Hermite – Hadamard – Fejér type inequalities for h - preinvex functions via fractional integrals

MARIAN MATŁOKA

Department of Applied Mathematics

Poznań University of Economics and Business

Al. Niepodległości 10, 61-875 Poznań, Poland

marian.matloka@ue.poznan.pl

Abstract: In this paper, first we have established Hermite - Hadamard - Fejér inequalities involving Riemann - Liouville integrals for *h* - preinvex function. Second, some Hermite -Hadamard - Fejér type integral inequalities for the fractional integrals are obtained.

Keywords: Riemann-Liouville integrals, Hermite - Hadamard - Fejér inequalities, h - preinvex function.

Mathematics Subject Classification (2000). Primary 26D15, Secondary 26A51.

1. Introduction

The following definition is well known in the literature: a function $f: I \to R$, $\emptyset \neq I \subset R$, is said to be convex on I if the inequality

$$f(tx + (1-t)y) \le t f(x) + (1-t)y \tag{1.1}$$

holds for all $x, y \in I$ and $t \in [0, 1]$.

Many important inequalities have been established for the class of convex functions, but the most famous is the Hermite - Hadamard inequality. This double inequality is stated as follows:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2} \tag{1.2}$$

where $f: [a, b] \to R$ is a convex function.

In 1978, Breckner introduced an s - convex function as a generalization of a convex function [1]. Such a function is defined in the following way: a function $f: [0, \infty] \to R$ is said to be s-convex in the second sense if

$$f(tx + (1-t)y) \le t^s f(x) + (1-t)^s f(y) \tag{1.3}$$

holds for all $x, y \in [0, \infty)$, $t \in [0, 1]$ and for fixed $s \in (0, 1]$.

In [2], Dragomir and Fitzpatrick proved the following variant of the Hermite - Hadamard inequality for s – convex functions:

$$2^{s-1}f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{s+1}. \tag{1.4}$$

In the paper [3] Varošanec introduced a large class of non-negative functions, the so - called h - convex functions. This class is defined in the following way: a non-negative function $f: I \to R$, $\emptyset \neq I \subset R$ is an interval, is called h - convex if

$$f(tx + (1-t)y) \le h(1-t)(f(x) + h(t)f(y)) \tag{1.5}$$

holds for all $x, y \in I$, $t \in (0, 1)$, where $h: J \to R$ is a non-negative function, $h \not\equiv 0$ and J is an interval, $(0, 1) \subseteq J$.

In [4] Sarikaya, Saglam and Yildirim proved that for h – convex function the following variant of the Harmite - Hadamard inequality is fulfilled:

$$\frac{1}{2h(\frac{1}{2})}f(\frac{a+b}{2}) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le [f(a)+f(b)] \cdot \int_{0}^{1} h(t) \, dt. \tag{1.6}$$

In [5] Bombardelli and Varošanec proved that for an h – convex function the following variant of the Harmite - Hadamard - Fejér inequality holds:

$$\frac{\int_{a}^{b} w(x) dx}{2h\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) \leq \int_{a}^{b} f(x) w(x) dx$$

$$\leq (b-a) \left(f(a)+f(b)\right) \int_{0}^{1} h(t) w(ta+(1-t)b) dt, \tag{1.7}$$

where $w: [a, b] \to R$, $w \ge 0$ and symmetric with respect to $\frac{a+b}{2}$.

In 1988, Weir and Mond introduced the concept of preinvex functions [6]. Now, we recall some notions in invexity analysis which will be used throughout the article.

A set $S \subseteq R^n$ is said to be invex with respect to the map $\eta: S \times S \to R^n$, if for every $x, y \in S$ and $t \in [0,1]$

$$y + t \eta(x, y) \in S$$
.

Let $S \subseteq \mathbb{R}^n$ be an invex set with respect to $\eta: S \times S \to \mathbb{R}^n$. Then, the function $f: S \to \mathbb{R}$ is said to be preinvex with respect to η if for every $x, y \in S$ and $t \in [0, 1]$

$$f(y + t \eta(x, y)) \le tf(x) + (1 - t)f(y).$$
 (1.8)

We also need the following assumption regarding the function η which is due to Mohan and Neogy [7].

Condition C. Let $S \subseteq \mathbb{R}^n$ be an open invex subset with respect to η . For any $x, y \in S$ and $t \in [0, 1]$,

$$\eta(y, y + t \eta(x, y)) = -t \eta(x, y),$$

$$\eta(x, y + t \eta(x, y)) = (1 - t)\eta(x, y).$$

In 2009, Noor [8] proved the Harmite – Hadamard inequality for preinvex function under the assumption that the Condition C is fulfilled

$$f\left(a + \frac{1}{2}\eta(b,a)\right) \le \frac{1}{\eta(b,a)} \int_{a}^{a+\eta(b,a)} f(x) \, dx \le \frac{f(a) + f(b)}{2}.$$
 (1.9)

In 2013, Matłoka [9] introduced the concept of h - preinvex function. Such a function is defined in the following way: the non-negative function f on the invex set S is said to be h - preinvex with respect to η if

$$f(y+t\,\eta(x,y)) \le h(1-t)f(y) + h(t)f(x)$$

holds for all $x, y \in S$ and $t \in [0, 1]$.

If $h(t) = t^s$ then the function is called s - preinvex.

In the same paper Matłoka proved the Hermite-Hadamard inequality for h - preinvex functions:

$$\frac{1}{2h\left(\frac{1}{2}\right)} f\left(a + \frac{1}{2}\eta\left(b, a\right)\right) \le \frac{1}{\eta(b, a)} \int_{a}^{a+\eta\left(b, a\right)} f(x) dx$$

$$\le \left[f(a) + f(b)\right] \cdot \int_{0}^{1} h(t) dt \tag{1.10}$$

In 2014, Matłoka [10] proved the following Hermite - Hadamard - Fejér inequality for h - preinvex function:

$$\frac{\int_{a}^{a+\eta(b,a)} w(x) dx}{2h\left(\frac{1}{2}\right)} f\left(a + \frac{1}{2}\eta(b,a)\right) \le \int_{a}^{a+\eta(b,a)} f(x) w(x) dx$$

$$\le \eta(b,a) \left(f(a) + f(b)\right) \cdot \int_{0}^{1} h(t) w(a+t \eta(b,a)) dt. \tag{1.11}$$

In 2013, Sarikaya, Set, Yaldiz and Basak [11] established the following Hermite-Hadamard inequalities for Riemann-Liouville fractional integral

$$f\left(\frac{a+b}{2}\right) \le \frac{\Gamma(\alpha+1)}{2(b,a)^{\alpha}} \left[I_{a+}^{\alpha} f(b) + I_{b-}^{\alpha} f(a) \right] \le \frac{f(a)+f(b)}{2},\tag{1.12}$$

where f is convex function and the symbols $I_{a^+}^{\alpha}f$ and $I_{b^-}^{\alpha}f$ denote the left - sided and right sided Riemann-Liouville fractional integral of the order $\alpha \in R^+$ that are defined by

$$I_{a^{+}}^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{a}^{x} (x-t)^{\alpha-1}f(t)dt \qquad (0 \le a < x \le b),$$

and

$$I_{b}^{\alpha}-f(x) = \frac{1}{\Gamma(\alpha)} \int_{x}^{b} (t-x)^{\alpha-1} f(t) dt \qquad (0 \le a \le x < b),$$

respectively. Here $\Gamma(\cdot)$ is the gamma function.

In the present we give new inequalities of Hermite - Hadamard - Fejér for h - preinvex functions.

2. Hermite - Hadamard - Fejér inequalities via fractional integrals

Hermite - Hadamard - Fejér inequalities can be represented in fractional integral forms as follows.

Theorem 2.1. Suppose $f: [a, a + \eta(b, a)] \to R$ is an h - preinvex function, Condition C for η holds and $\eta(b, a) > 0$, $h\left(\frac{1}{2}\right) > 0$ and $w: [a, a + \eta(b, a)] \to R$, $w \ge 0$ is symmetric with respect to $a + \frac{1}{2}\eta(b, a)$. Then the following inequalities hold:

$$\frac{\Gamma(\alpha)}{2 \cdot h\left(\frac{1}{2}\right) \cdot \eta(b,a)^{\alpha}} f\left(a + \frac{1}{2}\eta(b,a)\right) \left[I_{\left(a+\eta(b,a)\right)}^{\alpha} - w(a) + I_{a}^{\alpha} + w\left(a+\eta(b,a)\right)\right]$$

$$\leq \frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} \Big[I^{\alpha}_{(a+\eta(b,a))^{-}} w(a) f(a) + I^{\alpha}_{a^{+}} w(a+\eta(b,a)) f(a+\eta(b,a)) \Big] \\
\leq [f(a) + f(b)] \cdot \int_{0}^{1} t^{\alpha-1} [h(t) + h(1-t)] w(a+t\eta(b,a)) dt, \tag{2.1}$$

Proof. From the definition of an h - preinvex function and from Condition C for η it follows that:

$$f\left(a + \frac{1}{2}\eta\left(b, a\right)\right) \le h\left(\frac{1}{2}\right) \left[f\left(a + t\eta\left(b, a\right)\right) + f\left(a + (1 - t)\eta\left(b, a\right)\right)\right].$$

Multiplying both sides of the above inequality by

 $t^{\alpha-1}w(a+t\eta(b,a))=t^{\alpha-1}w(a+(1-t)\eta(b,a))$, then integrating the resulting inequality with respect to t over [0,1], we obtain

$$\int_{0}^{1} f\left(a + \frac{1}{2}\eta(b,a)\right) t^{\alpha-1} w(a + t \eta(b,a)) dt$$

$$\leq h\left(\frac{1}{2}\right)\left[\int_{0}^{1}t^{\alpha-1}f(a+t\eta(b,a))w(a+t\eta(b,a))dt\right]$$

$$+ \int_{0}^{1} t^{\alpha-1} f(a + (1-t)\eta(b,a)) w(a + (1-t)\eta(b,a)) dt \bigg].$$

Since

$$\int_{0}^{1} t^{\alpha-1} w(a+t \eta(b,a))dt = \frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} I^{\alpha}_{(a+\eta(b,a))^{-}} w(a),$$

$$\int_{0}^{1} t^{\alpha-1} f(a+t \eta (b,a)) w(a+t \eta (b,a)) dt = \frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} I^{\alpha}_{(a+\eta(b,a))^{-}} f(a) w(a)$$

and

$$\int_{0}^{1} t^{\alpha-1} f(a+(1-t)\eta(b,a)) w(a+(1-t)\eta(b,a)) dt$$

$$= \frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} I_{a}^{\alpha} f(a+\eta(b,a)) w(a+\eta(b,a)),$$

we have

$$\frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} f\left(a + \frac{1}{2}\eta(b,a)\right) I_{\left(a+\eta(b,a)\right)}^{\alpha} w(a)$$

$$\leq h\left(\frac{1}{2}\right) \frac{\Gamma(\alpha)}{n(b,a)^{\alpha}} \left[I^{\alpha}_{(a+\eta(b,a))^{-}} f(a)w(a) + I^{\alpha}_{a^{+}} f(a+\eta(b,a))w(a+\eta(b,a)) \right]. \tag{2.2}$$

Similarly, we also have

$$\frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} f\left(a + \frac{1}{2}\eta(b,a)\right) I_{a^{+}}^{\alpha} w(a + \eta(b,a))$$

$$\leq h\left(\frac{1}{2}\right)\frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}}\left[I^{\alpha}_{(a+\eta(b,a))^{-}}f(a)w(a) + I^{\alpha}_{a+}f(a+\eta(b,a))w(a+\eta(b,a))\right] \tag{2.3}$$

Thus, from (2.2) and (2.3) we obtain the first inequality of (2.1).

For the proof of the second inequality we first note that f is an h - preinvex function, then for $t \in [0,1]$, it yields

$$f(a+t\eta(b,a)) \le h(1-t)f(a) + h(t)f(b)$$

and

$$f(a + (1 - t) \eta (b, a)) \le h(t)f(a) + h(1 - t)f(b).$$

By adding these inequalities we have

$$f(a+t \eta(b,a)) + f(a+(1-t)\eta(b,a)) \le [f(a)+f(b)] \cdot [h(1-t)+h(t)].$$

Then multiplying both sides by $t^{\alpha-1} w(a + t \eta(b, a)) = t^{\alpha-1} w(a + (1-t) \eta(b, a))$

and integrating the resulting inequality with respect to t over [0, 1], we obtain

$$\int_{0}^{1} t^{\alpha-1} f(a+t \eta (b,a)) w(a+t \eta (b,a)) dt$$

$$+ \int_{0}^{1} t^{\alpha-1} f(a+(1-t) \eta (b,a)) w(a+(1-t) \eta (b,a)) dt$$

$$\leq [f(a)+f(b)] \cdot \int_{0}^{1} t^{\alpha-1} [h(t)+h(1-t)] w(a+t \eta (b,a)) dt$$

i.e.

$$\frac{\Gamma(\alpha)}{\eta(b,a)^{\alpha}} \Big[I^{\alpha}_{(a+\eta(b,a))^{-}} w(a) f(a) + I^{\alpha}_{a^{+}} w(a+\eta(b,a)) f(a+\eta(b,a)) \Big]$$

$$\leq [f(a) + f(b)] \cdot \int_{0}^{1} t^{\alpha - 1} [h(t) + h(1 - t)] w(a + t \eta (b, a)) dt.$$

The proof is completed.

Corollary 2.1. In Theorem 2.1, if $\alpha = 1$, then inequalities (2.1) become inequalities (1.11).

Corollary 2.2. In Theorem 2.1, if we take $\eta(b, a) = b - a$, $w(x) \equiv 1$ and h(t) = t, which means that f is convex function, then inequalities (2.1) become inequalities (1.12).

Corollary 2.3. In Theorem 2.1, if $\alpha = 1$ and $w(x) \equiv 1$, then we get inequalities (1.10).

Corollary 2.4. In Theorem 2.1, if $\alpha = 1$ and $w(x) \equiv 1$ and h(t) = t, then we get inequalities (1.9).

Corollary 2.5. In Theorem 2.1, if $\alpha = 1$ and $\eta(b, a) = b - a$, then inequalities (2.1) become inequalities (1.7).

Corollary 2.6. In Theorem 2.1, if $\alpha = 1$ and $\eta(b, a) = b - a$ and $w(x) \equiv 1$, then we get inequalities (1.6).

Corollary 2.6. In Theorem 2.1, if $\alpha = 1$ and $\eta(b, a) = b - a$ and $w(x) \equiv 1$ and $h(t) = t^s$, then we get inequalities (1.4).

Corollary 2.5. In Theorem 2.1, if $\alpha = 1$ and $\eta(b, a) = b - a$ and $w(x) \equiv 1$ and h(t) = t, then we get inequalities (1.2).

Corollary 2.6. In Theorem 2.1, if we let $w(x) \equiv 1$ and $h(t) = t^s$, then inequalities (2.1) become the following inequalities for s - preinvex function

$$2^{s} f\left(a + \frac{1}{2}\eta\left(b, a\right)\right) \leq \frac{\Gamma(\alpha + 1)}{\eta(b, a)^{\alpha}} \left[I_{\left(a + \eta(b, a)\right)^{-}}^{\alpha} f(a) + I_{a}^{\alpha} f\left(a + \eta(b, a)\right)\right]$$

$$\leq \alpha \left[f(\alpha) + f(b) \right] \cdot \left[\frac{1}{\alpha + s} + \frac{\Gamma(\alpha)\Gamma(s+1)}{\Gamma(\alpha + s + 1)} \right].$$

Corollary 2.7. In Theorem 2.1, if we let $w(x) \equiv 1$, $h(t) = t^s$ and $\eta(b, a) = b - a$ then inequalities (2.1) become the following inequalities for s - convex function

$$2^{s} f\left(\frac{a+b}{2}\right) \leq \frac{\Gamma(\alpha+1)}{(b-a)^{\alpha}} \left[I_{b^{-}}^{\alpha} f(a) + I_{a^{+}}^{\alpha} f(b) \right]$$

$$\leq \alpha \left[f(\alpha) + f(b) \right] \cdot \left[\frac{1}{\alpha + s} + \frac{\Gamma(\alpha)\Gamma(s+1)}{\Gamma(\alpha + s + 1)} \right].$$

Corollary 2.8. In Theorem 2.1, if we let $w(x) \equiv 1$, h(t) = t then inequalities (2.1) become the following inequalities for preinvex function

$$f\left(a + \frac{1}{2}\eta\left(b,a\right)\right) \leq \frac{\Gamma(\alpha+1)}{2\eta(b,a)^{\alpha}} \left[I_{\left(a+\eta(b,a)\right)^{-}}^{\alpha}f(a) + I_{a+}^{\alpha}f\left(a+\eta(b,a)\right)\right] \leq \frac{f(a) + f(b)}{2}.$$

3. Hermite - Hadamard - Fejér type inequalities via fractional integrals

In order to prove our results we need the following identity.

Lemma 3.1. Let $K \subseteq R$ be an open invex subset with respect to $\eta: K \times K \to R$ and $a, b \in K$ with $\eta(b, a) > 0$. Suppose that $f: K \to R$ is differentiable mapping on K such that $f' \in L([a, a + \eta(b, a)])$. If $w: K \to [0, \infty)$ is differentiable, then the following equality holds:

$$\int_{0}^{1} \left[(1-t)^{\alpha} - t^{\alpha} \right] w(a+t \eta(b,a)) \cdot f'(a+t \eta(b,a)) dt$$

$$= \frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a}^{\alpha} w(a+\eta(b,a)) w(a+\eta(b,a)) + I_{(a+\eta(b,a))}^{\alpha} w(a) f(a) \right]$$

$$-I_{a}^{\alpha} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))}^{\alpha+1} w'(a) f(a) \right]$$

$$-\frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + w(a) f(a) \right]. \tag{3.1}$$

Proof. Integrating by parts

$$\begin{split} &\int\limits_{0}^{1} \left[(1-t)^{\alpha} - t^{\alpha} \right] w (a+t \, \eta \, (b,a)) \cdot f' \big(a+t \, \eta \, (b,a) \big) \, dt \\ &= \frac{1}{\eta(b,a)} f \big(a+t \, \eta(b,a) \big) w \big(a+t \, \eta(b,a) \big) \left[(1-t)^{\alpha} - t^{\alpha} \right] \, \Big|_{0}^{1} \\ &+ \frac{\alpha}{\eta(b,a)} \int\limits_{0}^{1} \left[(1-t)^{\alpha-1} + t^{\alpha-1} \right] w \big(a+t \, \eta \, (b,a) \big) \cdot f \big(a+t \, \eta \, (b,a) \big) \, dt \\ &- \int\limits_{0}^{1} \left[(1-t)^{\alpha} - t^{\alpha} \right] w' \big(a+t \, \eta \, (b,a) \big) \cdot f \big(a+t \, \eta \, (b,a) \big) \, dt \\ &= -\frac{1}{\eta(b,a)} \big[w(a) f(a) + f \big(a+\eta \, (b,a) \big) w \big(a+\eta \, (b,a) \big) \big] \\ &+ \frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a+}^{\alpha} w \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha} w \big(a) f(a) \right] \\ &- I_{a+}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta(b,a) \big) f \big(a+\eta(b,a) \big) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} y' \big(a+\eta($$

which completes the proof.

Using this Lemma, we can obtain the following fractional integral inequalities.

Theorem 3.1. Let $K \subseteq R$ be an open invex subset with respect to $\eta: K \times K \to R$ and $a, b \in K$ with $\eta(b, a) > 0$. Suppose that $f: K \to R$ is a differentiable mapping on K and $w: K \to [0, \infty)$ is differentiable and symmetric to $a + \frac{1}{2}\eta(b, a)$. If |f'| is h – preinvex on K, we have the following inequality:

$$\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a^{+}}^{\alpha} w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) - I_{a^{+}}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right]$$

$$-\frac{1}{\eta(b,a)} [f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a)] \Big|$$

$$\leq [|f'(a)| + |f'(b)|] \cdot \int_{0}^{1} t^{\alpha} w(a+t \eta(b,a)) [h(t) + h(1-t)] dt.$$
(3.2)

Proof. Using Lemma 3.1 and the h – preinvexity of |f'|, we have

$$\begin{split} & \frac{|\Gamma(\alpha+1)|}{|\eta(b,a)^{\alpha+1}|} \left[|a_{a}^{\alpha}, w(a+\eta(b,a)) f(a+\eta(b,a)) + |a_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) \right. \\ & - |a_{a}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + |a_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right] \\ & - \frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a) \right] \Big| \\ & \leq \int_{0}^{1} \left[(1-t)^{\alpha} - t^{\alpha} |w(a+t\eta(b,a))| f'(a+\eta(b,a)) |dt \right. \\ & \leq \int_{0}^{1} \left[(1-t)^{\alpha} + t^{\alpha} |w(a+t\eta(b,a))| f'(a) + h(t) |f'(a)| + h(t) |f'(b)| \right] dt \\ & = |f'(a)| \cdot \int_{0}^{1} (1-t)^{\alpha} w(a+t\eta(b,a)) h(1-t) dt + |f'(a)| \int_{0}^{1} t^{\alpha} w(a+t\eta(b,a)) h(1-t) dt \\ & + |f'(b)| \cdot \int_{0}^{1} (1-t)^{\alpha} w(a+t\eta(b,a)) h(t) dt + |f'(b)| \int_{0}^{1} t^{\alpha} w(a+t\eta(b,a)) h(t) dt \\ & = \left[|f'(a)| + |f'(b)| \right] \int_{0}^{1} t^{\alpha} w(a+t\eta(b,a)) \cdot h(t) dt \\ & + \left[|f'(a)| + |f'(b)| \right] \int_{0}^{1} t^{\alpha} w(a+t\eta(b,a)) \cdot h(t) dt \end{split}$$

$$= [|f'(a)| + |f'(b)|] \cdot \int_{0}^{1} t^{\alpha} w(a + t \eta (b, a))[h(t) + h(1 - t)]dt$$

which completes the proof.

Corollary 3.1. If we take $w(x) \equiv 1$, and h(t) = t then inequality (3.2) become the following inequality for preinvex function:

$$\left| \frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a^{+}}^{\alpha} f\left(a + \eta(b,a)\right) + I_{(a+\eta(b,a))^{-}}^{\alpha} f(a) - \frac{1}{\eta(b,a)} \left[f\left(a + \eta(b,a)\right) + f(a) \right] \right| \\
\leq \frac{|f'(a)| + |f'(b)|}{\alpha+1}.$$

Corollary 3.2. If we take $w(x) \equiv 1$, and $h(t) = t^s$ then inequality (3.2) become the following inequality for s - preinvex function:

$$\begin{split} &\left|\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[\mathrm{I}_{a^+}^{\alpha} f\left(a + \eta(b,a)\right) + \mathrm{I}_{(a+\eta(b,a))^-}^{\alpha} f(a) - \frac{1}{\eta(b,a)} \left[f\left(a + \eta(b,a)\right) + f(a) \right] \right| \\ &\leq \left[|f'(a)| + |f'(b)| \right] \cdot \left[\frac{1}{\alpha+s+1} + \frac{\Gamma(\alpha+1)\Gamma(s+1)}{\Gamma(\alpha+s+2)} \right]. \end{split}$$

Theorem 3.2. Let $K \subseteq R$ be an open invex subset with respect to $\eta: K \times K \to R$ and $a, b \in K$ with $\eta(b, a) > 0$. Suppose that $f: K \to R$ is a differentiable mapping on K and $w: K \to [0, \infty)$ is differentiable and symmetric to $a + \frac{1}{2}\eta(b, a)$. If $|f'|^q$, $q \ge 1$, is h - preinvex on K, then one has:

$$\left| \frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a^{+}}^{\alpha} w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) \right] - I_{a^{+}}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right] - \frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a) \right]$$

$$\leq \left(\frac{2}{\alpha+1}\right)^{1-\frac{1}{q}} \left([|f'(a)|^q + |f'(b)|^q] \int_0^1 t^\alpha \left[w(a+t \eta(b,a)) \right]^q [h(t) + h(1-t)] dt \right)^{\frac{1}{q}} \tag{3.3}$$

Proof. By using the Lemma 3.1, h - preinvexity of $|f'|^q$ and the well known power mean inequality, we have

$$\begin{split} & \left| \frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} [\mathrm{I}_{a^+}^{\alpha} \, w \big(a + \eta(b,a) \big) f \big(a + \eta(b,a) \big) + \mathrm{I}_{(a+\eta(b,a))^-}^{\alpha} \, w(a) f(a) \right. \\ & \left. - \mathrm{I}_{a^+}^{\alpha+1} w' \big(a + \eta(b,a) \big) f \big(a + \eta(b,a) \big) + \mathrm{I}_{(a+\eta(b,a))^-}^{\alpha+1} w'(a) f(a) \right] \\ & \left. - \frac{1}{\eta(b,a)} [f \big(a + \eta(b,a) \big) w \big(a + \eta(b,a) \big) + f(a) w(a)] \right| \\ & \leq \left(\int_0^1 [(1-t)^{\alpha} + t^{\alpha}] \, dt \right)^{1-\frac{1}{q}} \cdot \\ & \cdot \left(\int_0^1 [(1-t)^{\alpha} + t^{\alpha}] [w \big(a + t \, \eta(b,a) \big)]^q |f'(a+t \, \eta(b,a))|^q \, dt \right)^{\frac{1}{q}} \\ & \leq \left(\frac{2}{\alpha+1} \right)^{1-\frac{1}{q}} \left([|f'(a)|^q + |f'(b)|^q] \int_0^1 t^{\alpha} [w \big(a + t \, \eta(b,a) \big)]^q [h(t) + h(1-t)] \, dt \right)^{\frac{1}{q}} \end{split}$$

which completes the proof.

Corollary 3.3. If we take $w(x) \equiv 1$, and h(t) = t then inequality (3.3) become the following inequality for preinvex function

$$\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a^{+}}^{\alpha} w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) - I_{a^{+}}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right]$$

$$-\frac{1}{\eta(b,a)} \Big[f\Big(a + \eta(b,a) \Big) w\Big(a + \eta(b,a) \Big) + f(a) w(a) \Big] \Big|$$

$$\leq \Big(\frac{2}{\alpha+1} \Big)^{1-\frac{1}{q}} \Big(\frac{|f'(a)|^q + |f'(b)|^q}{\alpha+1} \Big)^{\frac{1}{q}}.$$

Corollary 3.4. If we take $w(x) \equiv 1$, and $h(t) = t^s$ then inequality (3.3) become the following inequality for s - preinvex function

$$\frac{\left|\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a}^{\alpha} + w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) \right] - I_{a}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right] - \frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a) \right] \right| \\
\leq \left(\frac{2}{\alpha+1} \right)^{1-\frac{1}{q}} \left(\left[|f'(a)|^{q} + |f'(b)|^{q} \right] \cdot \left[\frac{1}{\alpha+s+1} + \frac{\Gamma(\alpha+1)\Gamma(s+1)}{\Gamma(\alpha+s+2)} \right] \right)^{\frac{1}{q}}.$$

Theorem 3.3. Let $K \subseteq R$ be an open invex subset with respect to $\eta: K \times K \to R$ and $a, b \in K$ with $\eta(b, a) > 0$. Suppose that $f: K \to R$ is a differentiable mapping on K and $w: K \to [0, \infty)$ is differentiable and symmetric to $a + \frac{1}{2}\eta(b, a)$. If $|f'|^q$, q > 1, is h - preinvex on K, then the following inequality for fractional integrals holds:

$$\frac{\left|\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a^{+}}^{\alpha} w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) \right] - I_{a^{+}}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right] - \frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a) \right] \right|$$

$$\leq \frac{2}{(\alpha \rho + 1)^{\frac{1}{p}}} \left[|f'(a)|^q + |f'(b)|^q \right] \cdot \int_0^1 \left[w(a + t \eta (b, a)) \right]^q h(t) dt \right)^{\frac{1}{q}}, \tag{3.4}$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. From Lemma 3.1 and using the well known Hölder inequality, we have

$$\frac{\left|\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}}\left[I_{a}^{\alpha}+w(a+\eta(b,a))f(a+\eta(b,a))+I_{(a+\eta(b,a))^{-}}^{\alpha}w(a)f(a)\right]}{\eta(b,a)^{\alpha+1}} w'(a+\eta(b,a))f(a+\eta(b,a))+I_{(a+\eta(b,a))^{-}}^{\alpha+1}w'(a)f(a)\right]
-\frac{1}{\eta(b,a)}\left[f(a+\eta(b,a))w(a+\eta(b,a))+f(a)w(a)\right] \left| \\
\leq \left(\int_{0}^{1}(1-t)^{\alpha p}dt\right)^{\frac{1}{p}} \left(\int_{0}^{1}\left[w(a+t\eta(b,a))\right]^{q}\left|f'(a+t\eta(b,a))\right|^{q}dt\right)^{\frac{1}{q}} \\
+\left(\int_{0}^{1}t^{\alpha p}dt\right)^{\frac{1}{p}} \cdot \left(\int_{0}^{1}\left[w(a+t\eta(b,a))\right]^{q}\left|f'(a+t\eta(b,a))\right|^{q}dt\right)^{\frac{1}{q}} \\
\leq \frac{2}{(\alpha p+1)^{\frac{1}{p}}} \left(\left[|f'(a)|^{q}+|f'(b)|^{q}\right] \cdot \int_{0}^{1}\left[w(a+t\eta(b,a))\right]^{q}h(t)dt\right)^{\frac{1}{q}}.$$

Corollary 3.5. If we take $w(x) \equiv 1$, and h(t) = t then inequality (3.4) become the following inequality for preinvex function

$$\frac{\left|\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a}^{\alpha} + w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) \right] - I_{a}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right] - \frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a) \right] \right| \\
\leq \frac{2}{(\alpha p+1)^{\frac{1}{p}}} \left(\frac{|f'(a)|^{q} + |f'(b)|^{q}}{2} \right)^{\frac{1}{q}}.$$

Corollary 3.6. If we take $w(x) \equiv 1$, and $h(t) = t^s$ then inequality (3.4) become the following inequality for s - preinvex function

$$\frac{\left|\frac{\Gamma(\alpha+1)}{\eta(b,a)^{\alpha+1}} \left[I_{a}^{\alpha} + w(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha} w(a) f(a) \right] - I_{a}^{\alpha+1} w'(a+\eta(b,a)) f(a+\eta(b,a)) + I_{(a+\eta(b,a))^{-}}^{\alpha+1} w'(a) f(a) \right] - \frac{1}{\eta(b,a)} \left[f(a+\eta(b,a)) w(a+\eta(b,a)) + f(a) w(a) \right] \right| \\
\leq \frac{2}{(\alpha p+1)^{\frac{1}{p}} (s+1)^{\frac{1}{q}}} \left(|f'(a)|^{q} + |f'(b)|^{q} \right)^{\frac{1}{q}}.$$

REFERENCES

- 1. Breckner, W.-W.: Stetigkeitsanssagen für eine Klasse verallgemeinerter Konvexer Funktionen in topologischen linearen Räumen, Pupl. Inst. Math. (Belgr.) 23, 13-20 (1978).
- 2. Dragomir, S.-S., Fitzpatrick, S.: *The Hadamard's inequality for s-convex functions in the second sense*, Demonstration Math. 32 (4), 687-696 (1999).
- 3. Varošanec, S.: *On h-convexity*, J. Math. Anal. Appl. 326, 303-311 (2007).
- 4. Sarikaya, M.-Z., Saglam, A. Yildirim, H.: *On some Hadamard-type inequalities for h-convex functions*, J. Math. Inequal. 2, 335-341 (2008).
- 5. Bombardelli, M., Varošanec, S.: *Properties of h-convex functions related to the Hermite Hadamard Fejér inequalities*, Comput. Math. Appl. 58, 1869-1877 (2009).
- 6. Weir, T., Mond, B.: *Preinvex functions in multiobjective optimization*, J. Math. Anal. Appl. 136, 29-38 (1988).
- 7. Mohan, S.-R., Neogy, S.-K.: *On invex sets and preinvex functions*, J. Math Anal. Appl. 189, 901-908 (1995).
- 8. Noor, M.-S.: *Hadamard integral inequalities for product of two preinvex functions*, Nonlinear Anal. Forum 14, 167-173 (2009).
- 9. Matłoka M.: On some Hadamard type inequalities for (h_1, h_2) preinvex functions on the coordinates. J. Inequal. Appl. doi: 10.1186/242 X -2013-227.
- 10. Matłoka M.: *Inequalities for h-preinvex functions*. Appl. Math Comput. 234, 52-57 (2014).
- 11. Sarikaya, M.-Z., Set, E., Yaldiz, H., Basak, N.: *Hermite-Hadamard's inequalities for fractional integrals and related inequalities*, Math. Comput. Model 57, 2403-2407 (2013).