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CHEBYSHEV TYPE INEQUALITIES BY MEANS OF COPULAS

SEVER S. DRAGOMIR AND EDER KIKIANTY

ABSTRACT. A copula is a function which joins (or “couples”) a bivariate dis-
tribution function to its marginal (one-dimensional) distribution functions. In
this paper, we obtain Chebyshev type inequalities by utilising copulas.

1. INTRODUCTION

A copula is a function which joins (or “couples”) a bivariate distribution function
to its marginal (one-dimensional) distribution functions. Mathematically defined,
a copula C' is a function C : [0,1]? — [0, 1] with the following properties:

(C1) C(u,0) =C(0,u) =0, C(u,1) = u, and C(1,u) = u for all u € [0, 1],

(02) C(Ul,’Ul) *C(Ula Uz) *C(Uz, U1)+C(U2,v2) > 0 for every uy, uy,vi,v2 € [O, H
such that u; < ug and v; < vs.

Property (C2) is referred to as the 2-increasing property (or moderate growth [2]).

The 2-increasing property implies the following properties for any copula C:

(C4) C is non decreasing in each variable,

(C5) C satisfies the Lipschitz condition: for all uy,us,v1,ve € [0,1],

|C(u2,v2) — Cur,v1)| < ug —ur| + Jvg —v1].

For further reading on copulas, we refer the reader to the book by Nelsen [4].

While copulas join probability distributions, t-norms join membership functions
of fuzzy sets, and hence combining probabilistic information and combining fuzzy
information are not so different [3]. Mathematically defined, a t-norm 7T is a func-
tion T : [0,1]> — [0, 1] with the properties [3]:

(T1) Commutativity: T'(z,y) = T'(y, ) for all z,y € [0,1],

(T2) Associativity: T(z,T(y,2)) = T(T(x,y), z) for all x,y,z € [0,1],

(T3) Monotonicity: T(z,y) < T(x,z) for all z,y, z € [0,1] with y < z,

(T4) Boundary condition: T'(z,1) = T(1,z) = =, T(z,0) = T(0,z) = «z for all
z €10,1],

A copula is a t-norm if and only it is associative, conversely, a t-norm is a copula
if and only if it is 1-Lipschitz [2]. The three main continuous t-norms, namely the
minimum operator (M (z,y) = min{x,y}), the algebraic product (P(z,y) = zy),
and the Lukasiewicz t-norm (W (z,y) = max{x +y — 1,0}), are copulas.

The first importance of these copulas are given by the following inequality: for
any copula C', we have

(1.1) W(u,v) < C(u,v) < M(u,v), for all u,v € [0,1].
The above inequality is referred to as the Fréchet-Hoeffding bounds for copulas and
provides a basic inequality for copulas.

Inequality (1.1) also holds in the contexts of probability theory and fuzzy prob-

ability calculus [2] and is referred to as the Bell inequalities. Further inequalities
1
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for copulas of Bell-type are given in [2]. Other inequalities for copulas are given in
[6] in relation to a family of continuous functions L from [0, co] x [0, oo] onto [0, 0o]
which are nondecreasing in each variable with lim,_, . L(z,z) = oco.

Egozcue et al. in [7] establish Griiss-type bounds for covariances by assuming
the dependence structures such as quadrant dependence and quadrant dependence
in expectation. They utilise copulas to illustrate these dependent structures.

In the same spirit to that of [7], it is our aim here to establish inequalities by
utilising copulas. Firstly, we note the connection between the 2-increasing property
and the Chebyshevian mappings. A mapping F : [a, b]?> — R is called Chebyshevian
on [a, b]? if the following inequality is satisfied:

F(z,z)+ F(y,y) > F(z,y) + F(y,z), forall z,y € [a,b].

Let C be a copula, z,y € [0,1], and set u; = ug = & and v; = vy = y in property
(C2) (2-increasing property) above to obtain

Clz,z) = C(z,y) = Cly,z) + Cly,y) 2 0
or equivalently,
(1.2) C(z,z) + C(y,y) > C(z,y) + C(y, z),

i.e. C is Chebyshevian on [0, 1]%.

In Dragomir and Crstici [1], the relationship between two synchronous functions
and Chebyshevian mappings are established. Two functions f, g : [a,b] — R are
synchronous on [a, b] if they have the same monotonicity, that is,

(f(x) = F())(g(x) —g(y)) 2 0, forall z,y € [a,b].

The relationship between the two notions are given in the following result.

Proposition 1 (Dragomir and Crstici [1]). If f,g are synchronous on [a,b] and
F :[a,b)?> — R where F(x,y) = f(x)g(y), then F is Chebyshevian on [a, b]?.

Consequently, the following Chebyshev type inequalities can be stated:

Proposition 2 (Dragomir and Crstici [1]). Let p : [a,b] — R be integrable and
nonnegative on [a,bl.

(1) Let F : [a,b]> = R. If F is Chebyshevian on [a,b]?, then

0 [ [ swreadas [ [ opres

for allt € [a,b].
(2) Let f,g : [a,b] — R be integrable on [a,b]. If f and g are synchronous on
[a,b], then we have Chebyshev’s inequality

t

(1.4) / pla) da / @) f(2)g(a) de > / @) f(z) de | @yt ds

a

for all t € [a.b].

If f,g: [a,b] — [0,1] are synchronous, then by Proposition 1, the product copula
given by

P(f(x),9(y)) = f(z)g(y), =,y € [a,b]
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is Chebyshevian on [a,b]?, as a consequence of the 2-increasing property. If we
define a function F : [a,b]?> — [0,1] by F(z,y) = P(f(x),g(y)) = f(z)g(y), and if
p: [a,b] = R is integrable and nonnegative, then Proposition 2 gives us

/ p(x) dz / p(2)P(f(z), g(x)) dz > / / (@) P (), g()) da dy.

Motivated by this observation, we aim to obtain other types of Chebyshev inequal-
ities by utilising (the general definition of) copulas instead of the product copula
as demonstrated above. Specifically, we provide inequalities for the dispersion of a
function f defined on a measure space (€, 3, 1), with respect to a positive weight
w on Q with [, w(t) du(t) = 1, that is,

(- (fora))

2. CHEBYSHEV TYPE INEQUALITIES
The 2-increasing property of copulas gives us the following result.

Proposition 3. Let C : [0,1]2 — [0,1] be a copula and p : [0,1] — R be an
integrable function. Then,

(1) C is Chebyshevian on [0, 1]?.
(2) If p is nonnegative, then

/Otp(x) de /Otp(x)C’(x,x) dx > /Ot /Otp(x)p(y)C(m?y) dx dy.

Proof follows by (1.2) and Proposition 2 part (1).
Now we state a more general form of this inequality. We start with the following
lemma.

Lemma 1. Let f, g : [a,b] — [0,1] be two synchronous functions and C be a copula.
Then, F : [a,b]?> — [0,1] defined by

F(z,y) = C(f(2),9(y))
is Chebyshevian on [a, b]*.

Proof. Since f and g are synchronous, they have the same monotonicity on [a, b].
Let A be the collection of subsets of [a,b] where f and g are both nondecreasing.
Suppose that z,y € A. Without loss of generality, let z < y, and set

Uy = f(w)v U2 = f(y)7 U1 = g(x), V2 = g(y)

Thus, u1 < wugy and v; < vy since f and g are nondecreasing. Therefore, the
2-increasing property of C' gives

0 < C(ul,vl) — C(’U,l,’Ug) — C(Uz,vl) + C(UQ,UQ)

= C(f(z),9(x)) — C(f(x),9(y)) — C(f(y), 9(z)) + C(f(y),9(y))
= F(‘r7l‘)7F($7y)7F(y7z)+F(yay)

Suppose that z,y € [a,b] \ A. Without loss of generality, let = < y,
ur = f(y), uz = f(x), v1 =g(y), v2 = g(x).
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Thus, u; < us and v1 < vs since f and g are decreasing. Therefore, the 2-increasing
property of C' gives

0 S C(U1,U1) — C(ul,’Ug) — C(’U,Q,Ul) + C(UQ,UQ)

= C(f(),9(v) — C(f(y),9(z)) — C(f(2),9(y)) + C(f(),9(x))
= F(y,y) = F(y,z) — F(z,y) + F(z,z).

We show that F' is Chebyshevian in both cases. O
Lemma 1 and Proposition 2 part (1) give us:

Theorem 1. Let C be a copula, f,g : [a,b] — [0,1] be two synchronous functions,
p:la,b] = R be an integrable function. If p is nonnegative then

/ plz) da / p(#)C(f(2), g(x)) dz > / / @) F (), g(y)) dar dy.

Example 1. In this example, we obtain some Chebyshev types inequalities by
choosing some examples of copulas. Let f,g : [a,b] — [0, 1] be two synchronous
functions, and p : [a,b] — R be a nonnegative integrable function. Theorem 1 and
(1.1) gives us following inequalities:

(2.1) / t / ' pla)ply) max{£(z) + g(y) — 1,0} de dy
< [ btras [ playmax{ 1) + o) ~ 1,0} o
< [s)de [ s, o) do
< [ st)ar [ pia min (o).t}

The first inequality follows from Theorem 1 (by choosing the W copula) and the
rest follows from the Fréchet Hoeffding bound (1.1). Similarly, we have

(22) [ [ vt maxt @) + ot0) ~ 1.0} e dy
< [ [ ponwoe.ow) iy
< [ [ st mints@). o) dray
<[ pla)da / ') min{f(2), g(2)} d

The last inequality follows from Theorem 1 (by choosing the M copula) and the
rest follows from the Fréchet Hoeffding bounds (1.1).

In what follows, we generalise Theorem 1 and Example 1.

Theorem 2. Let (Q,%,u) be a measure space, f : Q — [0,1] be a measurable
function, and C be a copula. Then, F : Q? — [0,1] defined by

F(z,y) == C(f(x), f(y))
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is Chebyshevian on Q2. We also have for a non-negative integrable function p :
Q- R,

/ p(z) dy(z) / p(2)C(f(2), [(2)) du(z)
Q Q
> / / p(@)p(W)C(f (), £ () dp(z) du(y).

Proof. The Chebyshevian property of F' follows from the 2-increasing property of
copulas. Therefore, we have

F(z,z)+ F(y,y) > F(z,y) + F(y,z), forallz,ye€ Q,

or equivalently

C(f(z), f(z)) + C(f (). f () = C(f(2), f(y) + C(f(y), f(=)).
Multiply both sides by p(z) and p(y) and take double integrals over Q2 we have

/ p(2)dp(z) / p(@)C(f (), f(2))du(x)
Q Q
> / / p(@)p(W)C(f(x), £ () dp()du(y).

This completes the proof. O

Example 2. In this example, we obtain some Chebyshev types inequalities by
choosing some examples of copulas. Let (2, X, 1) be a measure space, f : Q — [0, 1]
be a measurable function, and p :  — R be a nonnegative integrable function. We
have the following inequalities:

(2.3 [ | papto) maxtr(w) + ) = 1.0} dua) duy)
< [ p@yaua) [ ple) max(zr(x) 1.0} dufa)
< [ s@)duta) [ s@)0(@).0@) due)
< [ s@)duta) [ ooy minf(a). o)} duo)
(2.4) ; /Q p(z)p(y) max{f(z) + g(y) — 1,0} du(z) du(y)
< [ | paw)Cs@).o(w) duta) duto)
< [ [ papt) mind (o). £0)} duto) dnt)
< [ s@)au@) | ple) @) duta).

We also have the following result:
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Theorem 3. Let (2,%, 1) be a measure space, f : Q — [0,1] be a measurable
Junction. Let w be a positive weight on Q with [, w(t)du(t) = 1. Let C : [0,1]* —
[0,1] be a copula. We have the following inequalities:

2 [wctrnagwre (s ([era).s ([ o))
elor{fra) e folo([r4) )

Proof. The 2-increasing property of copulas gives us
C(z,z) +C(y,y) = C(z,y) + C(y, x)
for all z,y € [0,1]. Take z = f(t) and y = [, w(t)f(t) du(t), we have

et s+ (1 ([ wor0a) s ([ woroann))
> (r0.f ([ wrann)) +o (7 ( [ woroann).qo).

Multiply with w(¢) > 0 and integrate over €2 gives the desired result. O

In the next section, we provide further inequalities of this type.

3. MORE INEQUALITIES

/Q wf dp,

Ko (Cifg) = /Q /Q (@) C(f (@), 9(y)) du(z) duly),

[ f—/QWfdu‘ n= [ wolf =B du

where w : @ — [0,00) is p-integrable with [ywdp = 1, f,g : Q@ — [0,1] are p-
measurable and f,g € L,(Q), and C : [0,1]> — [0,1] is a copula.

We denote by D, (f) the dispersion of a function f deﬁned on a measure space
(9, %, pu), with respect to a positive weight w on Q with [, w(t) du(t) = 1, that is,

(3.1) Du(f) = ( [t au - ( / wfdu>2>;~

Theorem 4. Let (2, %, 1) be a measure space, f, : Q — [0,1] be measurable
Junctions. Let w be a positive weight on Q with [ w( du( y=1. Let C : [0,1]* —
[0,1] be a copula. We have the following inequalities:

[Kw(C5 f,9) — C(Eu(f), Eu(9))]

/ / (F(2),9(0)) — C (Bulf). Eulg))| du(z) du(y)
(/) + Halg) < Dul(f) + Dala).

We denote the following

E.(f)

Hy(f)
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Proof. Firstly, we have

1K (C; f.9) — C(Eu(f), Eul9))]
N / / (f(@),9(y)) = C(Eu(f), Eul9)) ) du(z) du(y)‘

< / / w(@)w() |C(F(@), 99)) — C (Bulf), Eu(9))] dys(z) du(y).
QJQ

From the Lipschitz property of copulas, we have

Citehato) - ( [ wrn [ wgdp)‘

< ’f(af)—/ﬂwfdu‘Jr g(y)—/ﬂwgdu’~

Multiply with w(z)w(y) > 0 and integrate twice over € give:

[ [ et |ew@now - ([ ordn [ woi)| e an

< [ f—/wad,u‘ dw/ﬂw\g—/gwgdu] d = Ho(f) + Holg).

Finally, Schwarz’s inequality gives:
(filr= fosn] o)
(o= foran) an) ([
[ for(for) e [ )
wftdp —2 wif dp i + wfdp i
Q Q / Q
foran= ([ oran) .

w’f/ﬂwfdu‘ dy < (/Qszdu (/waduf)é D)),

This completes the proof. (Il

IN

that is,

Corollary 1. Let (Q,%, 1) be a measure space, f,g Q — [0,1] be measurable
functions. Let w be a positive weight on Q with [, w(t)du(t) = 1. Let C : [0,1]> —
[0,1] be a copula. If f and g satisfy:

then we have the inequalities:

IN

Dy (f) + Du(9)
%(Mf —my) + %(Mg —mg) < 1.

IN
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The proof follows from Theorem 4 and a Griiss type inequality:

Dulf) < 5(M —m) < 3,

for f with the property that 0 < m < f < M < 1. We omit the details.

Recall the notation:

Eu(f)

/Q wf dp,

KCifg) = [ /Qw(af)w(y)C(f(x%g(y)) du(z) du(y),

¢
and introduce the following notation:

K (C:f) = / / w(@)o()C(f (@), £(y)) du() du(y)

Lo(C;f.g) = /QwC (f,/ngdu> du
LiC.f) = [wC (f, /wadu) an

Theorem 5. Let w : Q — [0,00) be p-integrable with [,wdp = 1.

Let

f,9 : Q — [0,1] be u-measurable and f,g € L,(). If C : [0,1)*> — [0,1] is a

copula, then

(3.2) max {E,(f) + Ew(9) — 1,0} < Ku(Cs f, 9) < min {E,(f), Eu(9)}-

In particular, we have
(3.3) max {2, (f) — 1,0} < Ko(Cs f) < E(f).

We also have

max {E,(f) + E,(g9) — 1,0}

IA

IN

(3.4) L,(Cs f.9)
[ comin 7.2 ()} d

min {E,(f), E.(9)} -

IN

IN

In particular,

max {2E,(f) — 1,0}

IN

/meax{f—&—Ew(f)—l,O}
[ wmin(F.Bu(0)} d < B (1)

(3.5)

IN

IN

Proof. We know that for any p-w-integrable functions k and I, we have

(3.6) / wmin{k,l}dp < min{/ wkdu,/ wl du},
X X X

and

(3.7) / wmax{k,l}du > max{/ wkdu,/ wldu}.
b's X X

[ wmax {1+ Eulg) - 1.0} du
Q
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Using the Fréchet-Hoeffding bounds (1.1), we obtain
(3.8) max{f(z) + g(y) — 1,0} < C(f(x),9(y)) < min{f(x),9(y)},

for all z,y € Q. If we multiply (3.8) by w(xz)w(y) > 0 and integrate twice over €2,
then we get

/Q /2 w(z)o(y) max{f(z) + g(y) — 1,0} du(z) du(y)
(3.9) < /Q /Q w(@)wW)C(f (@), 9(y)) dpu(z) du(y)

< /Q /Q w(a)w(y) mind £(z), g(y)} dyu(z) du(y).
By (3.6) and (3.7), we get

/Q / w(@)w(y) min{f(z), g(u)} dyu() dpu(y)

§min{/ wfdu,/wgdu}

Q Q

max{/ wfdu+/wgdu—1,0}
Q Q

< / / w(@)wly) max{f(@) + g(y) — 1,0} du(z) du(y).

This proves (3.2). We obtain (3.3) by setting f = g in (3.2).
From (1.1), we also have

(3.10) max{f—i—/gwgdu—l,O} §C<f,/9wgdu) §min{f7/9wgdu}.

If we multiply (3.10) by w > 0 and integrate over 2, then we get

and

/wmax{f—i—/wgd,u—l,O} du < /wC’ <f,/wgdu) du

Q Q Q Q

(3.11) < /wmin{f,/wgdu}.
Q Q

Since

(3.12) /mein{ﬁ/ﬂwgdu} <min{/9wfdﬂ,/ﬂwgd,u}

and

(3.13) max{/ wfd,u—k/wgdg—LO}</wmax{f+/wgdu—1,0} dp.
Q Q Q Q

By (3.11), (3.12), and (3.13), we get (3.4). Finally, we obtain (3.5) by setting f = g
in (3.4). O
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Lemma 2. If C :[0,1]2 — [0,1] is a copula, then we have

0< %|u—v| < 1(u—&—v)—C’(u,v)

2
1 1 1 1
(3.14) < 2|uv+2max{‘2u,2v}
< 1| ‘+1
Tl — ol =
- 2 2’

for any u,v € [0, 1].
Proof. Using the Fréchet-Hoeffding bounds (1.1) and the fact that

1 1
min{a, b} = i(a—i— b—la+10b|), max{a,b}= §(a+ b+ |a—bl),

thus we have

1 1
5(u+v—1+|u—|—v—1|)§€(u,v)§§(u+v—|u—v\),

for any u,v € [0,1]. This inequality is equivalent to

1 1 1
(3.15) 5\u—v|S§(u+v)—0(u,v)§§(l—|u—|—v—1\).

Applying the reverse triangle inequality, we have
lu+v—1=ljlu—v+2v—1=|u—v—(1-20v)] > |1 —-2v|—|u—1|,

for any u,v € [0,1]. Similarly,

lu+v—1 > |1 —2u| —|u—1v,
for any u, v € [0, 1]. Therefore,

—lut+v—1| <|u—v|—|1-2v,
and

—|u+v=1] <|u—v|—|1—2u,
giving that

—|u+v—1| <|u—wv| —max{|l —2u|, |1 —2vl|},

for all u,v € [0, 1]. From (3.15), we then obtain

1 1 1 1 1 1
(3.16) §|u—v| < §(u—|—v)—C’(u,v) < 2+2|u—v—max{‘—u - -

)

for all u,v € [0, 1]. O

)

Consider the quantities

L,(f.g) = /Q/Qw(x)w(y)lf(x) — 9(y)| dp(x) du(y),

and
L(f) = /Q /Q w(@)oW (@) — )] du(z) duly) = L(f. f).

By the properties of modulus, we have

Iw(f7g)2/w f/ngdu‘ dp =: Hy,(f,9),

Q
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and

Lz [uli- [ wfdu‘ dn = H().
Q Q
By Schwarz’s inequality, we also have

1
2

L(f.g) < ( /Q /Q w(as)w(y)(f(x)—g<x>>2du<x>du<y>)

1
2
</wf2du—2/wfdu/wgd,u—i—/wg2du) ,
Q Q Q Q

1) < V2 (/Qwﬂ i~ (/wadu)Q)Q — VEDL()).

We have the following result:

and

Theorem 6. Let w : Q — [0,00) be p-integrable with widu =1. Let f,g: Q2 —
[0, 1] be p-measurable and such that f,g € L,(Q). If C :[0,1]*> = [0,1] is a copula,
then (with the notation in Theorem 5), we have

Slalfi9) £ 5(Bulf) + Bulg)) ~ KulCi f.0)
o s et (3 ) (1)
< SL(fo)+y
In particular, we have
Sl S Bl = KulCif)
(3.18) < %Iw(f)-‘r%—Ew (‘;—fD < %Iw(f)+%~
We also have
SHf9) < 5 () + Bulg) — Lu(Ci .9
(3.19) < ;Hw(f,g)—l-;—maX{Ew (’;—f’)‘; Ew(g)‘}
< %Hw(f,g) + %
In particular, we have
SHAS) S () - Lu(Ci)

(3.20)

INA
DO |
&
—
KH
S—
+
= N
|
&
I
| =

|
=
S~

IA
|
=
=
+
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Proof. From Lemma 2 we have

IA
|
—~
~
—
8
~
+
Q
—~~
=
|
2
=
8
~—
<
—~
<
Nt

S17@) — o)

(3.21)

IA
o1
=
&
|
2
<
=
Jr
I
|
=
I
"
—N

for any x,y € Q. We multiply (3.22) by w(x)w(y) > 0 and integrate to get

Lt = 5 | [ @i - o) i) dut)

< s ([erans [woa) - [ [ e@umce.om) e o)

= % /Q/Qw(x)w(y)|f(x) —g(y)|du(x) du(y) + %

- / [ ctrstmmax{|§ - £ |5 = 90| } dute) duto)
L(t. )+1ma><{/gw’;f’ i, [ ;g‘ du}~
Again, from Lemma 2 we have

i fove] = (s fora) (s )

(3.22) < ;'f—/ﬂwgdp‘—i—l—max{l—f

IN

A

)

2 2

1
- - dp| ¢ -
o o)

If we multiply (3.22) by w > 0 and integrate, then we get

1
§H f»)

ol o]

( wfdp+ wgdu) w(C5 f,9)

- 2

< 1/ ’f wgd,u‘du—l——/wmax{l—f,l—/wgd,u‘}du
) 2/, 2 2 Jy

< 1H (f, )—&-—max{/w'l—f’ du,‘l—/wgdu'}

=3 2 012 2/,

< SHU0) +y

We obtain the particular cases by setting f = g.
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Remark 1. We denote the following quantities:

1
E, = /tw(t)dt,

/ / )|z — gl dz dy,

H, =/ (t)'t—/o (t)dt\dt=/@1w<t>|t—Ew|du
ki) = [ 1 / o )l)Clw,y) do dy
Lo(C) = /Olw(t)(/*(t,/ﬂtw(t)dt) dt.

Some particular instances of interest:

£
[

(a) Let  =1[0,1], w : [0,1] — [0,00), folw(t) dt =1, f(t) = g(t) =t (¢t € [0,1]).

Then by (3.3) we get

max{?/oltw(t)dt—l,()}
< [ [ wtwrwow i =K< [ o

max{2E,, — 1,0} < K,(C) < E,,.
By Theorem 6, we have

that is,

1
§Iw S Ew - Kw(c)

< 1[+1 /1 (t)1 t| dt < I+
= gle o T  “Wg 27T o

and

(b) Take Q=[0,1], w(t)=1 (t €

max{/olf(t)dt—i—/olg(t)dt—170} < //C ) dx dy

When f = g, we get

max{Q/Olf(t)dt—l,O} < //C ) dx dy

IN
\
—~
=
QU
~
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By Theorem 6, we have

//|f )| dp(z) da(y)
! ( [ san+ / gdu) - [ [ et gt auta) dnty
<3 [ 15 = st duteyautr) + g max{ [ |51 a [ |5~ an

1
<5 [ [ 17 = st due) auts) + 5.

When f = g, we have

3 | [ 17@ = 1wl dute) duty
< [ rau- / / c(f dpu(x) dp(y)

3 [ 176 = 1wl dute) duto) + —/Q;—f\du
< //|f )| du(a) du(y) +

We also have

/Q f/diu‘ dy
Sé(/gfduﬂtfggdu)—/ﬂ(?(f,/ggdu) dp
I ol [ sl
sAf—Kﬁw4m+;

| /\

= N

and

al’ QfdM’dM
s/ﬂfdu—/C(f,/fdu) d
frofars-f]

/‘f fdu’ dp+ 5.

<

—f‘ dp

=N
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