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Abstract

This paper deals with some new theorems and inequalities about a famous kind of Fejér type
integral inequalities which estimate the difference between right and middle parts in Fejér inequality
with new bounds. Also as application higher moments of random variables and an error estimate for

Trapezoid formula are given.
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1 Introduction and Preliminaries

The Fejér integral inequality for convex functions has been proved in [2]:

Theorem 1.1. Let f : [a,b] = R be a convex function. Then

f(‘”b)/ dx</ F(@)g(x)de < f(a);“ﬂb) /abg(x)dx,

(1.1)

where g : [a,b] = RT = [0,+00) is integrable and symmetric to x = b (g(m) =g(a+b—2x),Vz € [a, b})

An interesting problem in (1.1) is the estimation of difference for right-middle part and left-middle part

of this inequality. The following theorem has been proved in [3], that estimates the difference between right

and middle part in (1.1) using Holder’s inequality.

Theorem 1.2. Let f: I° C R — R be a differentiable mapping on I°, a,b € I° with a < b, and w : [a,

b —

R™ be a differentiable mapping and symmetric to GTHJ. If | f'| is convex on [a,b] , then the following inequality

holds:

b b
! f(a)+f(b)/ w(x)dx — ! f(z)w(z)dx

b—a 2 b—a /,
where
b—(b—a)t
g(x) = ‘/ w(z)dx
a+(b—a)t
fort e0,1].
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The following two lemmas hold for symmetric functions as well and we use these results to obtain various

inequalities in next section.

Lemma 1.3. Suppose that w : [a,b] — R is an integrable function on [a,b] and symmetric to “T'H’ For any

te[0,1] with0<t< % we have
1 t 1
/ w(sa+ (1 - s)b)ds — / w(sa+ (1 —s)b)ds = 2/ w(sa+ (1 — s)b)ds. (1.2)
t 0 t
Proof. Using the change of variable = sa + (1 — s)b for 0 <t < % we get

/tlw(sa—i- (1—s)b)ds — /Otw(sa—i- (1—s)b)ds = 2 i - {/au w(x)dr — /ubw(:v)dx}, (1.3)

where 0 < u < ‘%"b

Since w is symmetric to ‘IT“’ we have
b =
/ w(x)dx :/ w(z)dx
a;b a
Then
b 42 : o 42
/ w(z)dx :/ w(a:)dx—F/ w(z)dr = w(a:)dx—F/ w(x)dx
u u a;b u a
Also
a«;b u aTH
/ w(z)dzx :/ w(z)dx + w(z)dzx
So
1 u b 9 3
/ w(x)dz — / w(x)dz| = / w(z)dx = 2/ w(sa+ (1 — s)b)ds. (1.4)
b—all, “ b—a /, ¢
Using (1.4) in (1.3) we deduce (1.2). O

With the same argument used in the proof of Lemma 1.3 we can drive the following equality.

Lemma 1.4. Suppose that w : [a,b] — R is an integrable function on [a,b] and symmetric to “T'H’ For
t €[0,1] with % <t <1 we have
t

/Otw(saJr(lS)b)ds/tlw(saJr(ls)b)ds2/ w(sa+ (1— s)b)ds.

1

2

From Lemma 1.3 and Lemma 1.4, if w is a symmetric nonnegative function, we can obtain two integral

inequalities that are useful for our further consideration.

Corollary 1.5. Suppose that w : [a,b] — R is an integrable function on [a,b] and symmetric to aT'H’. Then

1 ¢
1
/w(sa+(1—s)b)ds—/ w(sa+ (1 —s)b)ds >0, OStSi,
t 0
and

<t<1

N =

/tw(sa—i— (1—s)b)ds — /lw(sa—l— (1 —s)b)ds >0,
0 ¢



The following identity has been obtained in [3] and will be used in the proof of theorems.

Lemma 1.6. Let f : I° C R — R be a differentiable mapping on I°, a,b € I° witha < b, and w : [a,b] — R*
be a differentiable mapping. If f' € L]a,b], then the following equality holds:

3 <f(a) 30 /a*’w(x)dx -/ ' f(x)w(:r:)dx>

- b;“/o p(t)f (ta+ (1 - t)b)dt,

where

p(t) = /t w(sa+ (1 —s)b)ds — /0 w(sa+ (1 — s)b)ds.

2 Main Results

For the first result of this section, by using Corollary 1.5 and Lemma 1.6, we estimate the difference between
the right and middle terms in (1.1) with a simple and new face, without need of using Hoélder’s inequality in

the proof.

Theorem 2.1. Suppose that f : I — R is a differentiable mapping on 1°, a,b € I° with a < b and

w: [a,b] = R is a differentiable mapping symmetric to “T'H’. If | f'] is a convex mapping on [a,b], Then

b

fla) + f(b) < [If @)+ £ ®)] /m w(z)(b— z)dz. (2.1)

‘Q/abw(:v)dx /abf(x)w(x)dx

Proof. From Lemma 1.6, Corollary 1.5 and convexity of |f’| we have

’W/abw(x)dx—/:f(x)w(x)dm

(b —2a)2 /01 {/tl w(sa+ (1— s)b)ds — /Otw(sa +(1— g)b)ds] f(ta+ (1 —t)b)dt

<L

+/; /tlw(sa—i—(l—s)b)ds—/otw(sa—l—(l—s)b)ds

(b—a)?

<0 {/ (/tlw(m(1_3>b)ds_/otw(sa+<1_S)b)ds) (11 (@) + (1 — )1 () )t

|| (ta+ (1 —t)b)dt

/t1 w(sa+ (1 — s)b)ds — /Otw(sa—i— (1— s)b)ds

|f’|(ta+(1—t)b)dt}

+/; (/otw(sa+ (1—s)b)ds — /tlw(8a+ (1- S)b)ds> (t1f'(a)] + (1 —t)lf’(b)|)} 7



If we change the order of integration in I, then

(b—a)?

{/02 /OS w(sa+ (1= $)b) (¢]f/(a)] + (1 — £)| /(b)) dtds
_ /05 /5 w(sa+ (1 —s)b) (¢ (a)] + (1 — )| £/ (b)|)dtds
+/ / w(sa+ (1= 9)b) (t1f (@)l + (1 = )| f'(b)])dtds
/ / (sa+ (1= )b) (¢ (@)] + (1 )| f'(b)])dtds
—A / w(sa+ (1= s)b) (| f'(a)| + (1 —t)|f’(b)|)dtds}.

Calculating all inner integrals in I we get

—a)2 3
=20 {/0 w(sa+ (1= ) (3217/@)] + (s = 35317/ 0)])ds

+ [ wsa+ 1= s8) (@1 + 510 )ds
2 L1y 3 L ooy
- [T wlsar (1= 98) (= AN @1+ (s 3O ds
1
+A wisat (1-9) (5~ 3N/ @] + (5 — 5+ 52N O)])ds
+ [T wlsar =) (Gl @l + gl o)) as
fi ;

Simple form of I can be obtained as the following:

7= (b—2a) {/02w(8a+(1_s)b>((82+i)|f/(a)|+(—s2+28—i)|f’(b)|)ds

-

2

+/ w(sa+(1—s)b)((—s2+2>\f( )+ (s* = 25 + )lf()l) }
If we use the change of variable z = sa + (1 — s)b in I, then
—a b T — T — T —
fz(b’{Lb o) ([(ESpr+ i@l + 25 - =92 - g

[T uo([§- EPr@r [P -2 + Z]|f’<b>|)dx.}

[\V]




On the other hand since w is symmetric to “7“’ then

=/igmm(ﬁ—ijjﬁhfmn+BZj§

So

/GT w‘“([i - M 1£/(a)] + [q = Z)z _

a—x

=0 ] ([l

a—x r—b, ,a—=

—(

“—21f (@)

a—b)_(a—b) +(a—b)2

SO [ o (22

b

— (IF' (@) + £ ®))) / (@) (b — ).

a+b
2

JIf @l +2|7=

Corollary 2.2. (Theorem 2.2 in [1]) If in Theorem 2.1 we consider w = 1, then

<

LGRS T g

)

+m§j§hmw0m}

170 )as

(I (@) + |f' (b))

225+ 310 s

P2+ i)

If the derivative of the function is bounded from below and above, then we can drive an estimation type

result related to Fejér inequality.

Theorem 2.3. Suppose that f : I — R is a differentiable

mapping on I°,

a,b € I° with a < b and

w : [a,b] — R is a differentiable mapping . Assume that f' is integrable on [a,b] and there exist constants

m < M such that

—co<m< fl(zx) <M< oo forall x € [a,b].

Then

‘f b—a)/a d_b—a/f
< QLm=) o

where p(t) is defined in Lemma 1.6.

Proof. From Lemma 1.6 we have

bi@(f()+f()/ i _/‘f

b—a m+ M

2)da _m+M

o)

m+ M

= [ oo o - ™S

- (mt M)(b—a) >/ dH——/

: }dt

"(ta+ (1 —t)b) —

&

m+ M
2

}dt.

(2.2)



So

ba(f dx—/ f )—wl)(b_a)/olp(t)dt
:b2“ Olp(t)[f(ta—&—(l—t)b)—m—;M]dt.
Therefore
|I|<b*a/| F(ta+ (1 —t)b) — m+M’dt< ﬁ)(ba)/ollp(t)ldn

since from inequality m < f’(ﬁa +(1- t)b) < M we have

_m+M
2

m—i—MSM_m—;—M’

< f(ta+ (1 —1t)b) —

which implies that

m+M’<Mfm
2 - 2

f'(ta+ (1 —1)b) —

O

Remark 2.4. If in Theorem 2.3 we assume that w is symmetric to %“’, then from Lemma 1.3 and Lemma

1.4 we have

/01 p<t>|dt=2/01

1 1
/ w(sa+ (1 — s)b)ds‘dt < 2/ ’t - }| sup |w(sa+ (1—s)b)|dt < 1||w|\Oo
¢ 0 PANENEY 2

Then
N R e A N
=

Also using Holder’s inequality we have

/Ip |dt<2/ \t—f] (/ sa—l—(l—s))qu) dt<2||w|\q/ |t_,|pdt

which implies that
b M
b —a) J,

(M — — ¥
SwaHq/o yt—§\ dt.

Corollary 2.5. In Theorem 2.3 if w = 1, then

f(a) + £(b) I m(l4+a—b)+M(1+b—a)
‘ _b—a/ f(a:)d:c’ﬁ .




Proof. Tf we consider w = 1, then the relations ||w||oc = 1 and fol lp(t)|dt < 3 imply that

biaf();f b—a) /f ’ Op(t)dt+

m+M (M —m)b (1+a—b)+M(1+b—a)
= 8 + 8 o 8

1

8

(M —m)(b—

O

Estimation for difference between the right and middle terms of (1.1) when the derivative of the function

satisfies a Lipschitz condition is our next aim.

Theorem 2.6. Suppose that f : I — R is a differentiable mapping on I°, a,b € I° with a < b and

w : [a,b] = RY is a differentiable mapping. Assume that f’ is integrable on [a,b] and satisfies a Lipschitz

condition for some K > 0. Then

’f 2(b— a) >/a =) *b_a/ flw f(“gb)/opa)dt\

ldt,

where p(t) is defined in Lemma 1.6.
Proof. From Lemma 1.6

b;(f@);f(b) /abw(:c)d:r— /ab f(:c)w(:c)dw>

_ b;“ /Olp(t) [f’(ta+(1 —1)b) —f’(a;rb) +f’(a+b)]dt

2
b—a

= /Olp(t)[f'(tﬁ(lt)b)f’(“;b)}dwbQaf/(“;b)/olp(t)dt.

Then

b1a<f(a)‘2|'f(b) /abw(x)dx_/abf(x)w(x)dm> B b;af,(a;-b> /Olp(t)dt

b—a

= oo a0 - ()

Since f’ satisfies a Lipschitz condition for some K > 0, then

f’(ta+(1—t)b)ff’(a7+b)’ SK‘tcH(l*t)b*a;b’:fqt*;(b*

Hence

!f b-cﬂ/a spis - i [ storta L (452) [ i
/It—f £)ldt.

(2.3)



Remark 2.7. In Theorem 2.6 assume that w is symmetric to “T*b. With the same argument as Remark

2.4, using Lemma 1.3 and Lemma 1.4 we get

’f e )/a xdx*b—a/ flz f(a;b)/o p(t)dt‘

< K(b— a)/o /t it — 5||w(sa+ (1— )b)|dsdt.

Also we have

OO [ uwar - L [ st - 37 (52) [ v

1 1 Kb—a
N R 3 s e [

which implies that

’f ba)/ab dm——/f x)dx

Corollary 2.8. In Theorem 2.6 if w = 1, then
< 1
+ —

‘f )+ f(b —a/f

3 Application

<K+1
—\ 6

(5] itell (o 0

oo

3.1 Random Variable

Suppose that for 0 < a < b, w : [a,b] — [0,400) is a continuous probability density function which is

t a+b

symmetric about “3=. Also for r € R, suppose that the r-moment

is finite.
(1) If we consider f(x) =z" for r > 2 and x € [a, b], then |f’(z)| = r2"~! which is a convex function and

so from (2.1) in Theorem 2.1 we have

a"+b —ET(X)‘ < r(b—a) (arfl _’_brfl)’

2 4
since

T T b
@’ t+b —ET(X)‘ Sr(arfl—kb“l)/ w(z)(b— x)dx

2 ah

b—a [ b—a

< r—1 r—1 o r—1
_r(a +5b >72 /a;b w(z)dr = 1"( +5b ) T

where from the fact that w is symmetric and fab w(z)dz = 1, we have f@ w(z)de = 1.
2

If r = 1, E(X) is the expectation of the random variable X and from above inequality we obtain the following



known bound

a+b—E(X)’ < b—a.

2

2

(2) If we consider f(z) = 2" for r € R and x € [a,b], then m =ra" " < f/(z) = ra"" ! <rb"~! = M and

so from (2.2) in Theorem 2.3 we have

LY gy e )0 /Olp(t)dt‘
<o af)(b —9) /01 O A ‘fl)(b —9).
It follows that
r r r— r— r— r— 1
bia a ;b B(x)| < T2 b4 e—a) | ria 14+b ) /O Ip(t)]dt
< r(b" "t — alfl)(b —a) N r(ar’14+ b’"*l).
Therefore
a” +b" r@ 1 =) (b—a)? r@ 4+ (b -a)

2 4 + 4 '

—Er(X)’ <

If we consider r = 1 in above inequality, then we have

(b—a)

. (3.1)

2

—E(X)’ <

(3) If we consider f(z) = z" for r € R and z € [a, ] then

t
0

Ip(t)| = ‘/tlw(sa—&—(l—s)b)ds—/ w(sa—&-(l—s)b)ds‘
g/t w(sa—}—(l—s)b)ds—&—/o w(sa—}—(l—s)b)ds:/o w(sa+ (1 —s)b)ds = 1.

Also for f the Lipschitz constant K = sup,c(q 4 |f' ()] = supge(q) ra"~! is equivalent to

rbTl > 1

ra”" Y, <1
So from (2.3) in Theorem 2.6 we have

a” +b" (b—a)2/1 1 ,(a+Db b—a/l
_ < [
. ET<X>\K el L G G sy WOl

(b—a)2/1 1 ,(a+Db\b—a (b—a)® ,/a+b\b—a
< - = =
sK 0|t 2|dt+f<2>2 K—3 +f(2)2’

which implies that

r(b—a) [ 6" (b—a) o\t .
e (o)) 2y

o r—1
7-<b2—a>{a 1§b—a)+(aT+b) } r<l



If we consider r = 1 in above inequality, then we have

a+b
2

—E(X)‘ <

This inequality is sometime better and other times worse than the above inequality (3.1), depending on the

difference b — a.

3.2 Trapezoidal Formula

Consider the partition (P) of interval [a,b] as a = zp < 21 < 22 < ... < x, = b. The quadrature formula is

/ f(@)w(z)de = T(f,w, P)+ E(f,w, P),

where

T(f,’LU,P) = i M /$i+1 w(x)dx,

= Ti
is the Trapezoidal form and E(f,w, P) is the associated approximation error.
For each i € {0,1,...,n — 1} consider interval [z;, z;41] of partition (P) of interval [a,b]. Suppose that all

conditions of Theorem 2.1 are satisfied on [z;, x;41]. Then

‘W /Q:HI w(x)dx — /‘:Hl f(w)w(x)dx (32)
< el + ] [ o) - o).

Now if all conditions of Theorem 2.1 are satisfied for the partition (P) on interval [a, b] then using inequality

(3.2), summing with respect to i from i = 0 to i = n — 1 and using triangle inequality we obtain

’T(f,w,P) = /b f(@)w(z)dz| = ni:l {M /:Hl w(z)dz — /:M f(x)w(x)dx}

i=0 i i
L fla) + F@i) [
< Zz; 2/Ii w(x)dx—/m f(@)w(x)dx
n—1 Tit1
(£ @+ 1G] [ el - o
=0 -2

So we get the error bound:

(B(f,w, P) Z[ D+ a)l] [ w@) e — 2.

+Tiq1
2
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