
INEQUALITIES BETWEEN IDENTRIC MEAN AND CONVEX

COMBINATIONS OF OTHER MEANS

CHAO-PING CHEN

Abstract. By using the asymptotic expansion method, Elezović conjectured inequalities be-

tween identric mean and convex combinations of other means. In this paper, we prove certain
conjectures given by Elezović.

1. Introduction

Throughout this paper we assume that the numbers x and y are positive and unequal. Let

H =
2xy

x+ y
, G =

√
xy, L =

x− y
lnx− ln y

, I =
1

e

(
yy

xx

)1/(y−x)

,

A =
x+ y

2
, Q =

√
x2 + y2

2
, N =

x2 + y2

x+ y

be the harmonic, geometric, logarithmic, identric, arithmetic, root-square, and contraharmonic
means of x and y, respectively. It is known (see [14,17]) that

H < G < L < I < A < Q < N.

Sándor [12] proved that

2

3
A+

1

3
G < I. (1.1)

Alzer and Qiu [1] developed (1.1) to produce a double inequality. More precisely, these authors
proved that the inequalities

αA+ (1− α)G < I < βA+ (1− β)G (1.2)

hold if and only if

α ≤ 2/3 and β ≥ 2/e = 0.73575 . . . .

Zhu [19, Theorem 2] also considered (1.2). Subsequently, Zhu [20, Theorem 2] (see also [21,
Theorem 5.4, Eq. (5.5)]) established a more general result and proved, for 0 < p ≤ 6/5,

αAp + (1− α)Gp < Ip < βAp + (1− β)Gp (1.3)

holds if and only if α ≤ 2/3 and β ≥ (2/e)p. The choice p = 1 in (1.3) yields (1.2).
Trif [16] proved, for p ≥ 2,

αAp + (1− α)Gp < Ip < βAp + (1− β)Gp (1.4)

holds if and only if α ≤ (2/e)p and β ≥ 2/3.
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The choice (p, β) = (2, 2/3) in the right-hand side of (1.4) yields

I2 <
2

3
A2 +

1

3
G2, (1.5)

which has been presented by Sándor and Trif [13].
Let p > 0. Kouba [10] proved that the inequality

Ip <
2

3
Ap +

1

3
Gp (1.6)

holds if and only if p ≥ ln(3/2)/ ln(e/2) = 1.3214 . . ., and the reverse inequality holds if and only
if p ≤ 6/5.

Zhu [19, Theorem 3] proved that the inequalities

αA+ (1− α)L < I < βA+ (1− β)L (1.7)

hold if and only if α ≤ 1/2 and β ≥ 2/e. Subsequently, Zhu [21, Theorem 1.3] established a more
general result and proved, for 0 < p ≤ 8/5,

αAp + (1− α)Lp < Ip < βAp + (1− β)Lp (1.8)

holds if and only if α ≤ 1/2 and β ≥ (2/e)p. The choice p = 1 in (1.8) yields (1.7).
There is a large number of papers studying inequalities between linear combinations of means

(see, for example, [3–5,9, 11,15,17,18]).
Recently, Elezović [6] proposed a new approach to this subject, using the concept of asymp-

totical expansion of means. More precisely, the author established inequalities of the form

aM1 + bM2 + cM3 ≥ 0 (1.9)

where a, b, c are constants and Mk (k = 1, 2, 3) are chosen from the class of elementary means
given above. The inequality (1.9) is called optimal by the author if for any other choices of
constants a∗, b∗, c∗ such that (1.9) is valid, it follows that

a∗M1 + b∗M2 + c∗M3 ≥ aM1 + bM2 + cM3 ≥ 0.

In order to formulate such inequalities the author considers the asymptotic expansion of the
means as follows:

M(x+ s, x+ t) = x+ c1(s, t) +
c2(s, t)

x
+
c3(s, t)

x2
+ · · · .

By comparing the coefficients it is possible to derive several candidates for optimal inequalities.
These possible optimal inequalities are systematically studied. The author obtained some critical
values and also formulates several conjectures in connection with optimal inequalities.

Conjecture 1.1 (see [6, Conjecture 2.3]). The following inequalities are valid:

N + 6I ≤ 7A, Q+ 3I ≤ 4A, A+ L ≤ 2I, 2A+G ≤ 3I and 5A+H ≥ 6I.

Conjecture 1.2 (see [6, Conjecture 4.2]). The following inequalities are valid:

(e− 2)N + e · I ≥ 2(e− 1)A (typo corrected),

(e− 2)Q+ (
√

2− 1)eI ≥ (e
√

2− 2)A, 2A+ (e− 2)L ≥ e · I

2A+ (e− 2)G ≥ e · I and 2A+ (e− 2)H ≤ e · I.
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Conjecture 1.3 (see [6, Conjecture 4.3, (4.11)-(4.15)]). The following inequalities are valid:

N + (e− 1)L ≥ e · I, (1.10)

N + (e− 1)G ≥ e · I, (1.11)

N + (e− 1)H ≤ e · I, (1.12)

√
2 ·Q+ (e−

√
2)L ≥ e · I, (1.13)

√
2 ·Q+ (e−

√
2)G ≥ e · I. (1.14)

The typos of (1.10)-(1.12) have been corrected. See [7, 8, 17] for more details about comparison
of means using asymptotic methods.

The aim of this paper is to offer a proof of Conjectures 1.1, 1.2 and 1.3. We also develop
(1.10)-(1.14) to produce double inequalities.

Remark 1.1. Let
√
x/y = et, and suppose x > y. Then t > 0, and the following identities hold

true:

H(x, y)

G(x, y)
=

1

cosh t
,

L(x, y)

G(x, y)
=

sinh t

t
,

I(x, y)

G(x, y)
= et coth t−1,

A(x, y)

G(x, y)
= cosh t,

Q(x, y)

G(x, y)
=
√

cosh(2t),
N(x, y)

G(x, y)
=

cosh(2t)

cosh t
.

The numerical values given in this paper have been calculated via the computer program
MAPLE 13.

2. Proofs of Conjectures 1.1 and 1.2

Theorem 2.1. The following double inequalities hold true:

1

7
N +

6

7
I < A <

e− 2

2(e− 1)
N +

e

2(e− 1)
I (2.1)

and

1

4
Q+

3

4
I < A <

e− 2

e
√

2− 2
Q+

(
√

2− 1)e

e
√

2− 2
I. (2.2)

Proof. By Remark 1.1, (2.1) and (2.2) can be written, respectively, as

1

7
< f1(t) <

e− 2

2(e− 1)
for t > 0 (2.3)

and

1

4
< f2(t) <

e− 2

e
√

2− 2
for t > 0, (2.4)

where

f1(t) =
cosh t− et coth t−1

cosh(2t)
cosh t − et coth t−1

and f2(t) =
cosh t− et coth t−1√
cosh(2t)− et coth t−1

.
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Elementary calculations reveal that

lim
t→0

f1(t) =
1

7
= 0.14285714 . . . , lim

t→∞
f1(t) =

e− 2

2(e− 1)
= 0.20901164 . . . ,

lim
t→0

f2(t) =
1

4
= 0.25, lim

t→∞
f2(t) =

e− 2

e
√

2− 2
= 0.38947497 . . . .

In order prove (2.3) and (2.4), it suffices to show that f1(t) and f2(t) are both strictly increasing
for t > 0.

Differentiation yields(
cosh(2t)− et coth t−1 cosh t

)2
t cosh t+ sinh t

f ′1(t) = et coth t−1 − 2 cosh t sinh t

t cosh t+ sinh t
.

We claim that

et coth t−1 − 2 cosh t sinh t

t cosh t+ sinh t
> 0, t > 0. (2.5)

It suffices to show

g1(t) = t coth t− 1− ln
2 cosh t sinh t

t cosh t+ sinh t
> 0, t > 0.

Differentiation yields

g′1(t) =
h1(t)

(t cosh t+ sinh t) sinh2 t cosh t
,

with

h1(t) = −t cosh t sinh t− t2 cosh2 t+ cosh4 t− 1

= −1

2
t sinh(2t) +

(
1

2
− 1

2
t2
)

cosh(2t) +
1

8
cosh(4t) +

1

2
cosh(2t)− 1

2
t2 − 5

8

=

∞∑
n=3

22n−1 − (2n2 + n− 2)

(2n)!
22n−2t2n > 0.

We then obtain g′1(t) > 0 for t > 0. So, g1(t) is strictly increasing for t > 0, and we have

g1(t) > lim
x→0

g1(x) = 0 for t > 0.

Thus, the claim (2.5) is proved.
We then obtain f ′1(t) > 0 for t > 0. Hence, f1(t) is strictly increasing for t > 0.
Differentiation yields

sinh2 t
√

cosh(2t)
(√

cosh(2t)− et coth t−1
)2

g2(t)
f ′2(t) = et coth t−1 − sinh3 t

g2(t)
,

where1

g2(t) = 2t cosh2 t− sinh t cosh t− t−
√

cosh(2t)(t cosh t− sinh t) > 0, t > 0. (2.6)

We now prove

f ′2(t) > 0, t > 0,

1The inequality (2.6) is proved in the appendix.
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it suffices to show that

h2(t) = t coth t− 1− ln
sinh3 t

g2(t)
> 0, t > 0.

Differentiation yields

h′2(t) =
λ(t)

g2(t)
√

cosh(2t)
(√

cosh(2t) + cosh t
) ,

with

λ(t) = 2 cosh4 t− (2t2 + 2) cosh2 t− t sinh t cosh t+ t2

= −t2 cosh(2t) +
1

4
cosh(4t)− 1

2
t sinh(2t)− 1

4

=

∞∑
n=3

4n(4n−1 − n2)

(2n)!
t2n > 0.

We then obtain h′2(t) > 0 for t > 0. So, h2(t) is strictly increasing for t > 0, and we have, for
t > 0,

h2(t) > lim
x→0

h2(x) = 0 =⇒ f ′2(t) > 0.

Hence, f2(t) is strictly increasing for t > 0. The proof is complete. �

Remark 2.1. The inequality (2.5) can be rewritten as

I >
2AL

A+ L
. (2.7)

This shows that I is larger than the harmonic mean of A and L.

Theorem 2.2. The following double inequality hold true:

2

3
A+

1

3
G < I <

2

e
A+

e− 2

e
G, (2.8)

1

2
A+

1

2
L < I <

2

e
A+

e− 2

e
L, (2.9)

2

e
A+

e− 2

e
H < I <

5

6
A+

1

6
H. (2.10)

Proof. By Remark 1.1, (2.8) can be written for t > 0 as

2

3
< F (t) <

2

e
,

where

F (t) =
et coth t−1 − 1

cosh t− 1
.

Differentiation yields

sinh2 t(cosh t− 1)

sinh t+ t
F ′(t) =

sinh t(1 + cosh t)

sinh t+ t
− et coth t−1.

For t > 0, let

F1(t) = ln
sinh t(1 + cosh t)

sinh t+ t
− (t coth t− 1).
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Differentiation yields

F ′1(t) =
F2(t)

sinh2 t(sinh t+ t)
,

with

F2(t) = −2 cosh2 t+ t sinh t cosh t+ 2 + t2 =

∞∑
n=3

22n−1(n− 2)

(2n)!
t2n > 0.

We then obtain F ′1(t) > 0 for t > 0. So, F1(t) is strictly increasing for t > 0, and we have, for
t > 0,

F1(t) > lim
x→0

F1(x) = 0 and F ′(t) > 0.

Hence, F (t) is strictly increasing for t > 0, and we have

2

3
= lim

x→0
F (x) < F (t) < lim

x→∞
F (x) =

2

e

for t > 0. Hence, (2.8) holds.
In fact, (2.8) =⇒ (2.9). More precisely, the following inequalities are true:

1

2
A+

1

2
L <

2

3
A+

1

3
G < I <

2

e
A+

e− 2

e
G <

2

e
A+

e− 2

e
L. (2.11)

Obviously, the last inequality in (2.11) holds. The first inequality in (2.11) can be written as

L <
A+ 2G

3
,

which was proved by Carlson [2].
By Remark 1.1, (2.9) can be written for t > 0 as

1

2
<
et coth t−1 − sinh t

t

cosh t− sinh t
t

<
2

e
.

We find

lim
t→0+

et coth t−1 − sinh t
t

cosh t− sinh t
t

=
1

2
and lim

t→∞

et coth t−1 − sinh t
t

cosh t− sinh t
t

=
2

e
.

Hence, (2.9) is valid and optimal.
By Remark 1.1, (2.10) can be written as

2

e
< u(t) <

5

6
, t > 0, (2.12)

where

u(t) =
et coth t−1 − 1

cosh t

cosh t− 1
cosh t

.

Elementary calculations reveal that

lim
t→0

u(t) =
5

6
= 0.83333333 . . . , lim

t→∞
u(t) =

2

e
= 0.73575888 . . . .

In order prove (2.12), it suffices to show that u(t) is strictly decreasing for t > 0.
Noting that (2.5) holds, we find

u′(t) = −e(t cosh t+ sinh t)

sinh4 t

(
et coth t−1 − 2 sinh t cosh t

t cosh t+ sinh t

)
< 0.
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This proves that u(t) is strictly decreasing for t > 0. Hence, (2.10) holds. The proof is complete.
�

Remark 2.2. In [1]. the left and right sides of (2.8) were proved, respectively. We here provide
a unified proof.

3. Proof of Conjecture 1.3

Theorem 3.1. The following double inequalities hold true:

1

8
N +

7

8
L < I <

1

e
N +

e− 1

e
L, (3.1)

2

9
N +

7

9
G < I <

1

e
N +

e− 1

e
G, (3.2)

1

e
N +

e− 1

e
H < I <

5

12
N +

7

12
H, (3.3)

1

5
Q+

4

5
L < I <

√
2

e
Q+

e−
√

2

e
L, (3.4)

1

3
Q+

2

3
G < I <

√
2

e
Q+

e−
√

2

e
G. (3.5)

Proof. We point out that (2.10) and (3.3) are the same, by identity N +H = 2A.
By Remark 1.1, (3.1), (3.2), (3.4) and (3.5) can be written for t > 0 as

1

8
< U1(t) <

1

e
,

2

9
< U2(t) <

1

e
,

1

5
< U3(t) <

√
2

e
,

1

3
< U4(t) <

√
2

e
,

respectively, where

U1(t) =
et coth t−1 − sinh t

t
cosh(2t)
cosh t −

sinh t
t

, U2(t) =
et coth t−1 − 1
cosh(2t)
cosh t − 1

,

U3(t) =
et coth t−1 − sinh t

t√
cosh(2t)− sinh t

t

, U4(t) =
et coth t−1 − 1√

cosh(2t)− 1
.

Elementary calculations reveal that

lim
t→0

U1(t) =
1

8
= 0.125, lim

t→∞
U1(t) =

1

e
= 0.367 . . . ,

lim
t→0

U2(t) =
2

9
= 0.222 . . . , lim

t→∞
U2(t) =

1

e
,

lim
t→0

U3(t) =
1

5
, lim

t→∞
U3(t) =

√
2

e
= 0.5202 . . . ,

lim
t→0

U4(t) =
1

3
, lim

t→∞
U4(t) =

√
2

e
.

In order prove (3.1), (3.2), (3.4) and (3.5), it suffices to show that Uk(t) (k = 1, 2, 3, 4) are strictly
increasing for t > 0. Following the same method as was used in the proof of Theorem 2.1, we can
prove the monotonicity properties of Uk(t) (k = 1, 2, 3, 4). Here we only prove the monotonicity
property of U2(t). The proofs of the monotonicity properties of Uk(t) (k = 1, 3, 4) are analogous.
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Differentiation yields

(cosh t− 1)(2 cosh t+ 1)2 sinh2 t

2t cosh2 t+ cosh2 t sinh t+ t cosh t+ cosh t sinh t+ sinh t
U ′2(t)

=
(cosh t+ 1)(2 cosh2 t+ 1) sinh t

2t cosh2 t+ cosh2 t sinh t+ t cosh t+ cosh t sinh t+ sinh t
− et coth t−1.

In order prove U ′2(t) > 0 for t > 0, it suffices to show that

V2(t) > 0, t > 0,

where

V2(t) = ln

(
(cosh t+ 1)(2 cosh2 t+ 1) sinh t

2t cosh2 t+ cosh2 t sinh t+ t cosh t+ cosh t sinh t+ sinh t

)
− (t coth t− 1).

Differentiation yields

V ′2(t) =
(2 cosh t+ 1)W2(t)

sinh2 t(2 cosh2 t+ 1)(2t cosh2 t+ cosh2 t sinh t+ t cosh t+ cosh t sinh t+ sinh t)
,

with2

W2(t) = −2 cosh5 t+ 2t cosh4 t sinh t+ (2t2 − 2) cosh3 t− t cosh2 t sinh t

+ (t2 + 4) cosh t+ 2t sinh t > 0 for t > 0. (3.6)

We then obtain V ′2(t) > 0 for t > 0. So, V2(t) is strictly increasing for t > 0. and we have, for
t > 0,

V2(t) > lim
t→0

V2(t) = 0 and U ′2(t) > 0.

Hence, U2(t) is strictly increasing for t > 0. The proof is complete. �

Appendix A: A proof of (2.6)

Elementary calculations reveal that(
2t cosh2 t− sinh t cosh t− t

)2
−
(√

cosh(2t)(t cosh t− sinh t)
)2

= sinh2 t(2t2 cosh2 t− cosh2 t− t2 + 1) = t2 cosh(2t) +
1

2
− 1

2
cosh(2t)

=

∞∑
n=2

(2n+ 1)(n− 1)22n−1

(2n)!
t2n > 0.

Noting that

2t cosh2 t− sinh t cosh t− t = t cosh(2t)− 1

2
sinh(2t) =

1

2
cosh(2t)

(
2t− tanh(2t)

)
> 0

and

t cosh t− sinh t = cosh t(t− tanh t) > 0

holds for t > 0, we obtain, for t > 0,

g2(t) = 2t cosh2 t− sinh t cosh t− t−
√

cosh(2t)(t cosh t− sinh t) > 0.

Appendix B: A proof of (3.6)

2The inequality (3.6) is proved in the appendix.
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W2(t) = −1

8

(
cosh(5t) + 5 cosh(3t) + 10 cosh t

)
+

1

4
t sinh t

(
cosh(4t) + 4 cosh(2t) + 3

)
+

(
1

2
t2 − 1

2

)(
cosh(3t) + 3 cosh t

)
− 1

2
t sinh t

(
cosh(2t) + 1

)
+ (t2 + 4) cosh t+ 2t sinh t

= −1

8
cosh(5t) +

(
1

2
t2 − 9

8

)
cosh(3t) +

(
5

2
t2 +

5

4

)
cosh t+

9

4
t sinh t

+
1

4
t sinh t cosh(4t) +

1

2
t sinh t cosh(2t)

=
1

8
t sinh(5t)− 1

8
cosh(5t) +

1

8
t sinh(3t) +

(
1

2
t2 − 9

8

)
cosh(3t)

+ 2t sinh t+

(
5

2
t2 +

5

4

)
cosh t

=

∞∑
n=3

(18n− 45) · 25n + (80n2 − 10n− 405) · 9n + 3600n2 − 360n+ 450

360 · (2n)!
t2n > 0.
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