
FURTHER OSTROWSKI AND TRAPEZOID TYPE
INEQUALITIES FOR THE GENERALIZED

RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF
FUNCTIONS WITH BOUNDED VARIATION

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some Ostrowski and generalized trape-
zoid type inequalities for the Generalized Riemann-Liouville fractional in-
tegrals of functions of bounded variation. Applications for mid-point and
trapezoid inequalities are provided as well. Some examples concerning the
Hadamard and Harmonic fractional integrals are also given.

1. Introduction

Let f : [a; b]! C be a complex valued Lebesgue integrable function on the real
interval [a; b] : The Riemann-Liouville fractional integrals are de�ned for � > 0 by

J�a+f (x) =
1

� (�)

Z x

a

(x� t)��1 f (t) dt

for a < x � b and

J�b�f (x) =
1

� (�)

Z b

x

(t� x)��1 f (t) dt

for a � x < b; where � is the Gamma function. For � = 0; they are de�ned as

J0a+f (x) = J
0
b�f (x) = f (x) for x 2 (a; b) :

For several Ostrowski type inequalities for Riemann-Liouville fractional integrals
see [1]-[6], [17]-[28] and the references therein.
The following Ostrowski type inequalities for functions of bounded variation

generalize the corresponding results for the Riemann integral obtained in [9], [11],
[10] and have been established recently by the author in [15] :

Theorem 1. Let f : [a; b]! C be a complex valued function of bounded variation
on the real interval [a; b] : For any x 2 (a; b) we have
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����J�a+f (x) + J�b�f (x)� f (x)

� (�+ 1)
[(x� a)� + (b� x)�]

����(1.1)

� 1

� (�)

"Z x

a

(x� t)��1
x_
t

(f) dt+

Z b

x

(t� x)��1
t_
x

(f) dt

#

� 1

� (�+ 1)

"
(x� a)�

x_
a

(f) + (b� x)�
b_
x

(f)

#

� 1

� (�+ 1)

�

8>>>>>>>>><>>>>>>>>>:

�
1
2 (b� a) +

��x� a+b
2

����Wb
a (f) ;

((x� a)�p + (b� x)�p)1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i ((x� a)� + (b� x)�) ;
and

����J�x+f (b) + J�x�f (a)� f (x)

� (�+ 1)
[(x� a)� + (b� x)�]

����(1.2)

� 1

� (�)

"Z b

x

(b� t)��1
t_
x

(f) dt+

Z x

a

(t� a)��1
x_
t

(f) dt

#

� 1

� (�+ 1)

"
(x� a)�

x_
a

(f) + (b� x)�
b_
x

(f)

#

� 1

� (�+ 1)
(1.3)

�

8>>>>>>>>><>>>>>>>>>:

�
1
2 (b� a) +

��x� a+b
2

����Wb
a (f) ;

((x� a)�p + (b� x)�p)1=p
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i ((x� a)� + (b� x)�) :
(1.4)

The following mid-point inequalities that can be derived from Theorem 1 are of
interest as well:
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����J�a+f �a+ b2
�
+ J�b�f

�
a+ b

2

�
� 1

2��1� (�+ 1)
f

�
a+ b

2

�����(1.5)

� 1

� (�)

�

24Z a+b
2

a

�
a+ b

2
� t
���1 a+b

2_
t

(f) dt+

Z b

a+b
2

�
t� a+ b

2

���1 t_
a+b
2

(f) dt

35
� 1

2�� (�+ 1)
(b� a)�

b_
a

(f) ;

and ����J�a+b
2 +

f (b) + J�a+b
2 �f (a)�

1

2��1� (�+ 1)
f

�
a+ b

2

�����(1.6)

� 1

� (�)

24Z b

a+b
2

(b� t)��1
t_

a+b
2

(f) dt+

Z a+b
2

a

(t� a)��1
a+b
2_
t

(f) dt

35
� 1

2�� (�+ 1)
(b� a)�

b_
a

(f) :

In order to extend this result for other fractional integrals, we need the following
de�nitions.
Let (a; b) with �1 � a < b � 1 be a �nite or in�nite interval of the real line

R and � a complex number with Re (�) > 0: Also let g be a strictly increasing
function on (a; b) ; having a continuous derivative g0 on (a; b) : Following [19, p.
100], we introduce the generalized left- and right-sided Riemann-Liouville fractional
integrals of a function f with respect to another function g on [a; b] by

(1.7) I�a+;gf(x) :=
1

� (�)

Z x

a

g0 (t) f (t) dt

[g (x)� g (t)]1��
; a < x � b

and

(1.8) I�b�;gf(x) :=
1

� (�)

Z b

x

g0 (t) f (t) dt

[g (t)� g (x)]1��
; a � x < b:

For g (t) = t we have the classical Riemann-Liouville fractional integrals de�ned
above while for the logarithmic function g (t) = ln t we have the Hadamard fractional
integrals [19, p. 111]

(1.9) H�
a+f(x) :=

1

� (�)

Z x

a

h
ln
�x
t

�i��1 f (t) dt
t

; 0 � a < x � b

and

(1.10) H�
b�f(x) :=

1

� (�)

Z b

x

�
ln

�
t

x

����1
f (t) dt

t
; 0 � a < x < b:
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One can consider the function g (t) = �t�1 and de�ne the "Harmonic fractional
integrals" by

(1.11) R�a+f(x) :=
x1��

� (�)

Z x

a

f (t) dt

(x� t)1�� t�+1
; 0 � a < x � b

and

(1.12) R�b�f(x) :=
x1��

� (�)

Z b

x

f (t) dt

(t� x)1�� t�+1
; 0 � a < x < b:

Also, for g (t) = tp; p > 0; we have the p-Riemann-Liouville fractional integrals

(1.13) J�a+;pf(x) :=
p

� (�)

Z x

a

tp�1f (t) dt

(xp � tp)1��
; 0 � a < x � b

and

(1.14) J�b�;pf(x) :=
p

� (�)

Z b

x

tp�1f (t) dt

(tp � xp)1��
; 0 � a � x < b:

Motivated by the above results, in this paper we establish some new Ostrowski
and generalized trapezoid type inequalities for the Generalized Riemann-Liouville
fractional integrals of functions of bounded variation. Applications for mid-point
and trapezoid inequalities are provided as well. Some examples concerning the
Hadamard and Harmonic fractional integrals are also given.

2. Some Identities of Interest

We have the following results:

Lemma 1. Let f : [a; b]! C be a function of bounded variation on [a; b] : Also let
g be a strictly increasing function on (a; b) ; having a continuous derivative g0 on
(a; b) :

(i) For any x 2 (a; b) we have

I�a+;gf (x) + I
�
b�;gf (x)(2.1)

=
1

� (�+ 1)
[(g (x)� g (a))� f (a) + (g (b)� g (x))� f (b)]

+
1

� (�+ 1)

"Z x

a

(g (x)� g (t))� df (t)�
Z b

x

(g (t)� g (x))� df (t)
#
:

(ii) For any x 2 (a; b) we have

I�x�;gf (a) + I
�
x+;gf (b)(2.2)

=
1

� (�+ 1)
[(g (x)� g (a))� + (g (b)� g (x))�] f (x)

+
1

� (�+ 1)

"Z b

x

(g (b)� g (t))� df (t)�
Z x

a

(g (t)� g (a))� df (t)
#
:
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(iii) We have the trapezoid equality

I�b�;gf (a) + I
�
a+;gf (b)

2
(2.3)

=
1

� (�+ 1)
(g (b)� g (a))� f (b) + f (a)

2

+
1

� (�+ 1)

Z b

a

(g (b)� g (t))� � (g (t)� g (a))�

2
df (t) :

Proof. (i) Since f : [a; b] ! C is of bounded variation on [a; b] and g is continuous
on [a; b] ; then the Riemann-Stieltjes integralsZ x

a

(g (x)� g (t))� df (t) and
Z b

x

(g (t)� g (x))� df (t)

exist and integrating by parts, we have

1

� (�+ 1)

Z x

a

(g (x)� g (t))� df (t)(2.4)

=
1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t) f (t) dt� 1

� (�+ 1)
(g (x)� g (a))� f (a)

= I�a+;gf (x)�
1

� (�+ 1)
(g (x)� g (a))� f (a)

for a < x � b and
1

� (�+ 1)

Z b

x

(g (t)� g (x))� df (t)(2.5)

=
1

� (�+ 1)
(g (b)� g (x))� f (b)� 1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t) f (t) dt

=
1

� (�+ 1)
(g (b)� g (x))� f (b)� I�b�;gf (x)

for a � x < b:
From (2.4), we then have

I�a+;gf (x) =
1

� (�+ 1)
(g (x)� g (a))� f (a)

+
1

� (�+ 1)

Z x

a

(g (x)� g (t))� df (t)

for a < x � b and from (2.5) we have

I�b�;gf (x) =
1

� (�+ 1)
(g (b)� g (x))� f (b)

� 1

� (�+ 1)

Z b

x

(g (t)� g (x))� df (t) ;

for a � x < b; which by addition give (2.1).
(ii) We have

I�x+;gf (b) =
1

� (�)

Z b

x

(g (b)� g (t))��1 g0 (t) f (t) dt
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for a � x < b and

I�x�;gf (a) =
1

� (�)

Z x

a

(g (t)� g (a))��1 g0 (t) f (t) dt

for a < x � b.
Since f : [a; b]! C is of bounded variation on [a; b] and g is continuous on [a; b] ;

then the Riemann-Stieltjes integralsZ x

a

(g (t)� g (a))� df (t) and
Z b

x

(g (b)� g (t))� df (t)

exist and integrating by parts, we have

1

� (�+ 1)

Z x

a

(g (t)� g (a))� df (t)(2.6)

=
1

� (�+ 1)
(g (x)� g (a))� f (x)� 1

� (�)

Z x

a

(g (t)� g (a))��1 g0 (t) f (t) dt

=
1

� (�+ 1)
(g (x)� g (a))� f (x)� I�x�;gf (a)

for a < x � b and

1

� (�+ 1)

Z b

x

(g (b)� g (t))� df (t)(2.7)

=
1

� (�)

Z b

x

(g (b)� g (t))��1 g0 (t) f (t) dt� 1

� (�+ 1)
(g (b)� g (x))� f (x)

= I�x+;gf (b)�
1

� (�+ 1)
(g (b)� g (x))� f (x)

for a � x < b.
From (2.6) we have

I�x�;gf (a) =
1

� (�+ 1)
(g (x)� g (a))� f (x)(2.8)

� 1

� (�+ 1)

Z x

a

(g (t)� g (a))� df (t)

for a < x � b and from (2.7)

I�x+;gf (b) =
1

� (�+ 1)
(g (b)� g (x))� f (x)(2.9)

+
1

� (�+ 1)

Z b

x

(g (b)� g (t))� df (t) ;

for a � x < b, which by addition produce (2.2).
(iii) For x = b in (2.8) we have

I�b�;gf (a) =
1

� (�+ 1)
(g (b)� g (a))� f (b)

� 1

� (�+ 1)

Z b

a

(g (t)� g (a))� df (t)
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while from (2.9) we have for x = a that

I�a+;gf (b) =
1

� (�+ 1)
(g (b)� g (a))� f (a)

+
1

� (�+ 1)

Z b

a

(g (b)� g (t))� df (t) :

If we add these two equalities and divide by 2; we get (2.3). �

Corollary 1. With the assumptions of Lemma 1, we have

I�a+;gf

�
a+ b

2

�
+ I�b�;gf

�
a+ b

2

�
(2.10)

=
1

� (�+ 1)

��
g

�
a+ b

2

�
� g (a)

��
f (a) +

�
g (b)� g

�
a+ b

2

���
f (b)

�
+

1

� (�+ 1)

Z a+b
2

a

�
g

�
a+ b

2

�
� g (t)

��
df (t)

� 1

� (�+ 1)

Z b

a+b
2

�
g (t)� g

�
a+ b

2

���
df (t)

and

I�a+b
2 �;gf (a) + I

�
a+b
2 +;g

f (b)(2.11)

=
1

� (�+ 1)

��
g

�
a+ b

2

�
� g (a)

��
+

�
g (b)� g

�
a+ b

2

����
f

�
a+ b

2

�
+

1

� (�+ 1)

Z b

a+b
2

(g (b)� g (t))� df (t)

� 1

� (�+ 1)

Z a+b
2

a

(g (t)� g (a))� df (t) :

If g is a function which maps an interval I of the real line to the real numbers,
and is both continuous and injective then we can de�ne the g-mean of two numbers
a; b 2 I by

Mg (a; b) := g
�1
�
g (a) + g (b)

2

�
:

If I = R and g (t) = t is the identity function, then Mg (a; b) = A (a; b) :=
a+b
2 ;

the arithmetic mean. If I = (0;1) and g (t) = ln t; thenMg (a; b) = G (a; b) :=
p
ab,

the geometric mean. If I = (0;1) and g (t) = 1
t ; then Mg (a; b) = H (a; b) :=

2ab
a+b ; the harmonic mean. If I = (0;1) and g (t) = tp; p 6= 0; then Mg (a; b) =

Mp (a; b) :=
�
ap+bp

2

�1=p
; the power mean with exponent p. Finally, if I = R and

g (t) = exp t; then

Mg (a; b) = LME (a; b) := ln

�
exp a+ exp b

2

�
;

the LogMeanExp function.
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Corollary 2. With the assumptions of Lemma 1, we have

I�a+;gf (Mg (a; b)) + I
�
b�;gf (Mg (a; b))(2.12)

=
1

2��1� (�+ 1)
(g (b)� g (a))� f (a) + f (b)

2

+
1

� (�+ 1)

Z Mg(a;b)

a

�
g (a) + g (b)

2
� g (t)

��
df (t)

� 1

� (�+ 1)

Z b

Mg(a;b)

�
g (t)� g (a) + g (b)

2

��
df (t)

and

I�Mg(a;b)�;gf (a) + I
�
Mg(a;b)+;g

f (b)(2.13)

=
1

2��1� (�+ 1)
(g (b)� g (a))� f (Mg (a; b))

+
1

� (�+ 1)

Z b

Mg(a;b)

(g (b)� g (t))� df (t)

� 1

� (�+ 1)

Z Mg(a;b)

a

(g (t)� g (a))� df (t) :

From a complementary view point we also have:

Lemma 2. With the assumptions of Lemma 1, we have

(2.14)
1

2
� (�+ 1)

�
I�a+;gf (x)

(g (x)� g (a))� +
I�b�;gf (x)

(g (b)� g (x))�
�
=
f (a) + f (b)

2

+
1

2 (g (x)� g (a))�
Z x

a

(g (x)� g (t))� df (t)

� 1

2 (g (b)� g (x))�
Z b

x

(g (t)� g (x))� df (t)

and

(2.15)
1

2
� (�+ 1)

�
I�x�;gf (a)

(g (x)� g (a))� +
I�x+;gf (b)

(g (b)� g (x))�
�
= f (x)

+
1

2 (g (b)� g (x))�
Z b

x

(g (b)� g (t))� df (t)

� 1

2 (g (x)� g (a))�
Z x

a

(g (t)� g (a))� df (t)

for any x 2 (a; b) :

Proof. By the above equalities (2.4) and (2.5) we have

I�a+;gf (x)

(g (x)� g (a))� =
1

� (�+ 1)
f (a)

+
1

� (�+ 1) (g (x)� g (a))�
Z x

a

(g (x)� g (t))� df (t)
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for a < x � b and
I�b�;gf (x)

(g (b)� g (x))� =
1

� (�+ 1)
f (b)

� 1

� (�+ 1) (g (b)� g (x))�
Z b

x

(g (t)� g (x))� df (t)

and a � x < b:
If we add these two equalities and multiply by 1

2� (�+ 1) we get (2.14).
By the equalities (2.6) and (2.7)

I�x�;gf (a)

(g (x)� g (a))�

=
1

� (�+ 1)
f (x)� 1

� (�+ 1) (g (x)� g (a))�
Z x

a

(g (t)� g (a))� df (t)

for a < x � b and
I�x+;gf (b)

(g (b)� g (x))�

=
1

� (�+ 1)
f (x) +

1

� (�+ 1) (g (b)� g (x))�
Z b

x

(g (b)� g (t))� dft

for a � x < b.
If we add these two equalities and multiply by 1

2� (�+ 1) we get (2.15). �

Corollary 3. With the assumptions of Lemma 1, we have

(2.16)
1

2
� (�+ 1)

"
I�a+;gf

�
a+b
2

��
g
�
a+b
2

�
� g (a)

�� + I�b�;gf
�
a+b
2

��
g (b)� g

�
a+b
2

���
#
=
f (a) + f (b)

2

+
1

2
�
g
�
a+b
2

�
� g (a)

�� Z a+b
2

a

�
g

�
a+ b

2

�
� g (t)

��
df (t)

� 1

2
�
g (b)� g

�
a+b
2

��� Z b

a+b
2

�
g (t)� g

�
a+ b

2

���
df (t)

and

(2.17)
1

2
� (�+ 1)

"
I�a+b

2 �;gf (a)�
g
�
a+b
2

�
� g (a)

�� + I�a+b
2 +;g

f (b)�
g (b)� g

�
a+b
2

���
#
= f

�
a+ b

2

�
+

1

2
�
g (b)� g

�
a+b
2

��� Z b

a+b
2

(g (b)� g (t))� df (t)

� 1

2
�
g
�
a+b
2

�
� g (a)

�� Z a+b
2

a

(g (t)� g (a))� df (t)

for any x 2 (a; b) :

Remark 1. If we take x = Mg (a; b) = g
�1
�
g(a)+g(b)

2

�
in Lemma 2, then we get

the same equalities that have been stated in Corollary 2.
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3. Some General Inequalities

The following lemma is of interest in itself as well [2, p. 177], see also [12] for a
generalization.

Lemma 3. Let f; u : [a; b] ! C. If f is continuous on [a; b] and u is of bounded
variation on [a; b] ; then the Riemann-Stieltjes integral

R b
a
f (t) du (t) exists and

(3.1)

�����
Z b

a

f (t) du (t)

����� �
Z b

a

jf (t)j d
 

t_
a

(u)

!
� max

t2[a;b]
jf (t)j

b_
a

(u) ;

where
Wt
a (u) denotes the total variation of u on [a; t] ; t 2 [a; b] :

We have:

Theorem 2. Let f : [a; b] ! C be a function of bounded variation on [a; b] : Also
let g be a strictly increasing function on (a; b) ; having a continuous derivative g0

on (a; b) : Then we have

(3.2)
��I�a+;gf (x) + I�b�;gf (x)

� 1

� (�+ 1)
[(g (x)� g (a))� f (a) + (g (b)� g (x))� f (b)]

����
� 1

� (�)

"Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt+

Z b

x

(g (t)� g (x))��1 g0 (t)
b_
t

(f) dt

#

� 1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

� 1

� (�+ 1)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i�Wba (f) ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p

�
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
((g (x)� g (a))� + (g (b)� g (x))�)

and ����f (a) + f (b)2
� 1
2
� (�+ 1)

�
I�a+;gf (x)

(g (x)� g (a))� +
I�b�;gf (x)

(g (b)� g (x))�
�����(3.3)

� �

2 (g (x)� g (a))�
Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt

+
�

2 (g (b)� g (x))�
Z b

x

(g (t)� g (x))��1 g0 (t)
b_
t

(f) dt

� 1

2

b_
a

(f)
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for any x 2 (a; b) :

Proof. By using Lemma 3 we have����Z x

a

(g (x)� g (t))� df (t)
���� � Z x

a

(g (x)� g (t))� d
 

t_
a

(f)

!

for a < x � b and�����
Z b

x

(g (t)� g (x))� df (t)
����� �

Z b

x

(g (t)� g (x))� d
 

t_
x

(f)

!

and a � x < b:
Integrating by parts in the Riemann-Stieltjes integral, we have

Z x

a

(g (x)� g (t))� d
 

t_
a

(f)

!

= (g (x)� g (t))�
t_
a

(f)

�����
x

a

+ �

Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt

= �

Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt

and Z b

x

(g (t)� g (x))� d
 

t_
x

(f)

!

= (g (t)� g (x))�
t_
x

(f)

�����
b

x

� �
Z b

x

(g (t)� g (x))��1 g0 (t)
t_
x

(f) dt

= (g (b)� g (x))�
b_
x

(f)� �
Z b

x

(g (t)� g (x))��1 g0 (t)
t_
x

(f) dt

= �
b_
x

(f)

Z b

x

(g (t)� g (x))��1 g0 (t) dt

� �
Z b

x

(g (t)� g (x))��1 g0 (t)
t_
x

(f) dt

= �

Z b

x

"
b_
x

(f)�
t_
x

(f)

#
(g (t)� g (x))��1 g0 (t) dt

= �

Z b

x

(g (t)� g (x))��1 g0 (t)
b_
t

(f) dt

for any x 2 (a; b) :
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By taking the modulus in the equality (2.1) we have

��I�a+;gf (x) + I�b�;gf (x)
� 1

� (�+ 1)
[(g (x)� g (a))� f (a) + (g (b)� g (x))� f (b)]

����
� 1

� (�+ 1)

"����Z x

a

(g (x)� g (t))� df (t)
����+
�����
Z b

x

(g (t)� g (x))� df (t)
�����
#

� 1

� (�+ 1)

Z x

a

(g (x)� g (t))� d
 

t_
a

(f)

!

+
1

� (�+ 1)

Z b

x

(g (t)� g (x))� d
 

t_
x

(f)

!

=
1

� (�)

Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt

+
1

� (�)

Z b

x

(g (t)� g (x))��1 g0 (t)
b_
t

(f) dt

for any x 2 (a; b) ; which proves the �rst part of (3.2).
Moreover, since

Wt
a (f) �

Wx
a (f) for a � t � x and

Wb
t (f) �

Wb
x (f) for x � t � b;

then

1

� (�)

"Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt+

Z b

x

(g (t)� g (x))��1 g0 (t)
b_
t

(f) dt

#

� 1

� (�)

"
x_
a

(f)

Z x

a

(g (x)� g (t))��1 g0 (t) dt+
b_
x

(f)

Z b

x

(g (t)� g (x))��1 g0 (t) dt
#

=
1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

for any x 2 (a; b) ; which proves the second part of (3.2).
The last part of (3.2 is obvious by making use of the elementary Hölder type

inequalities for positive real numbers c; d; m; n � 0

mc+ nd �

8<:
max fm;ng (c+ d) ;

(mp + np)
1=p
(cq + dq)

1=q with p; q > 1; 1
p +

1
q = 1:
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By the equality (2.14) we also have

����f (a) + f (b)2
� 1
2
� (�+ 1)

�
I�a+;gf (x)

(g (x)� g (a))� +
I�b�;gf (x)

(g (b)� g (x))�
�����

� 1

2 (g (x)� g (a))�
����Z x

a

(g (x)� g (t))� df (t)
����

+
1

2 (g (b)� g (x))�

�����
Z b

x

(g (t)� g (x))� df (t)
�����

� 1

2 (g (x)� g (a))�
Z x

a

(g (x)� g (t))� d
 

t_
a

(f)

!

+
1

2 (g (b)� g (x))�
Z b

x

(g (t)� g (x))� d
 

t_
x

(f)

!

=
�

2 (g (x)� g (a))�
Z x

a

(g (x)� g (t))��1 g0 (t)
t_
a

(f) dt

+
�

2 (g (b)� g (x))�
Z b

x

(g (t)� g (x))��1 g0 (t)
b_
t

(f) dt

� 1

2

x_
a

(f) dt+
1

2

b_
x

(f) =
1

2

b_
a

(f) ;

which proves the inequality (3.3). �

Remark 2. The inequality (3.2) was obtained by a di¤erent technique in the earlier
paper [16].

Corollary 4. With the assumptions of Theorem 2, we have

����f (a) + f (b)2
� 2��1� (�+ 1)

(g (b)� g (a))�
�
I�a+;gf (Mg (a; b)) + I

�
b�;gf (Mg (a; b))

�����(3.4)

� 2��1�

(g (b)� g (a))�

"Z Mg(a;b)

a

�
g (a) + g (b)

2
� g (t)

���1
g0 (t)

t_
a

(f) dt

+

Z b

Mg(a;b)

�
g (t)� g (a) + g (b)

2

���1
g0 (t)

b_
t

(f) dt

#

� 1

2

b_
a

(f) :

The proof follows by either the inequality (3.2) or (3.3) by taking x = x =

Mg (a; b) = g
�1
�
g(a)+g(b)

2

�
:
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Theorem 3. With the assumptions of Theorem 2, we have

(3.5)
��I�x�;gf (a) + I�x+;gf (b)

� 1

� (�+ 1)
[(g (x)� g (a))� + (g (b)� g (x))�] f (x)

����
� 1

� (�)

"Z x

a

(g (t)� g (a))��1 g0 (t)
x_
t

(f) dt+

Z b

x

(g (b)� g (t))��1 g0 (t)
t_
x

(f) dt

#

� 1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#

1

� (�+ 1)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

h
1
2 (g (b)� g (a)) +

���g (x)� g(a)+g(b)
2

���i�Wba (f) ;
((g (x)� g (a))�p + (g (b)� g (x))�p)1=p

�
�
(
Wx
a (f))

q
+
�Wb

x (f)
�q�1=q

with p; q > 1; 1
p +

1
q = 1;h

1
2

Wb
a (f) +

1
2

���Wxa (f)�Wbx (f)���i
((g (x)� g (a))� + (g (b)� g (x))�)

and ����12� (�+ 1)
�

I�x�;gf (a)

(g (x)� g (a))� +
I�x+;gf (b)

(g (b)� g (x))�
�
� f (x)

����(3.6)

� �

2 (g (b)� g (x))�
Z b

x

(g (b)� g (t))��1 g0 (t)
t_
x

(f) dt

+
�

2 (g (x)� g (a))�
Z x

a

(g (t)� g (a))��1 g0 (t)
x_
t

(f) dt

� 1

2

b_
a

(f) ;

for any x 2 (a; b) :

Proof. By using Lemma 3 we have

����Z x

a

(g (t)� g (a))� df (t)
���� � Z x

a

(g (t)� g (a))� d
 

t_
a

(f)

!

and �����
Z b

x

(g (b)� g (t))� df (t)
����� �

Z b

x

(g (b)� g (t))� d
 

t_
x

(f)

!
:
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Integrating by parts in the Riemann-Stieltjes integral, we have

Z x

a

(g (t)� g (a))� d
 

t_
a

(f)

!

= (g (t)� g (a))�
t_
a

(f)

�����
x

a

� �
Z x

a

(g (t)� g (a))��1 g0 (t)
t_
a

(f) dt

= (g (x)� g (a))�
x_
a

(f)� �
Z x

a

(g (t)� g (a))��1 g0 (t)
t_
a

(f) dt

= �
x_
a

(f)

Z x

a

(g (t)� g (a))��1 g0 (t) dt

� �
Z x

a

(g (t)� g (a))��1 g0 (t)
t_
a

(f) dt

= �

Z x

a

"
x_
a

(f)�
t_
a

(f)

#
(g (t)� g (a))��1 g0 (t) dt

= �

Z x

a

(g (t)� g (a))��1 g0 (t)
x_
t

(f) dt

and Z b

x

(g (b)� g (t))� d
 

t_
x

(f)

!

= (g (b)� g (t))�
t_
x

(f)

�����
b

x

+ �

Z b

x

(g (b)� g (t))��1 g0 (t)
t_
x

(f) dt

= �

Z b

x

(g (b)� g (t))��1 g0 (t)
t_
x

(f) dt

for any x 2 (a; b) :
Using the equality (2.2) we have��I�x�;gf (a) + I�x+;gf (b)(3.7)

� 1

� (�+ 1)
[(g (x)� g (a))� + (g (b)� g (x))�] f (x)

����
� 1

� (�+ 1)

"�����
Z b

x

(g (b)� g (t))� df (t)
�����+
����Z x

a

(g (t)� g (a))� df (t)
����
#

� 1

� (�+ 1)

Z x

a

(g (t)� g (a))� d
 

t_
a

(f)

!

+
1

� (�+ 1)

Z b

x

(g (b)� g (t))� d
 

t_
x

(f)

!
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� 1

� (�)

Z x

a

(g (t)� g (a))��1 g0 (t)
x_
t

(f) dt

+
1

� (�)

Z b

x

(g (b)� g (t))��1 g0 (t)
t_
x

(f) dt

� 1

� (�+ 1)

"
(g (x)� g (a))�

x_
a

(f) + (g (b)� g (x))�
b_
x

(f)

#
;

for x 2 (a; b) ; which proves (3.5).
By the equality (2.15) we also have

����12� (�+ 1)
�

I�x�;gf (a)

(g (x)� g (a))� +
I�x+;gf (b)

(g (b)� g (x))�
�
� f (x)

����
� 1

2 (g (b)� g (x))�

�����
Z b

x

(g (b)� g (t))� df (t)
�����

+
1

2 (g (x)� g (a))�
����Z x

a

(g (t)� g (a))� df (t)
����

� 1

2 (g (b)� g (x))�
Z b

x

(g (b)� g (t))� d
 

t_
x

(f)

!

+
1

2 (g (x)� g (a))�
Z x

a

(g (t)� g (a))� d
 

t_
a

(f)

!

� �

2 (g (b)� g (x))�
Z b

x

(g (b)� g (t))��1 g0 (t)
t_
x

(f) dt

+
�

2 (g (x)� g (a))�
Z x

a

(g (t)� g (a))��1 g0 (t)
x_
t

(f) dt

� 1

2

b_
x

(f) +
1

2

x_
a

(f) =
1

2

b_
a

(f) ;

which proves (3.6). �

Remark 3. The inequality (3.5) was obtained by a di¤erent technique in the earlier
paper [16].
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Corollary 5. With the assumptions of Theorem 2, we have

���� 2��1� (�+ 1)(g (b)� g (a))�
h
I�Mg(a;b)�;gf (a) + I

�
Mg(a;b)+;g

f (b)
i
� f (Mg (a; b))

����(3.8)

� 2��1�

(g (b)� g (a))�

24Z b

Mg(a;b)

(g (b)� g (t))��1 g0 (t)
t_

Mg(a;b)

(f) dt

+

Z Mg(a;b)

a

(g (t)� g (a))��1 g0 (t)
Mg(a;b)_

t

(f) dt

35
� 1

2

b_
a

(f) :

The proof follows by either the inequality (3.5) or (3.6) by taking x = x =

Mg (a; b) = g
�1
�
g(a)+g(b)

2

�
:

4. Some Examples

If we take g (t) = t; t 2 [a; b] in (3.2) and (3.5), then we recapture the inequalities
from Theorem 1. From (3.3) we get for the classical Riemann-Liouville fractional
integrals the following inequalities

(4.1)

����f (a) + f (b)2
� 1
2
� (�+ 1)

�
J�a+f (x)

(x� a)� +
J�b�f (x)

(b� x)�
�����

� �

2

"
1

(x� a)�
Z x

a

(x� t)��1
t_
a

(f) dt+
1

(b� x)�
Z b

x

(t� x)��1
b_
t

(f) dt

#

� 1

2

b_
a

(f)

while from (3.6) we get

(4.2)

����12� (�+ 1)
�
J�x�f (a)

(x� a)� +
J�x+f (b)

(b� x)�
�
� f (x)

����
� �

2

"
1

(x� a)�
Z x

a

(t� a)��1
x_
t

(f) dt+
1

(b� x)�
Z b

x

(b� t)��1
t_
x

(f) dt

#

� 1

2

b_
a

(f) ;

for any x 2 (a; b) :
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Consider the function g (t) = ln t; t 2 [a; b] � (0;1) ; then by (3.3) we have for
Hadamard fractional integrals

�����f (a) + f (b)2
� 1
2
� (�+ 1)

"
H�
a+f (x)�
ln
�
x
a

��� + H�
b�f (x)�
ln
�
b
x

���
#�����(4.3)

� �

2

"
1�

ln
�
x
a

��� Z x

a

h
ln
�x
t

�i��1 1
t

t_
a

(f) dt

+
1�

ln
�
b
x

��� Z b

x

�
ln

�
t

x

����1
1

t

b_
t

(f) dt

#

� 1

2

b_
a

(f)

while from (3.6) we get

�����12� (�+ 1)
"
H�
x�f (a)�
ln
�
x
a

��� + H�
x+f (b)�
ln
�
b
x

���
#
� f (x)

�����(4.4)

� �

2

"
1�

ln
�
b
x

��� Z b

x

�
ln

�
b

t

����1
1

t

t_
x

(f) dt

+
1�

ln
�
x
a

��� Z x

a

�
ln

�
t

a

����1
1

t

x_
t

(f) dt

#

� 1

2

b_
a

(f) ;

for any x 2 (a; b) :
If we take the function g (t) = �t�1; t 2 [a; b] � (0;1) ; then by (3.3) we have

for Harmonic fractional integrals

(4.5)

����f (a) + f (b)2
� 1
2
� (�+ 1)x�

�
a�R�a+f (x)

(x� a)� +
b�R�b�f (x)

(b� x)�
�����

� x�

2

"
a�

(x� a)�
Z x

a

(x� t)��1

t�+1

t_
a

(f) dt+
b�

(b� x)�
Z b

x

(t� x)��1

t�+1

b_
t

(f) dt

#

� 1

2

b_
a

(f)
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while from (3.6) we get

(4.6)

����12� (�+ 1)x�
�
a�R�x�f (a)

(x� a)� +
b�I�x+f (b)

(b� x)�
�
� f (x)

����
� �x�

2

"
b

(b� x)�
Z b

x

(b� t)��1

t�+1

t_
x

(f) dt+
a

(x� a)�
Z x

a

(t� a)��1

t�+1

x_
t

(f) dt

#

� 1

2

b_
a

(f) ;

for any x 2 (a; b) :

References

[1] A. Aglíc Aljinovíc, Montgomery identity and Ostrowski type inequalities for Riemann-
Liouville fractional integral. J. Math. 2014, Art. ID 503195, 6 pp.

[2] T. M. Apostol, Mathematical Analysis, Second Edition, Addison-Wesley Publishing Com-
pany, 1975.

[3] A. O. Akdemir, Inequalities of Ostrowski�s type for m- and (�;m)-logarithmically convex
functions via Riemann-Liouville fractional integrals. J. Comput. Anal. Appl. 16 (2014), no.
2, 375�383

[4] G. A. Anastassiou, Fractional representation formulae under initial conditions and fractional
Ostrowski type inequalities. Demonstr. Math. 48 (2015), no. 3, 357�378

[5] G. A. Anastassiou, The reduction method in fractional calculus and fractional Ostrowski type
inequalities. Indian J. Math. 56 (2014), no. 3, 333�357.

[6] H. Budak, M. Z. Sarikaya, E. Set, Generalized Ostrowski type inequalities for functions
whose local fractional derivatives are generalized s-convex in the second sense. J. Appl. Math.
Comput. Mech. 15 (2016), no. 4, 11�21.

[7] P. Cerone and S. S. Dragomir, Midpoint-type rules from an inequalities point of view.
Handbook of analytic-computational methods in applied mathematics, 135�200, Chapman
& Hall/CRC, Boca Raton, FL, 2000.

[8] S. S. Dragomir, The Ostrowski�s integral inequality for Lipschitzian mappings and applica-
tions. Comput. Math. Appl. 38 (1999), no. 11-12, 33�37.

[9] S. S. Dragomir, The Ostrowski integral inequality for mappings of bounded variation. Bull.
Austral. Math. Soc. 60 (1999), No. 3, 495�508.

[10] S. S. Dragomir, On the midpoint quadrature formula for mappings with bounded variation
and applications. Kragujevac J. Math. 22 (2000), 13�19.

[11] S. S. Dragomir, On the Ostrowski�s integral inequality for mappings with bounded variation
and applications, Math. Ineq. Appl. 4 (2001), No. 1, 59-66. Preprint: RGMIA Res. Rep. Coll.
2 (1999), Art. 7, [Online: http://rgmia.org/papers/v2n1/v2n1-7.pdf]

[12] S. S. Dragomir, Re�nements of the generalised trapezoid and Ostrowski inequalities for func-
tions of bounded variation. Arch. Math. (Basel) 91 (2008), no. 5, 450�460.

[13] S. S. Dragomir, Re�nements of the Ostrowski inequality in terms of the cumulative variation
and applications, Analysis (Berlin) 34 (2014), No. 2, 223�240. Preprint: RGMIA Res. Rep.
Coll. 16 (2013), Art. 29 [Online:http://rgmia.org/papers/v16/v16a29.pdf].

[14] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results,
Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online
http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].

[15] S. S. Dragomir, Ostrowski type inequalities for Riemann-Liouville fractional integrals of
bounded variation, Hölder and Lipschitzian functions, Preprint RGMIA Res. Rep. Coll. 20
(2017), Art. 48. [Online http://rgmia.org/papers/v20/v20a48.pdf].

[16] S. S. Dragomir, Ostrowski type inequalities for generalized Riemann-Liouville fractional in-
tegrals of functions with bounded variation, RGMIA Res. Rep. Coll. 20 (2017), Art. 58.
[Online http://rgmia.org/papers/v20/v20a58.pdf].

[17] A. Guezane-Lakoud and F. Aissaoui, New fractional inequalities of Ostrowski type. Transylv.
J. Math. Mech. 5 (2013), no. 2, 103�106



20 S. S. DRAGOMIR

[18] A. Kashuri and R. Liko, Ostrowski type fractional integral inequalities for generalized
(s;m; ')-preinvex functions. Aust. J. Math. Anal. Appl. 13 (2016), no. 1, Art. 16, 11 pp.

[19] A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Di¤ eren-
tial Equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam,
2006. xvi+523 pp. ISBN: 978-0-444-51832-3; 0-444-51832-0.

[20] M. A. Noor, K. I. Noor and S. Iftikhar, Fractional Ostrowski inequalities for harmonic
h-preinvex functions. Facta Univ. Ser. Math. Inform. 31 (2016), no. 2, 417�445

[21] M. Z. Sarikaya and H. Filiz, Note on the Ostrowski type inequalities for fractional integrals.
Vietnam J. Math. 42 (2014), no. 2, 187�190

[22] M. Z. Sarikaya and H. Budak, Generalized Ostrowski type inequalities for local fractional
integrals. Proc. Amer. Math. Soc. 145 (2017), no. 4, 1527�1538.

[23] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in
the second sense via fractional integrals. Comput. Math. Appl. 63 (2012), no. 7, 1147�1154.

[24] M. Tunç, On new inequalities for h-convex functions via Riemann-Liouville fractional inte-
gration, Filomat 27:4 (2013), 559�565.

[25] M. Tunç, Ostrowski type inequalities for m- and (�;m)-geometrically convex functions via
Riemann-Louville fractional integrals. Afr. Mat. 27 (2016), no. 5-6, 841�850.

[26] H. Yildirim and Z. Kirtay, Ostrowski inequality for generalized fractional integral and related
inequalities, Malaya J. Mat., 2(3)(2014), 322-329.

[27] C. Yildiz, E, Özdemir and Z. S. Muhamet, New generalizations of Ostrowski-like type in-
equalities for fractional integrals. Kyungpook Math. J. 56 (2016), no. 1, 161�172.

[28] H. Yue, Ostrowski inequality for fractional integrals and related fractional inequalities. Tran-
sylv. J. Math. Mech. 5 (2013), no. 1, 85�89.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428,
Melbourne City, MC 8001, Australia.

E-mail address : sever.dragomir@vu.edu.au
URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences,
School of Computer Science & Applied Mathematics, University of the Witwatersrand,
Private Bag 3, Johannesburg 2050, South Africa




