg(x0)m�

�
Dm�
g(x0)

(l)�
�
Dm�
g(x0)

(l)
���

(g (x)) =
�
Jg(x0)m� (0)

�
(g (x)) = 0:

We make

Remark 23 Let 0 < � < 1. Assume that
�
Di�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)] ; X),

x0 2 [a; b], for all i = 0; 1; :::;m: We have that
mX
i=0

h�
J
g(x0)
i� Di�

g(x0)

�
f � g�1

��
(g (x))�

�
J
g(x0)
(i+1)�D

(i+1)�
g(x0)

�
f � g�1

��
(g (x))

i
= 0:

(128)
Hence it holds

f (x)�
�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

�
f � g�1

��
(g (x)) = 0; (129)

for all x0 � x � b:
That is

f (x) =
�
J
g(x0)
(m+1)�D

(m+1)�
g(x0)

�
f � g�1

��
(g (x)) ; (130)

for all x0 � x � b:
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We have proved the following modi�ed and generalized left X-valued frac-
tional Taylor�s formula of Canavati type:

Theorem 24 Let 0 < � < 1. Assume that
�
Di�
g(x0)

�
f � g�1

��
2 C�g(x0) ([g (a) ; g (b)] ; X),

x0 2 [a; b], for i = 0; 1; :::;m: Then

f (x) =
1

� ((m+ 1) �)

Z g(x)

g(x0)

(g (x)� z)(m+1)��1
�
D
(m+1)�
g(x0)

�
f � g�1

��
(z) dz;

(131)
all x0 � x � b:

IV) Denote by

Dm�
g(x0)� = D

�
g(x0)�D

�
g(x0)�:::D

�
g(x0)� (m times), m 2 N. (132)

Also denote by

Jm�g(x0)� = J
�
g(x0)�J

�
g(x0)�:::J

�
g(x0)� (m times), m 2 N. (133)

We need

Theorem 25 Let 0 < � < 1. Assume that
�
Dm�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)] ; X),

where x0 2 [a; b] is �xed. Then�
Jm�g(x0)�D

m�
g(x0)�

�
f � g�1

��
(g (x))�

�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)�

�
f � g�1

��
(g (x)) = 0;

(134)
for all a � x � x0:

Proof. We observe that (l := f � g�1)�
Jm�g(x0)�D

m�
g(x0)� (l)

�
(g (x))�

�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)� (l)

�
(g (x)) =�

Jm�g(x0)�

�
Dm�
g(x0)� (l)

�
� J�g(x0)�D

(m+1)�
g(x0)� (l)

�
(g (x)) =�

Jm�g(x0)�

�
Dm�
g(x0)� (l)�

�
J�g(x0)�D

�
g(x0)�

���
Dm�
g(x0)� (l)

�
� g � g�1

���
(g (x)) =

(135)�
Jm�g(x0)�

�
Dm�
g(x0)� (l)�D

m�
g(x0)� (l)

��
(g (x)) = Jm�g(x0)� (0) (g (x)) = 0:

We make

Remark 26 Let 0 < � < 1. Assume that
�
Di�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)] ; X),

x0 2 [a; b], for all i = 0; 1; :::;m: We have that (by (134))
mX
i=0

h�
J i�g(x0)�D

i�
g(x0)�

�
f � g�1

��
(g (x))�

�
J
(i+1)�
g(x0)�D

(i+1)�
g(x0)�

�
f � g�1

��
(g (x))

i
= 0:

(136)
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Hence it holds

f (x)�
�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)�

�
f � g�1

��
(g (x)) = 0; (137)

for all a � x � x0 � b:
That is

f (x) =
�
J
(m+1)�
g(x0)� D

(m+1)�
g(x0)�

�
f � g�1

��
(g (x)) ; (138)

for all a � x � x0 � b:

We have proved the following modi�ed and generalized right X-valued frac-
tional Taylor�s formula of Canavati type:

Theorem 27 Let 0 < � < 1. Assume that
�
Di�
g(x0)�

�
f � g�1

��
2 C�g(x0)� ([g (a) ; g (b)] ; X),

x0 2 [a; b], for all i = 0; 1; :::;m: Then

f (x) =
1

� ((m+ 1) �)

Z g(x0)

g(x)

(z � g (x))(m+1)��1
�
D
(m+1)�
g(x0)�

�
f � g�1

��
(z) dz;

(139)
all a � x � x0 � b:

From Theorem 18 when 0 < � � 1, we get that�
I�a+;gD

�
a+;gf

�
(x) = f (x)� f (a) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
�
D�
a+;gf

�
(t) dt = (140)

1

� (�)

Z g(x)

g(a)

(g (x)� z)��1
��
D�
a+;gf

�
� g�1

�
(z) dz;

and by Theorem 19 when 0 < � � 1 we get�
I�b�;gD

�
b�;gf

�
(x) = f (x)� f (b) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
�
D�
b�;gf

�
(t) dt = (141)

1

� (�)

Z g(b)

g(x)

(z � g (x))��1
��
D�
b�;gf

�
� g�1

�
(z) dz;

all a � x � b:
Above we considered f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing,

such that g�1 2 C1 ([g (a) ; g (b)]) :
Denote by

Dn�
a+;g := D

�
a+;gD

�
a+;g:::D

�
a+;g (n times), n 2 N: (142)
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Also denote by
In�a+;g := I

�
a+;gI

�
a+;g:::I

�
a+;g (n times): (143)

Here to remind�
I�a+;gf

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) f (t) dt; x � a: (144)

By convention I0a+;g = D
0
a+;g = I (identity operator).

We need

Theorem 28 Let 0 < � � 1, n 2 N, f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly
increasing, such that g�1 2 C1 ([g (a) ; g (b)]). Let Fk := Dk�

a+;gf , k = n; n + 1,
that ful�ll Fk 2 C ([a; b] ; X), and Fn 2 C1 ([a; b] ; X) :
Then�
In�a+;gD

n�
a+;gf

�
(x)�

�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) =

(g (x)� g (a))n�

� (n�+ 1)

�
Dn�
a+;gf

�
(a) ;

(145)
all x 2 [a; b] :

Proof. By semigroup property of I�a+;g, we get�
In�a+;gD

n�
a+;gf

�
(x)�

�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) =�

In�a+;g

�
Dn�
a+;gf � I�a+;gD

(n+1)�
a+;g f

��
(x) =�

In�a+;g
�
Dn�
a+;gf �

�
I�a+;gD

�
a+;g

� �
Dn�
a+;gf

���
(x)

(140)
=�

In�a+;g
�
Dn�
a+;gf �Dn�

a+;gf +D
n�
a+;gf (a)

��
(x) =�

In�a+;g
�
Dn�
a+;gf (a)

��
(x) =

�
Dn�
a+;gf (a)

� �
In�a+;g (1)

�
(x) = (146)

[notice that

�
I�a+;g1

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) dt = (g (x)� g (a))�

� (�+ 1)
: (147)

Hence�
I2�a+;g1

�
(x) =

1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) dt (g (t)� g (a))
�

� (�+ 1)
dt =

1

� (�) � (�+ 1)

Z x

a

(g (x)� g (t))��1 g0 (t) (g (t)� g (a))� dt =

1

� (�) � (�+ 1)

Z g(x)

g(a)

(g (x)� z)��1 (z � g (a))(�+1)�1 dt = (148)
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1

� (�) � (�+ 1)

� (�) � (�+ 1)

� (2�+ 1)
(g (x)� g (a))2� :

That is �
I2�a+;g1

�
(x) =

(g (x)� g (a))2�

� (2�+ 1)
;

etc.]

=
�
Dn�
a+;gf (a)

� (g (x)� g (a))n�
� (n�+ 1)

; (149)

proving the claim.
We make

Remark 29 Suppose that Fk = Dk�
a+;gf , for k = 1; :::; n+1; are as in Theorem

28, 0 < � � 1. By (145) we get
nX
i=0

��
Ii�a+;gD

i�
a+;gf

�
(x)� I(i+1)�a+;g D

(i+1)�
a+;g f (x)

�
= (150)

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) :

That is

f (x)�
�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) =

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) : (151)

Hence

f (x) =
nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) +

�
I
(n+1)�
a+;g D

(n+1)�
a+;g f

�
(x) = (152)

nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a) +Rg (a; x) ; (153)

where

Rg (a; x) :=
1

� ((n+ 1)�)

Z x

a

(g (x)� g (t))(n+1)��1 g0 (t)
�
D
(n+1)�
a+;g f

�
(t) dt:

(154)
(there D(n+1)�

a+;g f is continuous over [a; b] :)

We have proved the following g-left generalized modi�ed X-valued Taylor�s
formula.
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Theorem 30 Let 0 < � � 1, n 2 N, f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly
increasing, such that g�1 2 C1 ([g (a) ; g (b)]). Let Fk := Dk�

a+;gf , k = 1; :::; n,
that ful�ll Fk 2 C1 ([a; b] ; X), and Fn+1 2 C ([a; b] ; X) :
Then

f (x) =
nX
i=0

(g (x)� g (a))i�

� (i�+ 1)

�
Di�
a+;gf

�
(a)+

1

� ((n+ 1)�)

Z x

a

(g (x)� g (t))(n+1)��1 g0 (t)
�
D
(n+1)�
a+;g f

�
(t) dt; (155)

8 x 2 [a; b] :

Denote by

Dn�
b�;g := D

�
b�;gD

�
b�;g:::D

�
b�;g (n times), n 2 N: (156)

Also denote by
In�b�;g := I

�
b�;gI

�
b�;g:::I

�
b�;g (n times): (157)

Here to remind

�
I�b�;gf

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) f (t) dt; x � b: (158)

We need

Theorem 31 Let f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing, such
that g�1 2 C1 ([g (a) ; g (b)]). Suppose that Fk := Dk�

b�;gf , k = n; n + 1, ful�ll
Fk 2 C ([a; b] ; X), and Fn 2 C1 ([a; b] ; X) ; 0 < � � 1, n 2 N:
Then�
In�b�;gD

n�
b�;gf

�
(x)�

�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) =

(g (b)� g (x))n�

� (n�+ 1)

�
Dn�
b�;gf

�
(b) :

(159)

Proof. By semigroup property of I�b�;g, we get�
In�b�;gD

n�
b�;gf

�
(x)�

�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) =�

In�b�;g

�
Dn�
b�;gf � I�b�;gD

(n+1)�
b�;g f

��
(x) =�

In�b�;g
�
Dn�
b�;gf �

�
I�b�;gD

�
b�;g

� �
Dn�
b�;gf

���
(x)

(141)
= (160)�

In�b�;g
�
Dn�
b�;gf �Dn�

b�;gf +D
n�
b�;gf (b)

��
(x) =�

In�b�;g
�
Dn�
b�;gf (b)

��
(x) =

�
Dn�
b�;gf (b)

� �
In�b�;g (1)

�
(x) = (161)
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[Notice that

�
I�b�;g1

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) dt = (162)

1

� (�)

(g (b)� g (x))�

�
=

1

� (�+ 1)
(g (b)� g (x))� :

Thus we have �
I�b�;g1

�
(x) =

(g (b)� g (x))�

� (�+ 1)
: (163)

Hence it holds

�
I2�b�;g1

�
(x) =

1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) (g (b)� g (t))
�

� (�+ 1)
dt =

1

� (�) � (�+ 1)

Z b

x

(g (b)� g (t))� (g (t)� g (x))��1 g0 (t) dt =

1

� (�) � (�+ 1)

Z g(b)

g(x)

(g (b)� z)(�+1)�1 (z � g (x))��1 dz =

1

� (�) � (�+ 1)

� (�+ 1)� (�)

� (2�+ 1)
(g (b)� g (x))2� = 1

� (2�+ 1)
(g (b)� g (x))2� ;

(164)
etc.]

=
�
Dn�
b�;gf

�
(b)
(g (b)� g (x))n�

� (n�+ 1)
; (165)

proving the claim.
We make

Remark 32 Suppose that Fk = Dk�
b�;gf , for k = 1; :::; n + 1; are as in last

Theorem 31, 0 < � � 1. By (159) we get
nX
i=0

��
Ii�b�;gD

i�
b�;gf

�
(x)� I(i+1)�b�;g D

(i+1)�
b�;g f (x)

�
= (166)

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) :

That is (notice that I0b�;gf = D
0
b�;gf = f)

f (x)�
�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) =

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) : (167)
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Hence

f (x) =

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) +

�
I
(n+1)�
b�;g D

(n+1)�
b�;g f

�
(x) = (168)

nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b) +Rg (x; b) ; (169)

where

Rg (x; b) :=
1

� ((n+ 1)�)

Z b

x

(g (t)� g (x))(n+1)��1 g0 (t)
�
D
(n+1)�
b�;g f

�
(t) dt:

(170)
(there D(n+1)�

b�;g f is continuous over [a; b] :)

We have proved the following g-right generalized modi�ed X-valued Taylor�s
formula.

Theorem 33 Let f 2 C1 ([a; b] ; X), g 2 C1 ([a; b]), strictly increasing, such
that g�1 2 C1 ([g (a) ; g (b)]). Suppose that Fk := Dk�

b�;gf , k = 1; :::; n, ful�ll
Fk 2 C1 ([a; b] ; X), and Fn+1 2 C ([a; b] ; X) ; where 0 < � � 1, n 2 N:
Then

f (x) =
nX
i=0

(g (b)� g (x))i�

� (i�+ 1)

�
Di�
b�;gf

�
(b)+

1

� ((n+ 1)�)

Z b

x

(g (t)� g (x))(n+1)��1 g0 (t)
�
D
(n+1)�
b�;g f

�
(t) dt; (171)

8 x 2 [a; b] :

For di¤erentiation of functions from real numbers to normed linear spaces
the de�nition is the same as for the real valued functions, however the limit and
convergence is in the norm of linear space (X; k�k) :
We need

Theorem 34 Let 0 � s � x and f 2 L1 ([0; x] ; X), r > 0, (X; k�k) is a
Banach space. De�ne

F (s) :=

Z s

0

(s� t)r f (t) dt; (172)

the last integral is of Bochner type.
Then there exists

F 0 (s) = r

Z s

0

(s� t)r�1 f (t) dt; all s 2 [0; x] : (173)
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Proof. Fix s 2 [0; x] and notice that

F (s0) =

Z s0

0

(s0 � t)r f (t) dt =
Z x

0

�[0;s0] (t) (s0 � t)
r
f (t) dt:

We call g (s; t) := �[0;s] (t) (s� t)
r
f (t), which is a Bochner integrable function

for every s 2 [0; x], � is the indicator function.
That is, g (s0; t) = �[0;s0] (t) (s0 � t)

r
f (t), all t 2 [0; x], and F (s0) =R x

0
g (s0; t) dt:

We would like to study if there exists

@g (s0; t)

@s
= f (t)

 
lim
h!0

�[0;s0+h] (t) (s0 + h� t)
r � �[0;s0] (t) (s0 � t)

r

h

!
: (174)

We distinguish the following cases.
(1) Let x � t > s0; then there exist small enough h > 0 such that t � s0�h:
That is,

�[0;s0�h] (t) = �[0;s0] (t) = 0:

Hence, there exists

@g (s0; t)

@s
= 0, all t : s0 < t � x: (175)

(2) Let 0 � t < s0; then there exist small enough h > 0 such that t < s0�h:
That is

�[0;s0�h] (t) = �[0;s0] (t) = 1:

In that case

@g (s0; t)

@s
= f (t)

�
lim
h!0

(s0 + h� t)r � (s0 � t)r

h

�
= r (s0 � t)r�1 f (t) ; (176)

exists for almost all t : 0 � t < s0:
(3) Let t = s0. Then we see that

@g+ (s0; s0)

@s
= f (s0)

�
lim
h!0+

hr

h

�
= f (s0)

�
lim
h!0+

hr�1
�
: (177)

The last limit does not exist if 0 < r < 1, equals f (s0) if r = 1 and may not
exist, and equals 0 if r > 1:
Notice also that

@g� (s0; s0)

@s
= f (s0)

�
lim
h!0�

�[0;s0+h] (s0)h
r

h

�
= f (s0)

�
lim
h!0�

�[0;s0+h]h
r�1
�
= 0;

by �[0;s0+h] (s0) = 0, h < 0:
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That is,
@g� (s0; s0)

@s
= 0: (178)

In general as a conclusion we get that @g(s0;t)@s exists for almost all t 2 [0; x] :
Next we de�ne the di¤erence quotient at s0,

Dg
s0 (h; t) := f (t)

 
�[0;s0+h] (t) (s0 + h� t)

r � �[0;s0] (t) (s0 � t)
r

h

!
; (179)

for h 6= 0, and Dg
x0 (0; t) := 0:

Again we distinguish the following cases.
(1) Let x � t > s0; then there exist small enough h > 0 such that t > s0�h:
Clearly then Dg

x0 (h; t) = 0:

(2) Let 0 � t < s0; then there exist small enough h > 0 such that t < s0�h.
Thus

Dg
s0 (�h; t) = f (t)

�
(s0 � h� t)r � (s0 � t)r

�h

�
: (180)

Call � := s0 � t > 0; clearly � � x. De�ne

' (t) :=
(�+ h)

r � �r
h

=
(s0 + h� t)r � (s0 � t)r

h
(181)

for h close to zero, r > 0:
That is, Dg

s0 (h; t) = f (t)' (t). If r = 1, then ' (h) = 1 and

Dg
s0 (h; t) = f (t) : (182)

We now treat the following subcases.
(2 (i)) If r > 1, then 
 (�) := �r, 0 � � � x, is convex and increasing. If

h > 0, then by the mean value theorem we get that

' (h) < rxr�1:

That is, 

Dg
s0 (h; t)



 � rxr�1 kf (t)k : (183)

If h < 0, then, similarly, again we get

' (h) =
�r � (�+ h)r

�h < rxr�1:

That is, for small jhj we have

Dg
s0 (h; t)



 � rxr�1 kf (t)k ; r � 1: (184)

(2 (ii)) If 0 < r < 1, then 
 (�) := �r, 0 � � � x is concave and increasing.
Let h > 0; then ' (h) < �r�1 = (s0 � t)r�1 and for h < 0, again ' (h) � �r�1 =
(s0 � t)r�1 :
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That is 

Dg
s0 (h; t)



 � (s0 � t)r�1 kf (t)k ; (185)

for small jhj :
(3) Case of t = s0; then

Dg
s0 (h; s0) = f (s0)h

r�1, for h > 0; (186)

and
Dg
s0 (h; s0) = 0; for h < 0: (187)

So, if r � 1 we obtain 

Dg
s0 (h; s0)



 � kf (s0)kxr�1; (188)

for small jhj :
If 0 < r < 1, then for small h > 0 the functionDg

s0 (h; s0)may be unbounded.
In conclusion we get:
(I) For r � 1, that 

Dg

s0 (h; t)


 � rxr�1 kfk1 < +1: (189)

for almost all t 2 [0; x] :
Hence 



@g (s0; t)@s





 � rxr�1 kfk1 ; (190)

for almost all t 2 [0; x] :
(II) For 0 < r < 1, that

Dg

s0 (h; t)


 � � (t) , for almost all t 2 [0; x] ; (191)

where

� (t) :=

(
(s0 � t)r�1 kf (t)k ; 0 � t < s0;
0; for s0 � t � x:

(192)

Hence it holds 



@g (s0; t)@s





 � � (t) ; for almost all t 2 [0; x] : (193)

Clearly � is integrable on [0; x]. Then by Theorem 90, p. 39, [8], we get that
@g(s0;�)
@s de�nes a Bochner integrable function, and there exists

F 0 (s0) =

Z x

0

@g (s0; t)

@s
dt = r

Z s0

0

(s0 � t)r�1 f (t) dt+
Z x

s0

0dt

= r

Z s0

0

(s0 � t)r�1 f (t) dt: (194)

That proves the claim.
We need
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Theorem 35 Let x � s � 0 and f 2 L1 ([x; 0] ; X), r > 0, (X; k�k) is a
Banach space. De�ne

G (s) =

Z 0

s

(t� s)r f (t) dt;

the last integral is of Bochner type.
Then there exists

G0 (s) = �r
Z 0

s

(t� s)r�1 f (t) dt; (195)

all s 2 [x; 0] :

Proof. Fix s0 2 [x; 0] and notice that

G (s0) =

Z 0

s0

(t� s0)r f (t) dt =
Z 0

x

�[s0;0] (t) (t� s0)
r
f (t) dt;

where � is the indicator function.
We call

g (s; t) := �[s;0] (t) (t� s)
r
f (t) ;

which is a Bochner integrable function for every s 2 [x; 0]. That is, g (s0; t) =
�[s0;0] (t) (t� s0)

r
f (t), all t 2 [x; 0], and G (s0) =

R 0
x
g (s0; t) dt:

We would like to study if there exists

@g (s0; t)

@s
= f (t)

 
lim
h!0

� (t)[s0+h;0] (t� s0 � h)
r � � (t)[s0;0] (t� s0)

r

h

!
: (196)

We distinguish the following cases.
(1) Let x � t < s0; then there exist small enough h > 0 such that t < s0�h:
That is,

�[s0�h;0] (t) = �[s0;0] (t) = 0:

Hence, there exists

@g (s0; t)

@s
= 0, all t : x � t < s0: (197)

(2) Let s0 < t � 0; then there exist small enough h > 0 such that t > s0�h:
That is

�[s0�h;0] (t) = �[s0;0] (t) = 1:

In that case

@g (s0; t)

@s
= f (t)

�
lim
h!0

(t� (s0 + h))r � (t� s0)r

h

�
= �r (t� s0)r�1 f (t) ;

(198)
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exists for almost all t : s0 < t � 0:
(3) Let t = s0. Then we see that

@g+ (s0; s0)

@s
= f (s0)

�
lim
h!0+

0 � (�h)r � 1 � 0r
h

�
= 0: (199)

Also we get

@g� (s0; s0)

@s
= f (s0)

�
lim
h!0�

1 � (�h)r � 1 � 0r
h

�
=

f (s0)

�
lim
h!0�

(�h)r

h

�
= �f (s0)

�
lim
h!0�

(�h)r

�h

�
=

�f (s0)
�
lim
h!0�

(�h)r�1
�
= �f (s0)

�
lim
h!0+

hr�1
�
: (200)

The last limit does not exist if 0 < r < 1; equals �f (s0) if r = 1 and may not
exist; and equals 0 if r > 1:
In general as a conclusion we get that @g(s0;t)@s exists for almost all t 2 [x; 0].
Next we de�ne the di¤erence quotient at s0;

Dg
s0 (h; t) := f (t)

 
�[s0+h;0] (t) (t� s0 � h)

r � �[s0;0] (t) (t� s0)
r

h

!
; (201)

for h 6= 0, and Dg
s0 (0; t) := 0:

Again we distinguish the following cases.
(1) Let x � t < s0; then there exist small enough h > 0 such that t < s0�h:
Clearly then Dg

s0 (h; t) = 0:

(2) Let s0 < t � 0; then there exist small enough h > 0 such that t > s0�h.
In that case

Dg
s0 (�h; t) = f (t)

�
(t� (s0 � h))r � (t� s0)r

�h

�
: (202)

Call � := t� s0 > 0; clearly 0 < � � jxj.
De�ne

' (t) :=
(�� h)r � �r

h
=
(t� s0 � h)r � (t� s0)r

h

for h close to zero, r > 0:
That is,

Dg
s0 (h; t) = f (t)' (t) :

If r = 1, then ' (h) = �1 and

Dg
s0 (h; t) = �f (t) :

We now treat the following subcases.
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(2 (i)) If r > 1 and jhj small, then by the mean value theorem we get

Dg
s0 (h; t)



 = kf (t)k k' (t)k � kf (t)k r2r�1 jxjr�1 : (203)

That is, for r � 1 and small jhj we obtain

Dg
s0 (h; t)



 � r2r�1 jxjr�1 kf (t)k : (204)

(2 (ii)) If 0 < r < 1 and jhj small we get the following:
The function 
 (�) := �r, 0 � � � jxj is concave and increasing. Let h > 0;

then

j' (h)j = �r � (�� h)r

�� (�� h) < �r�1 = (r � s0)r�1 ; (205)

and for h < 0, again

j' (h)j = (�� h)r � �
(�� h)� �

r

< �r�1 = (t� s0)r�1 : (206)

Therefore we obtain 

Dg
s0 (h; t)



 � kf (t)k (t� s0)r�1 ; (207)

for 0 < r < 1 and jhj small.
(3) Case of t = s0; then

Dg
s0 (h; s0) = �f (s0)h

r�1, for h < 0; (208)

and
Dg
s0 (h; s0) = 0; for h > 0:

So, if r � 1 we obtain 

Dg
s0 (h; s0)



 � kf (s0)k jxjr�1 ; (209)

for small jhj :
If 0 < r < 1, then for small jhj with h < 0, the function Dg

s0 (h; s0) may be
unbounded.
In conclusion we get:
(I) For r � 1, that

Dg

s0 (h; t)


 � r2r�1 jxjr�1 kfk1 < +1; (210)

for almost all t 2 [x; 0] :
Hence 



@g (s0; t)@s





 � r2r�1 jxjr�1 kfk1 ; (211)

for almost all t 2 [x; 0] :
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(II) For 0 < r < 1, that

Dg
s0 (h; t)



 � � (t) , for almost all t 2 [x; 0] ;
where

� (t) :=

(
0; for x � t � s0;
kf (t)k (t� s0)r�1 ; s0 < t � 0:

(212)

Hence it holds 



@g (s0; t)@s





 � � (t) ; for almost all t 2 [x; 0] : (213)

Clearly � is integrable on [x; 0].
Then by Theorem 90, p. 39, [8], we get that @g(s0;�)

@s de�nes a Bochner
integrable function, and there exists

G0 (s0) =

Z 0

x

@g (s0; t)

@s
dt = �r

Z 0

s0

(t� s0)r�1 f (t) dt+
Z s0

x

0dt (214)

= �r
Z 0

s0

(t� s0)r�1 f (t) dt:

That proves the claim.
We mention

De�nition 36 Let U � R be an interval, and X be a Banach space, we denote
by L1 (U;X) the Bochner integrable functions from U into X.

We need

De�nition 37 Let n 2 R+, and [a; b] � R, X a Banach space, and L1 ([a; b] ; X).
The Bochner integral operator

(Jna f) (x) :=
1

� (n)

Z x

a

(x� t)n�1 f (t) dt; (215)

for a � x � b, is called the Riemann-Liouville fractional Bochner integral oper-
ator of order n, where � is the gamma function.
For n = 0, we set J0a := I, the identity operator.

We give

Theorem 38 ([4]) Let m;n 2 R+ and f 2 L1 ([a; b] ; X). Then

Jma J
n
a f = J

m+n
a f = Jna J

m
a f; (216)

holds almost everywhere on [a; b] :
If f 2 C ([a; b] ; X) or m+ n � 1, then identity in (216) is valid everywhere

on [a; b] :
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We make

De�nition 39 Let [a; b] � R, X be a Banach space, � > 0; n := d�e 2 N, d�e is
the ceiling of the number, f : [a; b]! X. We assume that f (n) 2 L1 ([a; b] ; X).
We call the Caputo-Bochner left fractional derivative of order �:

(D�
�af) (x) :=

1

� (n� �)

Z x

a

(x� t)n���1 f (n) (t) dt; 8 x 2 [a; b] : (217)

If � 2 N, we set D�
�af := f (�) the ordinary X-valued derivative, and also set

D0
�af := f:

We need

De�nition 40 Let � > 0, [a; b] � R, X is a Banach space, and f 2 L1 ([a; b] ; X).
The Bochner integral operator

�
I�b�f

�
(x) :=

1

� (�)

Z b

x

(z � x)��1 f (z) dz; (218)

8 x 2 [a; b], where � is the gamma function, is called the Riemann-Liouville
right fractional Bochner integral operator of order �:
For � = 0, we set I0b� := I (the identity operator).

We mention

Theorem 41 ([2]) Let �; � � 0, f 2 L1 ([a; b] ; X). Then

I�b�I
�
b�f = I

�+�
b� f = I�b�I

�
b�f; (219)

valid almost everywhere on [a; b] :
If additionally f 2 C ([a; b] ; X) or �+ � � 1, then we have identity true on

all of [a; b] :

We need

De�nition 42 Let [a; b] � R, X be a Banach space, � > 0; m := d�e, (d�e the
ceiling of the number). We assume that f (m) 2 L1 ([a; b] ; X), where f : [a; b]!
X: We call the Caputo-Bochner right fractional derivative of order �:�

D�
b�f

�
(x) := (�1)m Im��b� f (m) (x) ; (220)

i.e.�
D�
b�f

�
(x) :=

(�1)m

� (m� �)

Z b

x

(J � x)m���1 f (m) (J) dJ; 8 x 2 [a; b] : (221)

We observe that Dm
b�f (x) = (�1)

m
f (m) (x), for m 2 N, and D0

b�f (x) = f (x) :
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We consider (� > 0)

Dn�
�a := D

�
�aD

�
�a:::D

�
�a (n-times), n 2 N: (222)

Also denote by
Jn�a := J�a J

�
a :::J

�
a (n-times). (223)

Similarly we consider

Dn�
b� := D

�
b�D

�
b�:::D

�
b� (n-times), (224)

and
In�b� := I�b�I

�
b�:::I

�
b� (n-times). (225)

Next we apply Theorems 30, 33, when g =identity map.
We have the following left modi�ed X-valued Taylor�s formula.

Theorem 43 Let 0 < � � 1, n 2 N, f 2 C1 ([a; b] ; X). For k = 1; :::; n; we
assume that Dk�

�a f 2 C1 ([a; b] ; X) and D
(n+1)�
�a f 2 C ([a; b] ; X) :

Then

f (x) =
nX
i=0

(x� a)i�

� (i�+ 1)

�
Di�
�af
�
(a)+

1

� ((n+ 1)�)

Z x

a

(x� t)(n+1)��1
�
D
(n+1)�
�a f

�
(t) dt; 8 x 2 [a; b] : (226)

We have also the following right modi�ed X-valued Taylor�s formula.

Theorem 44 Let 0 < � � 1, n 2 N, f 2 C1 ([a; b] ; X). For k = 1; :::; n; we
assume that Dk�

b�f 2 C1 ([a; b] ; X) and D
(n+1)�
b� f 2 C ([a; b] ; X) :

Then

f (x) =
nX
i=0

(b� x)i�

� (i�+ 1)

�
Di�
b�f

�
(b)+

1

� ((n+ 1)�)

Z b

x

(t� x)(n+1)��1
�
D
(n+1)�
b� f

�
(t) dt; 8 x 2 [a; b] : (227)

We give

Theorem 45 Let 0 < � < 1, f 2 Cm ([a; b] ; X), where (X; k�k) is a Banach
space, m 2 N. Assume that Dk�

�a f 2 C1 ([a; b] ; X), k = 1; :::; n; n 2 N and
D
(n+1)�
�a f 2 C ([a; b] ; X). Suppose that

�
Di�
�af
�
(a) = 0, for i = 0; 2; 3; :::; n. Let


 > 0 with d
e = m < n + 1, such that m < (n+ 1)�, equivalently � > m
n+1 :

Then

(D

�af) (x) =

1

� ((n+ 1)�� 
)

Z x

a

(x� t)(n+1)��
�1
�
D
(n+1)�
�a f

�
(t) dt; (228)

8 x 2 [a; b]. Furthermore it holds (D

�af) 2 C ([a; b] ; X) :
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Proof. Here we have that

(D�
�af) (x) =

1

� (1� �)

Z x

a

(x� t)�� f 0 (t) dt; 8 x 2 [a; b] : (229)

We observe that

k(D�
�af) (x)k �

1

� (1� �)

Z x

a

(x� t)�� kf 0 (t)k dt (230)

� 1

� (1� �)

�Z x

a

(x� t)�� dt
�
kf 0kL1([a;b];X)

=
(x� a)1��

� (1� �) (1� �) kf
0kL1([a;b];X) =

(x� a)1��

� (2� �) kf
0kL1([a;b];X) < +1: (231)

Hence
k(D�

�af) (a)k = 0;

that is
(D�

�af) (a) = 0: (232)

The left Caputo fractional derivative of order 
 is given by

D

�af =

1

� (m� 
)

Z x

a

(x� t)m�
�1 f (m) (t) dt =
�
Jm�
a f (m)

�
(x) , 8x 2 [a; b] ;

(233)
which exists everywhere over [a; b].
We set Dm

�af = f
(m), m 2 N:

By Theorem 43 we obtain

f (x) =
1

� ((n+ 1)�)

Z x

a

(x� t)(n+1)��1
�
D
(n+1)�
�a f

�
(t) dt; 8 x 2 [a; b] :

(234)
By Theorem 34, when (n+ 1)� � 1 > 0, equivalently when � > 1

n+1 , we get
that there exists

f 0 (x) =
((n+ 1)�� 1)
� ((n+ 1)�)

Z x

a

(x� t)(n+1)��2
�
D
(n+1)�
�a f

�
(t) dt; 8 x 2 [a; b] :

(235)
If (n+ 1)�� 2 > 0, equivalently, if � > 2

n+1 , we get that there exists

f 00 (x) =
((n+ 1)�� 1) ((n+ 1)�� 2)

� ((n+ 1)�)

Z x

a

(x� t)(n+1)��3
�
D
(n+1)�
�a f

�
(t) dt;

(236)
8 x 2 [a; b] :
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In general, if (n+ 1)��m > 0, equivalently, if � > m
n+1 , we get that there

exists

f (m) (x) =

mQ
j=1

((n+ 1)�� j)

� ((n+ 1)�)

Z x

a

(x� t)(n+1)��m�1
�
D
(n+1)�
�a f

�
(t) dt;

(237)
8 x 2 [a; b] :
By Theorem 10, we get that f (m) 2 C ([a; b] ; X) :
By (215), we derive

f (m) (x) =

mQ
j=1

((n+ 1)�� j) � ((n+ 1)��m)

� ((n+ 1)�)

�
J ((n+1)��m)a

�
D
(n+1)�
�a f

��
(x)

(238)

=
�
J ((n+1)��m)a

�
D
(n+1)�
�a f

��
(x) :

We have proved that

f (m) (x) =
�
J ((n+1)��m)a

�
D
(n+1)�
�a f

��
(x) ; 8 x 2 [a; b] : (239)

We have that (case of 
 < m)

(D

�af) (x) =

�
Jm�
a f (m)

�
(x) =

�
Jm�
a J ((n+1)��m)a

�
D
(n+1)�
�a f

��
(x) (240)

=
�
J (n+1)��
a

�
D
(n+1)�
�a f

��
(x) :

That is

(D

�af) (x) =

�
J (n+1)��
a

�
D
(n+1)�
�a f

��
(x) ; 8 x 2 [a; b] : (241)

I.e. we have found the representation formula:

(D

�af) (x) =

1

� ((n+ 1)�� 
)

Z x

a

(x� t)(n+1)��
�1
�
D
(n+1)�
�a f

�
(t) dt;

(242)
8 x 2 [a; b] :
The last formula (242) is true under the assumption (n+ 1)� > m, and

since m � 
, it implies (n+ 1)� > 
 and (n+ 1)� � 
 > 0. Furthermore, by
Theorem 10, we get that (D


�af) 2 C ([a; b] ; X) :
The theorem is proved.
We continue with

Theorem 46 Under the assumptions of Theorem 45, and when 
+m
n+1 < � < 1,

we get that�
D2

�af
�
(x) =

1

� ((n+ 1)�� 2
)

Z x

a

(x� t)(n+1)��2
�1
�
D
(n+1)�
�a f

�
(t) dt;

(243)
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8 x 2 [a; b], and
�
D2

�af
�
2 C ([a; b] ; X) :

Proof. Call � := (n+ 1)� � 
 � 1, i.e. � + 1 = (n+ 1)� � 
, and call
� := (n+ 1)�: Then we can write

(D

�af) (x) =

1

� (�+ 1)

Z x

a

(x� t)�
�
D�
�af
�
(t) dt; 8 x 2 [a; b] : (244)

If � > 0, then

(D

�af)

0
(x) =

�

� (�+ 1)

Z x

a

(x� t)��1
�
D�
�af
�
(t) dt; 8 x 2 [a; b] : (245)

If �� 1 > 0, then

(D

�af)

00
(x) =

� (�� 1)
� (�+ 1)

Z x

a

(x� t)��2
�
D�
�af
�
(t) dt; 8 x 2 [a; b] : (246)

If �� 2 > 0, then

(D

�af)

(3)
(x) =

� (�� 1) (�� 2)
� (�+ 1)

Z x

a

(x� t)��3
�
D�
�af
�
(t) dt; 8 x 2 [a; b] :

(247)
etc.
In general, if ��m+ 1 > 0, then

(D

�af)

(m)
(x) =

� (�� 1) (�� 2) ::: (��m+ 1)
� (�+ 1)

Z x

a

(x� t)(��m+1)�1
�
D�
�af
�
(t) dt

(248)

=
� (�� 1) (�� 2) ::: (��m+ 1)� (��m+ 1)

� (�+ 1)

�
J (��m+1)a

�
D�
�af
��
(x)

=
�
J (��m+1)a

�
D�
�af
��
(x) ; 8 x 2 [a; b] : (249)

That is, if ��m+ 1 > 0, then

(D

�af)

(m)
(x) =

�
J (��m+1)a

�
D�
�af
��
(x) ; 8 x 2 [a; b] : (250)

We notice that�
D2

�af
�
(x) = (D


�a (D


�af)) (x) =

�
Jm�
a (D


�af)
(m)
�
(x) = (251)�

Jm�
a J��m+1a

�
D�
�af
��
(x) =

�
J��
+1a

�
D�
�af
��
(x) =�

J (n+1)��
�1�
+1a

�
D�
�af
��
(x) =

�
J (n+1)��2
a

�
D�
�af
��
(x) : (252)

That is �
D2

�af
�
(x) =

�
J (n+1)��2
a

�
D
(n+1)�
�a f

��
(x) ; 8 x 2 [a; b] ; (253)

under the condition 
+m
n+1 < � < 1:

The theorem is proved.
We give
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Theorem 47 Under the assumptions of Theorem 45, and when m+2

n+1 < � < 1,

we obtain that�
D3

�af
�
(x) =

1

� ((n+ 1)�� 3
)

Z x

a

(x� t)(n+1)��3
�1
�
D
(n+1)�
�a f

�
(t) dt;

(254)

8 x 2 [a; b], and
�
D3

�af
�
2 C ([a; b] ; X) :

Proof. Call � := (n+ 1)� � 2
 � 1, i.e. � + 1 = (n+ 1)� � 2
, and call
� := (n+ 1)�: Then we can write�

D2

�af
�
(x) =

1

� (�+ 1)

Z x

a

(x� t)�
�
D�
�af
�
(t) dt; 8 x 2 [a; b] : (255)

If � > 0, then�
D2

�af
�0
(x) =

�

� (�+ 1)

Z x

a

(x� t)��1
�
D�
�af
�
(t) dt; 8 x 2 [a; b] : (256)

If �� 1 > 0, then�
D2

�af
�00
(x) =

� (�� 1)
� (�+ 1)

Z x

a

(x� t)��2
�
D�
�af
�
(t) dt; 8 x 2 [a; b] : (257)

If �� 2 > 0, then�
D2

�af
�(3)

(x) =
� (�� 1) (�� 2)

� (�+ 1)

Z x

a

(x� t)��3
�
D�
�af
�
(t) dt; 8 x 2 [a; b] :

(258)
etc.
In general, if ��m+ 1 > 0, then�

D2

�af
�(m)

(x) =
� (�� 1) (�� 2) ::: (��m+ 1)

� (�+ 1)

Z x

a

(x� t)(��m+1)�1
�
D�
�af
�
(t) dt

(259)

=
� (�� 1) (�� 2) ::: (��m+ 1)� (��m+ 1)

� (�+ 1)

�
J (��m+1)a

�
D�
�af
��
(x)

=
�
J (��m+1)a

�
D�
�af
��
(x) ; 8 x 2 [a; b] : (260)

That is, if ��m+ 1 > 0, then�
D2

�af
�(m)

(x) =
�
J (��m+1)a

�
D�
�af
��
(x) ; 8 x 2 [a; b] : (261)

We notice that�
D3

�af
�
(x) =

�
D

�a
�
D2

�af
��
(x) =

�
Jm�
a

�
D2

�af
�(m)�

(x) = (262)�
Jm�
a J��m+1a

�
D�
�af
��
(x) =

�
J��
+1a

�
D�
�af
��
(x) =
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�
J (n+1)��2
�1�
+1a

�
D�
�af
��
(x) =

�
J (n+1)��3
a

�
D
(n+1)�
�a f

��
(x) : (263)

That is, if m+2
n+1 < � < 1, we get�
D3

�af
�
(x) =

�
J (n+1)��3
a

�
D
(n+1)�
�a f

��
(x) ; 8 x 2 [a; b] : (264)

The theorem is proved.
In general, we derive the iterated left fractional derivative formula:

Theorem 48 Under the assumptions of Theorem 45, and when m+(k�1)

n+1 <

� < 1, k 2 N; we obtain that�
Dk

�af
�
(x) =

1

� ((n+ 1)�� k
)

Z x

a

(x� t)(n+1)��k
�1
�
D
(n+1)�
�a f

�
(t) dt;

(265)

8 x 2 [a; b], and
�
Dk

�af
�
2 C ([a; b] ; X) :

We give

Theorem 49 Let 0 < � < 1, f 2 Cm ([a; b] ; X), where (X; k�k) is a Banach
space, m 2 N. Assume that Dk�

b�f 2 C1 ([a; b] ; X), for k = 1; :::; n, n 2 N and
D
(n+1)�
b� f 2 C ([a; b] ; X). Suupose that

�
Di�
b�f

�
(b) = 0, i = 0; 2; 3; :::; n: Let


 > 0 with d
e = m < n + 1, such that m < (n+ 1)�, equivalently, � > m
n+1 :

Then�
D

b�f

�
(x) =

1

� ((n+ 1)�� 
)

Z b

x

(z � x)(n+1)��
�1
�
D
(n+1)�
b� f

�
(z) dz;

(266)
8 x 2 [a; b] : Furthermore it holds

�
D

b�f

�
2 C ([a; b] ; X) :

Proof. Here we have that�
D�
b�f

�
(x) =

�1
� (1� �)

Z b

x

(J � x)�� f 0 (J) dJ; 8x 2 [a; b] : (267)

We observe that

�D�
b�f

�
(x)


 � 1

� (1� �)

Z b

x

(J � x)�� kf 0 (J)k dJ (268)

� 1

� (1� �)

 Z b

x

(J � x)�� dJ
!
kf 0kL1([a;b];X)

=
(b� x)1��

� (2� �) kf
0kL1([a;b];X) < +1:

Hence 

�D�
b�f

�
(b)


 = 0; (269)
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that is �
D�
b�f

�
(b) = 0: (270)

The right Caputo fractional derivative X-valued of order 
 is given by

�
D

b�f

�
(x) =

(�1)m

� (m� 
)

Z b

x

(z � x)m�
�1 f (m) (z) dz, 8 x 2 [a; b] ; (271)

Notice that �
D

b�f

�
(x) = (�1)m Im�
b� f (m) (x) ; 8 x 2 [a; b] : (272)

We set D0
b�f = f , and

�
Dm
b�f

�
(x) = (�1)m f (m) (x), for m 2 N, 8 x 2 [a; b] :

By (227) we obtain

f (x) =
1

� ((n+ 1)�)

Z b

x

(z � x)(n+1)��1
�
D
(n+1)�
b� f

�
(z) dz; 8 x 2 [a; b] :

(273)
Call � := (n+ 1)�, then we have

f (x) =
1

� (�)

Z b

x

(z � x)��1
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] : (274)

By Theorem 35, when � � 1 > 0, we get that there exists

f 0 (x) =
(�1) (� � 1)

� (�)

Z b

x

(z � x)��2
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] : (275)

If � � 2 > 0, then

f 00 (x) =
(�1)2 (� � 1) (� � 2)

� (�)

Z b

x

(z � x)��3
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] :

(276)
In general, if � �m > 0, equivalently, if � > m

n+1 , we get that there exists

f (m) (x) =

(�1)m
mQ
j=1

(� � j)

� (�)

Z b

x

(z � x)��m�1
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] :

(277)
By Theorem 11, we get f (m) 2 C ([a; b] ; X) :
By (218), we derive

f (m) (x) =

(�1)m
mQ
j=1

(� � j) � (� �m)
�
I��mb�

�
D�
b�f

��
(x)

� (�)
(278)

= (�1)m
�
I��mb�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] :
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We have proved that

f (m) (x) = (�1)m
�
I��mb�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] : (279)

We have that (case of 
 < m)�
D

b�f

�
(x) = (�1)m

�
Im�
b� f (m)

�
(x) = (�1)2m

�
Im�
b�

�
I��mb�

�
D�
b�f

���
(x)

(280)

=
�
I��
b�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] :

That is �
D

b�f

�
(x) =

�
I
(n+1)��

b�

�
D
(n+1)�
b� f

��
(x) ; 8 x 2 [a; b] : (281)

I.e. we have found the representation formula:

�
D

b�f

�
(x) =

1

� ((n+ 1)�� 
)

Z b

x

(z � x)(n+1)��
�1
�
D
(n+1)�
b� f

�
(z) dz;

(282)
8 x 2 [a; b] :
The last formula (282) is true under the assumption (n+ 1)� > m, and

since m � 
, it implies (n+ 1)� > 
 and (n+ 1)� � 
 > 0. Furthermore, by
Theorem 11, we get that

�
D

b�f

�
2 C ([a; b] ; X) :

The theorem is proved.
We continue with

Theorem 50 Under the assumptions of Theorem 49, and when 
+m
n+1 < � < 1,

we get that�
D2

b�f

�
(x) =

1

� ((n+ 1)�� 2
)

Z b

x

(z � x)(n+1)��2
�1
�
D
(n+1)�
b� f

�
(z) dz;

(283)

8 x 2 [a; b]. Furthermore it holds
�
D2

b�f

�
2 C ([a; b] ; X) :

Proof. Call � := (n+ 1)� � 
 � 1, i.e. � + 1 = (n+ 1)� � 
, and call
� := (n+ 1)�: Then we can write

�
D

b�f

�
(x) =

1

� (�+ 1)

Z b

x

(z � x)�
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] : (284)

If � > 0, then

�
D

b�f

�0
(x) =

(�1)�
� (�+ 1)

Z b

x

(z � x)��1
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] : (285)
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If �� 1 > 0, then

�
D

b�f

�00
(x) =

(�1)2 � (�� 1)
� (�+ 1)

Z b

x

(z � x)��2
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] :

(286)
If �� 2 > 0, then

�
D

b�f

�(3)
(x) =

(�1)3 � (�� 1) (�� 2)
� (�+ 1)

Z b

x

(z � x)��3
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] :

(287)
etc.
In general, if ��m+ 1 > 0, then�

D

b�f

�(m)
(x) =

(�1)m � (�� 1) (�� 2) ::: (��m+ 1)
� (�+ 1)

Z b

x

(z � x)(��m+1)�1
�
D�
b�f

�
(z) dz

=
(�1)m � (�� 1) (�� 2) ::: (��m+ 1)� (��m+ 1)

�
I
(��m+1)
b�

�
D�
b�f

��
(x)

� (�+ 1)
(288)

= (�1)m
�
I
(��m+1)
b�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] :

That is, if ��m+ 1 > 0, then�
D

b�f

�(m)
(x) = (�1)m

�
I
(��m+1)
b�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] : (289)

We notice that�
D2

b�f

�
(x) =

�
D

b�
�
D

b�f

��
(x) = (�1)m

�
Im�
b�

�
D

b�f

�(m)�
(x) =

(�1)2m
�
Im�
b� I��m+1b�

�
D�
b�f

��
(x) =

�
I��
+1b�

�
D�
b�f

��
(x) = (290)�

I
(n+1)��
�1�
+1
b�

�
D�
b�f

��
(x) =

�
I
(n+1)��2

b�

�
D�
b�f

��
(x) ;

8 x 2 [a; b] :
That is�

D2

b�f

�
(x) =

�
I
(n+1)��2

b�

�
D
(n+1)�
b� f

��
(x) ; 8 x 2 [a; b] ; (291)

under the condition 
+m
n+1 < � < 1:

The theorem is proved.
We give
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Theorem 51 Under the assumptions of Theorem 49, and when m+2

n+1 < � < 1,

we get that�
D3

b�f

�
(x) =

1

� ((n+ 1)�� 3
)

Z b

x

(z � x)(n+1)��3
�1
�
D
(n+1)�
b� f

�
(z) dz;

(292)

8 x 2 [a; b], and
�
D3

b�f

�
2 C ([a; b] ; X) :

Proof. Call � := (n+ 1)� � 2
 � 1, i.e. � + 1 = (n+ 1)� � 2
, and call
again � := (n+ 1)�: Then we can write�

D2

b�f

�
(x) =

1

� (�+ 1)

Z b

x

(z � x)�
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] : (293)

If � > 0, then�
D2

b�f

�0
(x) =

(�1) �
� (�+ 1)

Z b

x

(z � x)��1
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] : (294)

If �� 1 > 0, then�
D2

b�f

�00
(x) =

(�1)2 � (�� 1)
� (�+ 1)

Z b

x

(z � x)��2
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] :

(295)
If �� 2 > 0, then�
D2

b�f

�(3)
(x) =

(�1)3 � (�� 1) (�� 2)
� (�+ 1)

Z b

x

(z � x)��3
�
D�
b�f

�
(z) dz; 8 x 2 [a; b] :

(296)
etc.
In general, if ��m+ 1 > 0, then�

D2

b�f

�(m)
(x) =

(�1)m � (�� 1) (�� 2) ::: (��m+ 1)
� (�+ 1)

Z b

x

(z � x)(��m+1)�1
�
D�
b�f

�
(z) dz

(297)

=
(�1)m � (�� 1) (�� 2) ::: (��m+ 1)� (��m+ 1)

�
I
(��m+1)
b�

�
D�
b�f

��
(x)

� (�+ 1)

= (�1)m
�
I
(��m+1)
b�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] : (298)

That is, if ��m+ 1 > 0, then�
D2

b�f

�(m)
(x) = (�1)m

�
I
(��m+1)
b�

�
D�
b�f

��
(x) ; 8 x 2 [a; b] : (299)
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We notice that�
D3

b�f

�
(x) =

�
D

b�

�
D2

b�f

��
(x) = (�1)m

�
Im�
b�

�
D2

b�f

�(m)�
(x) =

(�1)2m
�
Im�
b� I��m+1b�

�
D�
b�f

��
(x) =

�
I��
+1b�

�
D�
b�f

��
(x) = (300)�

I
(n+1)��2
�1�
+1
b�

�
D
(n+1)�
b� f

��
(x) =

�
I
(n+1)��3

b�

�
D
(n+1)�
b� f

��
(x) ; 8 x 2 [a; b] :

That is, if m+2
n+1 < � < 1, we get�
D3

b�f

�
(x) =

�
I
(n+1)��3

b�

�
D
(n+1)�
b� f

��
(x) ; 8 x 2 [a; b] : (301)

We have proved the theorem.
In general, we derive the iterated right fractional derivative formula:

Theorem 52 Under the assumptions of Theorem 49, and when m+(k�1)

n+1 <

� < 1, k 2 N; we get that:�
Dk

b�f

�
(x) =

1

� ((n+ 1)�� k
)

Z b

x

(z � x)(n+1)��k
�1
�
D
(n+1)�
b� f

�
(z) dz;

(302)

8 x 2 [a; b], and
�
Dk

b�f

�
2 C ([a; b] ; X) :

Next we give a related generalized fractional Ostrowski type inequality:

Theorem 53 Let g 2 C1 ([a; b]) and strictly increasing, such that g�1 2 C1 ([g (a) ; g (b)]),
and 0 < � < 1, n 2 N, f 2 C1 ([a; b] ; X), where (X; k�k) is a Banach space.
Let x0 2 [a; b] be �xed. Assume that F x0k := Dk�

x0�;gf , for k = 1; :::; n; ful-
�ll F x0k 2 C1 ([a; b] ; X) and F x0n+1 2 C ([a; x0] ; X) and

�
Di�
x0�;gf

�
(x0) = 0,

i = 1; :::; n:

Similarly, we assume that Gx0k := Dk�
x0+;gf , for k = 1; :::; n; ful�ll Gx0k 2

C1 ([x0; b] ; X) and G
x0
n+1 2 ([x0; b] ; X) and

�
Di�
x0+;gf

�
(x0) = 0, i = 1; :::; n:

Then 




 1

b� a

Z b

a

f (x) dx� f (x0)





 � 1

(b� a) � ((n+ 1)�+ 1) ��
(g (b)� g (x0))(n+1)� (b� x0)




D(n+1)�
x0+;g f





1;[x0;b]

+

(g (x0)� g (a))(n+1)� (x0 � a)



D(n+1)�

x0�;g f




1;[a;x0]

�
: (303)
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Proof. By (171), we obtain

f (x)�f (x0) =
1

� ((n+ 1)�)

Z x0

x

(g (t)� g (x))(n+1)��1 g0 (t)
�
D
(n+1)�
x0�;g f

�
(t) dt;

(304)
8 x 2 [a; x0] :
Hence it holds

kf (x)� f (x0)k �
1

� ((n+ 1)�)

Z x0

x

(g (t)� g (x))(n+1)��1 g0 (t)



�D(n+1)�

x0�;g f
�
(t)



 dt � (305)


D(n+1)�

x0�;g f




1;[a;x0]

� ((n+ 1)�)

(g (x0)� g (x))(n+1)�

(n+ 1)�
:

We have proved that

kf (x)� f (x0)k �
(g (x0)� g (x))(n+1)�

� ((n+ 1)�+ 1)




D(n+1)�
x0�;g f





1;[a;x0]

; (306)

8 x 2 [a; x0] :
Also, by (155), we obtain

f (x)�f (x0) =
1

� ((n+ 1)�)

Z x

x0

(g (x)� g (t))(n+1)��1 g0 (t)
�
D
(n+1)�
x0+;g f

�
(t) dt;

(307)
8 x 2 [x0; b] :
Hence

kf (x)� f (x0)k �
(g (x)� g (x0))(n+1)�

� ((n+ 1)�+ 1)




D(n+1)�
x0+;g f





1;[x0;b]

; (308)

8 x 2 [x0; b] :
Next we see that




 1

b� a

Z b

a

f (x) dx� f (x0)





 = 1

b� a







Z b

a

(f (x)� f (x0)) dx





 �

1

b� a

Z b

a

kf (x)� f (x0)k dx = (309)

1

b� a

(Z x0

a

kf (x)� f (x0)k dx+
Z b

x0

kf (x)� f (x0)k dx
)
�

1

(b� a) � ((n+ 1)�+ 1)

��Z x0

a

(g (x0)� g (x))(n+1)� dx
�


D(n+1)�

x0�;g f




1;[a;x0]

(310)
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+

 Z b

x0

(g (x)� g (x0))(n+1)� dx
!


D(n+1)�

x0+;g f




1;[x0;b]

)
�

1

(b� a) � ((n+ 1)�+ 1)

�
(g (x0)� g (a))(n+1)� (x0 � a)




D(n+1)�
x0�;g f





1;[a;x0]

(311)

+(g (b)� g (x0))(n+1)� (b� x0)



D(n+1)�

x0+;g f




1;[x0;b]

�
;

proving the claim.
One can prove many analytic inequalities based on this Banach space setting

and our many results presented here. Since this article turns out to be very long
we choose to omit this interesting task leaving it to others.

4 Applications

We make

Remark 54 Some examples for g follow:

g (x) = x; x 2 [a; b] ;
g (x) = ex, x 2 [a; b] � R; (312)

also

g (x) = sinx;

g (x) = tanx; when x 2 [a; b] :=
�
��
2 + ";

�
2 � "

�
; " > 0 small,

(313)

and

g (x) = cosx, when x 2 [a; b] := [� + "; 2� � "] ; " > 0 small. (314)

Above all g�s are strictly increasing, g 2 C1 ([a; b]), and g�1 2 Cn ([g (a) ; g (b)]),
for any n 2 N:

We give

Theorem 55 Let n 2 N and f 2 Cn ([a; b] ; X), where [a; b] � R and (X; k�k)
is a Banach spacxe. Let any x; y 2 [a; b]. Then

f (x) = f (y) +
n�1X
i=1

(ex � ey)i

i!
(f � ln)(i) (ey) +Rn

�
y; x; et

�
; (315)

where

Rn
�
y; x; et

�
=

1

(n� 1)!

Z x

y

�
ex � et

�n�1
(f � ln)(n)

�
et
�
etdt = (316)

1

(n� 1)!

Z ex

ey
(ex � z)n�1 (f � ln)(n) (z) dz:
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Proof. By Corollary 9, for g (t) = et:
We give

Theorem 56 Here [a; b] � R, (X; k�k) is a Banach space, F : [a; b] ! X. Let
r > 0 and F 2 L1 ([a; b] ; X) and

G (s) =

Z s

a

�
es � et

�r�1
etF (t) dt; (317)

all s 2 [a; b]. Then G 2 AC ([a; b] ; X) for r � 1 and G 2 C ([a; b] ; X) for
r 2 (0; 1) :

Proof. By Theorem 10.
We present

Theorem 57 Let � > 0, n = d�e, and f 2 Cn
��
��
2 + ";

�
2 � "

�
; X
�
, where

" > 0 is small, and (X; k�k) is a Banach space, ��
2 + " � x �

�
2 � ":

Then

f (x) = f
�
��
2
+ "
�
+
n�1X
i=1

�
sinx� sin

�
��
2 + "

��i
i!

�
f � sin�1

�(i) �
sin
�
��
2
+ "
��
+

1

� (�)

Z x

��
2+"

(sinx� sin t)��1 cos t
�
D�

(��
2+")+;sin

f
�
(t) dt = (318)

f
�
��
2
+ "
�
+
n�1X
i=1

�
sinx� sin

�
��
2 + "

��i
i!

�
f � sin�1

�(i) �
sin
�
��
2
+ "
��
+

1

� (�)

Z sin x

sin(��
2+")

(sinx� z)��1
��
D�

(��
2+")+;sin

f
�
� sin�1

�
(z) dz:

Proof. By Theorem 18.
We continue with

Theorem 58 Let � > 0, n = d�e, and f 2 Cn
��
��
2 + ";

�
2 � "

�
; X
�
, where

" > 0 is small, and (X; k�k) is a Banach space, ��
2 + " � x �

�
2 � ":

Then

f (x) = f
��
2
� "
�
+
n�1X
i=1

�
tanx� tan

�
�
2 � "

��i
i

�
f � tan�1

�(i) �
tan

��
2
� "
��
+

1

� (�)

Z �
2�"

x

(tan t� tanx)��1 sec2 t
�
D�

(�2�")�;tan
f
�
(t) dt = (319)

f
��
2
� "
�
+
n�1X
i=1

�
tanx� tan

�
�
2 � "

��i
i!

�
f � tan�1

�(i) �
tan

��
2
� "
��
+

1

� (�)

Z tan(�2�")

tan x

(z � tanx)��1
��
D�

(�2�")�;tan
f
�
� tan�1

�
(z) dz:
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Proof. By Theorem 19.
We derive

Theorem 59 Let 0 < � � 1, n 2 N, f 2 C1 ([a; b] ; X). Let Fk := Dk�
a+;etf ,

k = 1; :::; n; that ful�ll Fk 2 C1 ([a; b] ; X) and Fn+1 2 C ([a; b] ; X). Then

f (x) =
nX
i=0

(ex � ea)i�

� (i�+ 1)

�
Di�
a+;etf

�
(a)+ (320)

1

� ((n+ 1)�)

Z x

a

�
ex � et

�(n+1)��1
et
�
D
(n+1)�
a+;et f

�
(t) dt;

8 x 2 [a; b] :

Proof. By Theorem 30.
We further have

Theorem 60 Let 0 < � � 1, n 2 N, f 2 C1
��
��
2 + ";

�
2 � "

�
; X
�
, " >

0, small. Suppose that Fk := Dk�

(�2�")�;tan
f , for k = 1; :::; n; ful�ll Fk 2

C1
��
��
2 + ";

�
2 � "

�
; X
�
and Fn+1 2 C

��
��
2 + ";

�
2 � "

�
; X
�
. Then

f (x) =
nX
i=0

�
tan

�
�
2 � "

�
� tanx

�i�
� (i�+ 1)

�
Di�

(�2�")�;tan
f
���

2
� "
�
+ (321)

1

� ((n+ 1)�)

Z (�2�")
x

(tan t� tanx)(n+1)��1 sec2 t
�
D
(n+1)�

(�2�")�;tan
f

�
(t) dt;

8 t 2
�
��
2 + ";

�
2 � "

�
:

Proof. By Theorem 33.
We give the following Ostrowski type fractional inequality:

Theorem 61 Let 0 < � < 1, n 2 N, f 2 C1 ([a; b] ; X), where (X; k�k) is
a Banach space, x0 2 [a; b]. Assume that F x0k := Dk�

x0�;etf , for k = 1; :::; n;

ful�ll F x0k 2 C1 ([a; x0] ; X) and F x0n+1 2 C ([a; x0] ; X) and
�
Di�
x0�;etf

�
(x0) = 0,

i = 1; :::; n:

Similarly, we assume that Gx0k := Dk�
x0+;et

f , for k = 1; :::; n; ful�ll Gx0k 2
C1 ([x0; b] ; X) and G

x0
n+1 2 C ([x0; b] ; X) and

�
Di�
x0+;et

f
�
(x0) = 0, i = 1; :::; n:

Then 




 1

b� a

Z b

a

f (x) dx� f (x0)





 � 1

(b� a) � ((n+ 1)�+ 1) � (322)

��
eb � ex0

�(n+1)�
(b� x0)




D(n+1)�
x0+;et

f




1;[x0;b]

+

(ex0 � ea)(n+1)� (x0 � a)



D(n+1)�

x0�;et f




1;[a;x0]

�
:
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Proof. By Theorem 53 for g (t) = et.
We �nish with

Theorem 62 Let 0 < � < 1, n 2 N, f 2 C1 ([� + "; 2� � "] ; X), " > 0

small, where (X; k�k) is a Banach space, x0 2 [� + "; 2� � "]. Assume that
F x0k := Dk�

x0�;cosf , for k = 1; :::; n; ful�ll F
x0
k 2 C1 ([� + "; x0] ; X) and F x0n+1 2

C ([� + "; x0] ; X) and
�
Di�
x0�;cosf

�
(x0) = 0, i = 1; :::; n:

Similarly, we assume that Gx0k := Dk�
x0+;cosf , for k = 1; :::; n; ful�ll Gx0k 2

C1 ([x0; 2� � "] ; X) and Gx0n+1 2 C ([x0; 2� � "] ; X) and
�
Di�
x0+;cosf

�
(x0) = 0,

i = 1; :::; n:

Then



 1

� � 2"

Z 2��"

�+"

f (x) dx� f (x0)




 � 1

(� � 2") � ((n+ 1)�+ 1) ��
(cos (2� � ")� cosx0)(n+1)� (2� � "� x0)




D(n+1)�
x0+;cosf





1;[x0;2��"]

+

(cosx0 � cos (� + "))(n+1)� (x0 � � � ")



D(n+1)�

x0�;cosf




1;[�+";x0]

�
: (323)

Proof. By Theorem 53 for g (t) = cos ine.
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