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CAPUTO k−FRACTIONAL DERIVATIVE
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Abstract. In this paper by using Caputo k-fractional derivatives
we give some new fractional inequalities of Ostrowski type for h-
convex functions. Also we deduce some results for p−funtions,
convex functions and s−convex funtions in the second sense.

1. INTRODUCTION

The following inequality is known as Ostrowski inequality [13] (see
also, [12, page 468]) which gives upper bound for approximation of
integral average by the value f(x) at point x ∈ [a, b]. It is provided by
Ostrowski in 1938.

Theorem 1.1. Let f : I → R where I is interval in R be a mapping
differentiable in I◦the interior of I and a, b ∈ I◦, a < b. If

∣∣f ′(t)∣∣ ≤M
for all t ∈ [a, b], then we have∣∣∣∣f(x)− 1

(b− a)

∫ b

a

f(t)dt

∣∣∣∣ ≤
[

1

4
+

(x− a+b
2

)2

(b− a)2

]
(b− a)M, x ∈ [a, b].

In numerical analysis many quadrature rules have been established
to approximate the definite integrals. Ostrowski inequality provides
the bounds of many numerical quadrature rules (see [2] and references
there in). In recent decades Ostrowski inequality is studied in fractional
calculus point of view by many mathematicians (see [5, 11, 10] and
references their in).
We are interested to give Ostrowski type inequalities for mapping whose
nth derivative is h−convex via Caputo k−fractional derivatives.
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Definition 1.2. A function f is called convex function on the interval
[a, b] if for any two points x, y ∈ [a, b] and any t where, 0 ≤ t ≤ 1

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

Definition 1.3. [3] A non-negative function f : I → R is said to be
p-function, if for any two points x, y ∈ I and t ∈ [0, 1]

f (tx+ (1− t)y) ≤ f(x) + f(y).

s-convex functions in the second sense have been introduced by
Hudzik and Maligranda in [8] as follows.

Definition 1.4. [8] A function f : [0,∞)→ R is called s−convex in the
second sense on the interval [0,∞) if for any two points x, y ∈ [0,∞)
and any t where, 0 ≤ t ≤ 1 and for some fixed s ∈ (0, 1]

f(tx+ (1− t)y) ≤ tsf(x) + (1− t)sf(y).

Definition 1.5. [14] Let J ⊆ R be an interval containing (0, 1) and
let h : J → R be a positive function. We say f : I → R is a h-convex
function, if f is non-negative and

f(tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y)(1)

for all x, y ∈ I and t ∈ (0, 1). If above inequality is reversed, then f is
called h-concave.

It is easy to see that
(i) If h(t) = t, then (1) gives non-negative convex functions.
(ii) If h(t) = 1, then (1) gives p-function.
(iii) If h(t) = ts where s ∈ (0, 1), then (1) gives s-convex function in
the second sense.
In the following we give definitions of k-gamma and k-beta functions
as well as their relationship.

Definition 1.6. [4] For k ∈ R+ and x ∈ C, the k-gamma function is
defined by

Γk(x) = lim
n→∞

n!knnk
x
k
−1

(x)n,k
.

Its integral representation is given by

(2) Γk (α) =

∫ ∞
0

tα−1e−
tk

k dt.

One can note that
Γk (α + k) = αΓk (α) .

For k = 1, (2) gives integral representation of gamma function.
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Definition 1.7. [4] For k ∈ R+ and x ∈ C, the k-beta function with
two parameters x and y is defined as

(3) βk(x, y) =
1

k

∫ 1

0

t
x
k
−1(1− t)

y
k
−1dt.

For k = 1, (3) gives integral representation of beta function.

Theorem 1.8. [4] Let x, y > 0, then for k-gamma and k-beta function
following equality holds

(4) βk(x, y) =
Γk(x)Γk(y)

Γk(x+ y)
.

Definition 1.9. [9] Let α > 0 and α /∈ {1, 2, 3, ...}, n = [α] + 1,
f ∈ Cn[a, b] such that f (n) exists and are continuous on [a, b]. The
Caputo fractional derivatives of order α are defined as follows:

CDα
a+f(x) =

1

Γ(n− α)

∫ x

a

f (n)(t)

(x− t)α−n+1
dt, x > a(5)

and

CDα
b−f(x) =

(−1)n

Γ(n− α)

∫ b

x

f (n)(t)

(t− x)α−n+1
dt, x < b(6)

If α = n ∈ {1, 2, 3, ...} and usual derivative of order n exists, then
Caputo fractional derivative (CDα

a+f)(x) coincides with f (n)(x). In
particular we have

(CD0
a+f)(x) = (CD0

b−f)(x) = f(x)(7)

where n = 1 and α = 0.

In the following we define Caputo k-fractional derivatives.

Definition 1.10. [6] Let α > 0, k ≥ 1 and α /∈ {1, 2, 3, ...}, n = [α]+1,
f ∈ Cn[a, b] such that f (n) exists and are continuous on [a, b]. Then
Caputo k-fractional derivatives of order α are defined as follows:

CDα,k
a+ f(x) =

1

kΓk(n− α
k
)

∫ x

a

f (n)(t)

(x− t)αk−n+1
dt, x > a(8)

and

CDα,k
b− f(x) =

(−1)n

kΓk(n− α
k
)

∫ b

x

f (n)(t)

(t− x)
α
k
−n+1

dt, x < b(9)
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We organize the paper in such a way that in the following section we
prove some Ostrowski type inequalities for mappings whose nth times
derivative is h-convex via Caputo k-fractional derivatives.
Through out the paper Cn[a, b] denotes the space of n−times differen-
tiable functions such that f (n) are continuous on [a, b].

2. Ostrowski type Caputo k-fractional inequalities for
mappings whoes nth times derivative is h-convex

In this section we present some Ostrowski type inequalities for h-
convex functions via Caputo k-fractional integrals. The following lemma
is very useful to obtain our results.

Lemma 2.1. Let f : [a, b]→ R be a function such that f ∈ Cn+1[a, b], a <
b. Then we have the following equality for Caputo k−fractional deriva-
tives [

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×[

cDα,k
x− f(a) + (−1)n cDα,k

x+ f(b)
]

=
(x− a)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k f (n+1)(tx+ (1− t)a)dt

− (b− x)n−
α
k
+1

b− a

∫ 1

0

tn−
α
k f (n+1)(tx+ (1− t)b)dt.(10)

Proof. It is easy to see that∫ 1

0

tn−
α
k f (n+1)(tx+ (1− t)a)dt

=
tn−

α
k f (n)(tx+ (1− t)a)

x− a

∣∣∣∣1
0

−
n− α

k

x− a

∫ 1

0

tn−
α
k
−1f (n)(tx+ (1− t)a)dt

=
f (n)(x)

x− a
−
n− α

k

x− a

∫ x

a

(
y − a
x− a

)n−α
k
−1
f (n)(y)

x− a
dy

=
f (n)(x)

x− a
−

(nk − α)Γk(n− α
k
)

(x− a)n−
α
k
+1

cDα,k
x− f(a)

(11)
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and

∫ 1

0

tn−
α
k f (n+1)(tx+ (1− t)b)dt

=
tn−

α
k f (n)(tx+ (1− t)b)

x− b

∣∣∣∣1
0

−
n− α

k

x− b

∫ 1

0

tn−
α
k
−1f (n)(tx+ (1− t)b)dt

=
f (n)(x)

x− b
−
n− α

k

x− b

∫ b

x

(
y − b
x− b

)n−α
k
−1
f (n)(y)

x− b
dy

=
−f (n)(x)

b− x
+

(nk − α)Γk(n− α
k
)

(−1)n(b− x)n−
α
k
+1

cDα,k
x+ f(b).

(12)

Multiplying (11) by
(x− a)n−

α
k
+1

b− a
and (12) by −(b− x)n−

α
k
+1

b− a
, then

adding resulting equations we get (10). �

Using above lemma we give the following Ostrowski fractional in-
equality.

Theorem 2.2. Let f : I ⊆ [0,∞) → R be a function such that f ∈
Cn+1[a, b], 0 ≤ a < b. If

∣∣f (n+1)
∣∣ is h-convex on [a, b] and

∣∣f (n+1)(x)
∣∣ ≤

M , x ∈ [a, b], then the following inequality for Caputo k-fractional
derivatives holds

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ M(b− a)

2

∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt;x ∈ [a, b].(13)
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Proof. Using Lemma 2.1, h-convexity of
∣∣f (n+1)

∣∣, and upper bound of∣∣f (n+1)(x)
∣∣ we have∣∣∣∣∣

[
(x− a)n−

α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ (x− a)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)a)
∣∣dt

+
(b− x)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)b)
∣∣dt

≤ (x− a)n−
α
k
+1

b− a

∫ 1

0

tn−
α
k

[
h(t)

∣∣f (n+1)(x)
∣∣+ h(1− t)

∣∣f (n+1)(a)
∣∣] dt

+
(b− x)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

[
h(t)

∣∣f (n+1)(x)
∣∣+ h(1− t)

∣∣f (n+1)(b)
∣∣] dt

≤ M(x− a)n−
α
k
+1

b− a

∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt

+
M(b− x)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt

= M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

] ∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt.

This completes the proof. �

Now we give some special cases of Theorem 2.2.
The following result for Caputo fractional derivatives holds.

Corollary 2.3. In Theorem 2.2, if we take k = 1, then (13) becomes
the following inequality∣∣∣∣∣

[
(x− a)n−α + (b− x)n−α

b− a

]
f (n)(x)− (n− α)Γk(n− α)

b− a
×

[
cDα

x−f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−α+1 + (b− x)n−α+1

b− a

] ∫ 1

0

tn−α [h(t) + h(1− t)] dt.

(14)
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Corollary 2.4. In Theorem 2.2, if we take h(t) = 1, which means that∣∣f (n+1)
∣∣ is p-function, then (13) becomes the following inequality∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ 2M

n− α
k

+ 1

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

]
;x ∈ [a, b].(15)

Corollary 2.5. In Theorem 2.2, if we take h(t) = t, which means that∣∣f (n+1)
∣∣ is convex function, then (13) becomes the following inequality∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ M

n− α
k

+ 1

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

]
;x ∈ [a, b].(16)

Corollary 2.6. In Theorem 2.2, if we take h(t) = ts, which means
that

∣∣f (n+1)
∣∣ is s-function in the second sense, then (13) becomes the

following inequality∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

] [
1

n− α
k

+ s+ 1

+
kΓk(nk − α + k)Γk(sk + k)

Γk(nk − α + sk + 2k)

]
;x ∈ [a, b].(17)

Theorem 2.7. Let f : I ⊆ [0,∞) → R be a function such that f ∈
Cn+1[a, b], 0 ≤ a < b. If

∣∣f (n+1)
∣∣q, q > 1, is h-convex on [a, b] and∣∣f (n+1)(x)

∣∣ ≤ M , x ∈ [a, b], then the following inequality for Caputo
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k-fractional integrals holds

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−α+1 + (b− x)n−α+1

b− a

](
1

p(n− α
k
) + 1

) 1
p

×(∫ 1

0

[h(t) + h(1− t)] dt
) 1

q

;x ∈ [a, b],(18)

with α, k > 0 and 1
p

+ 1
q

= 1.

Proof. Using Lemma 2.1 and Holder’s inequality we have

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ (x− a)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)a)
∣∣dt

+
(b− x)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)b)
∣∣dt

≤ (x− a)n−
α
k
+1

b− a

(∫ 1

0

tp(n−
α
k
)dt

) 1
p
(∫ 1

0

∣∣f (n+1)(tx+ (1− t)a)
∣∣qdt) 1

q

+
(b− x)n−

α
k
+1

b− a

(∫ 1

0

tp(n−
α
k
)dt

) 1
p
(∫ 1

0

∣∣f (n+1)(tx+ (1− t)b)
∣∣qdt) 1

q

.
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Since
∣∣f (n+1)

∣∣q is h-convex and
∣∣f (n+1)(x)

∣∣ ≤M , x ∈ [a, b], there for we
have

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ (x− a)n−

α
k
+1

b− a

(∫ 1

0

tp(n−
α
k
)dt

) 1
p

×(∫ 1

0

[
h(t)

∣∣f (n+1)(x)
∣∣q + h(1− t)

∣∣f (n+1)(a)
∣∣q] dt) 1

q

+
(b− x)n−

α
k
+1

b− a

(∫ 1

0

tp(n−
α
k
)dt

) 1
p

×(∫ 1

0

[
h(t)

∣∣f (n+1)(x)
∣∣q + h(1− t)

∣∣f (n+1)(b)
∣∣q] dt) 1

q

≤ M(x− a)n−
α
k
+1

b− a

(
1

p(n− α
k
) + 1

) 1
p
(∫ 1

0

[h(t) + h(1− t)] dt
) 1

q

+
M(b− x)n−

α
k
+1

b− a

(
1

p(n− α
k
) + 1

) 1
p
(∫ 1

0

[h(t) + h(1− t)] dt
) 1

q

= M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

p(n− α
k
) + 1

) 1
p

×(∫ 1

0

[h(t) + h(1− t)] dt
) 1

q

.

This completes the proof. �

Now we give some special cases of Theorem 2.7.
The following result for Caputo fractional derivatives holds.
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Corollary 2.8. In Theorem 2.7, if we take k = 1, then (18) becomes
the following inequality∣∣∣∣∣

[
(x− a)n−α + (b− x)n−α

b− a

]
f (n)(x)− (n− α)Γk(n− α)

b− a
×

[
cDα

x−f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−α+1 + (b− x)n−α+1

b− a

](
1

p(n− α) + 1

) 1
p

×(∫ 1

0

[h(t) + h(1− t)] dt
) 1

q

.(19)

Corollary 2.9. In Theorem 2.7, if we take h(t) = 1, which means that∣∣f (n+1)
∣∣ is p-function, then (18) becomes the following inequality∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

p(n− α
k
) + 1

) 1
p

(2)
1
q ,(20)

with x ∈ [a, b] and α, k > 0.

Corollary 2.10. In Theorem 2.7, if we take h(t) = t, which means that∣∣f (n+1)
∣∣ is convex function, then (18) becomes the following inequality∣∣∣∣∣

[
(x− a)n−

α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

p(n− α
k
) + 1

) 1
p

;x ∈ [a, b].

(21)

Corollary 2.11. In Theorem 2.7, if we take h(t) = ts, which means
that

∣∣f (n+1)
∣∣ is s-function in the second sense, then (18) becomes the
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following inequality

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

p(n− α
k
) + 1

) 1
p
(

2

s+ 1

) 1
q

.

(22)

Theorem 2.12. Let f : I ⊆ [0,∞) → R be a function such that
f ∈ Cn+1[a, b], 0 ≤ a < b. If

∣∣f (n+1)
∣∣q, q > 1 is h-convex on [a, b]

q ≥ 1, and
∣∣f (n+1)(x)

∣∣ ≤M , x ∈ [a, b], then the following inequality for
Caputo k-fractional integrals holds

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−α+1 + (b− x)n−α+1

b− a

](
1

n− α
k

+ 1

)1− 1
q

×(∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt

) 1
q

;x ∈ [a, b].(23)
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Proof. Using Lemma 2.1 and power mean inequality we have

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ (x− a)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)a)
∣∣dt

+
(b− x)n−

α
k
+1

b− a

∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)b)
∣∣dt

≤ (x− a)n−
α
k
+1

b− a

(∫ 1

0

tn−
α
k dt

)1− 1
q
(∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)a)
∣∣qdt) 1

q

+
(b− x)n−

α
k
+1

b− a

(∫ 1

0

tn−
α
k dt

)1− 1
q
(∫ 1

0

tn−
α
k

∣∣f (n+1)(tx+ (1− t)b)
∣∣qdt) 1

q

.
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Since
∣∣f (n+1)

∣∣q is h-convex and
∣∣f (n+1)(x)

∣∣ ≤M , x ∈ [a, b], there for we
have

∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤ (x− a)n−

α
k
+1

b− a

(
1

n− α
k

+ 1

)1− 1
q

×(∫ 1

0

tn−
α
k

[
h(t)

∣∣f (n+1)(x)
∣∣q + h(1− t)

∣∣f (n+1)(a)
∣∣q] dt) 1

q

+
(b− x)n−

α
k
+1

b− a

(
1

n− α
k

+ 1

)1− 1
q

×(∫ 1

0

tn−
α
k

[
h(t)

∣∣f (n+1)(x)
∣∣q + h(1− t)

∣∣f (n+1)(b)
∣∣q] dt) 1

q

≤ M(x− a)n−
α
k
+1

b− a

(
1

n− α
k

+ 1

)1− 1
q
(∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt

) 1
q

+
M(b− x)n−

α
k
+1

b− a

(
1

n− α
k

+ 1

)1− 1
q
(∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt

) 1
q

= M

[
(x− a)n−α+1 + (b− x)n−α+1

b− a

](
1

n− α
k

+ 1

)1− 1
q

×(∫ 1

0

tn−
α
k [h(t) + h(1− t)] dt

) 1
q

.

This completes the proof. �

Now we give some special cases of Theorem 2.12.
The following result for Caputo fractional derivatives holds.
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Corollary 2.13. In Theorem 2.12, if we take k = 1, then (23) becomes
the following inequality∣∣∣∣∣

[
(x− a)n−α + (b− x)n−α

b− a

]
f (n)(x)− (n− α)Γk(n− α)

b− a
×

[
cDα

x−f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−α+1 + (b− x)n−α+1

b− a

](
1

n− α + 1

)1− 1
q

×(∫ 1

0

tn−α [h(t) + h(1− t)] dt
) 1

q

.(24)

Corollary 2.14. In Theorem 2.12, if we take h(t) = 1, which means
that

∣∣f (n+1)
∣∣ is p-function, then (23) becomes the following inequality∣∣∣∣∣

[
(x− a)n−

α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

n− α
k

+ 1

)1− 1
q
(

2

n− α
k

+ 1

) 1
q

(25)

Corollary 2.15. In Theorem 2.12, if we take h(t) = t, which means
that

∣∣f (n+1)
∣∣ is convex function, then (23) becomes the following in-

equality∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

n− α
k

+ 1

)
(26)

Corollary 2.16. In Theorem 2.12, if we take h(t) = ts, which means
that

∣∣f (n+1)
∣∣ is s-function in the second sense, then (23) becomes the
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following inequality∣∣∣∣∣
[

(x− a)n−
α
k + (b− x)n−

α
k

b− a

]
f (n)(x)−

(nk − α)Γk(n− α
k
)

b− a
×

[
cDα,k

x− f(a) + (−1)n cDα,k
x+ f(b)

] ∣∣∣∣∣
≤M

[
(x− a)n−

α
k
+1 + (b− x)n−

α
k
+1

b− a

](
1

n− α + 1

)1− 1
q
[

1

n− α
k

+ s+ 1

+
kΓk(nk − α + k)Γk(sk + k)

Γk(nk − α + sk + 2k)

] 1
q

;x ∈ [a, b].

(27)
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