
ON CERTAIN CONJECTURES FOR THE TWO SEIFFERT MEANS

CHAO-PING CHEN∗ AND JÓZSEF SÁNDOR

Abstract. In 2015 Vukšić, by using the asymptotic expansion method, conjectured certain

inequalities related to the first and second Seiffert means. In this paper, we prove certain

conjectures given by Vukšić.

1. Introduction

Throughout this paper we assume that the numbers x and y are positive and unequal. The

first and second Seiffert means P (x, y) and T (x, y) are defined in [19] and [20], respectively by

P (x, y) =
x− y

2 arcsin x−y
x+y

and T (x, y) =
x− y

2 arctan x−y
x+y

.

A power mean Ar is defined by

Ar(x, y) =


(
xr + yr

2

)1/r

, r 6= 0

√
xy, r = 0.

As usual, the symbols H,G,L,A,Q, and N will stand, respectively, for the harmonic, geometric,

logarithmic, arithmetic, root-square, and contraharmonic means of x and y,

H =
2xy

x+ y
, G =

√
xy, L =

x− y
lnx− ln y

,

A =
x+ y

2
, Q =

√
x2 + y2

2
, N =

x2 + y2

x+ y
.

It is well known (see [21,22]) that

H < G < L < P < A < T < Q < N.

Jagers [12] proved

A+G

2
= A1/2 < P < A2/3. (1.1)

For the comparison of P and Ar, see [11].

Sándor [17] proved that

(A2G)1/3 < P <
G+ 2A

3
(1.2)
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and ((
A+G

2

)2

A

)1/3

< P <
1

3

(
A+G

2
+ 2

√
A+G

2
A

)
. (1.3)

The left side of (1.3) is sharper than the left side of (1.1).

By using the sequential method, Sándor [18] improved the inequality A < T < Q and obtained

the following results:

(Q2A)1/3 < T <
A+ 2Q

3
(1.4)

and ((
Q+A

2

)2

Q

)1/3

< T <
1

3

(
Q+A

2
+ 2

√
Q+A

2
Q

)
. (1.5)

Extension of the sequential method by Sándor has been introduced for the Schwab-Borchardt

means (See [14], [15]), as L, P and T are particular Schwab-Borchardt means. We note that, a new

particular case of this mean, known also as the Neuman-Sándor mean, has been introduced in [14];

see also [15]. By using another method, in 2013 Witkowski [23] has proved again inequalities

(1.2)–(1.5), and also other inequalities. In paricular, he proved the following results:

P >
2

π
A+

π − 2

π
G (1.6)

and

T > sA+ (1− s)Q, (1.7)

where

s =
2(π − 2

√
2)

(2−
√

2)π
= 0.3403413 . . . .

There is a large number of papers studying inequalities between Seiffert means and convex

combinations of other means [3–5, 10, 13, 22]. For example, Chu et al. [3] established that the

double inequality

µA+ (1− µ)H < P < νA+ (1− ν)H (1.8)

holds if and only if µ ≤ 2/π and ν ≥ 5/6. In 2011, Chu et al. [4] proved that the double inequality

µQ+ (1− µ)A < T < νQ+ (1− ν)A (1.9)

holds if and only if µ ≤ (4− π)/
(
π(
√

2− 1)
)

and ν ≥ 2/3.

In fact, (1.7) can be written as(
1− 4− π

(
√

2− 1)π

)
A+

4− π
(
√

2− 1)π
Q < T, (1.10)

which is the left side of (1.9).
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Recently, Vukšić [22], by using the asymptotic expansion method, gave a systematic study of

inequalities of the form

(1− µ)M1 + µM3 < M2 < (1− ν)M1 + νM3,

where Mj are chosen from the class of elementary means given above. For example, Vukšić [22,

Theorem 3.5, (3.15)] proved the following double inequality:

(1− µ)H + µN < T < (1− ν)H + νN,

with the best possible constants µ = 2/π and ν = 1/3. See [7–9] for more details about compar-

ison of means using asymptotic methods.

Also Vukšić [22] has conjectured certain inequalities related to the first and second Seiffert

means P (x, y) and T (x, y). In particular, the following relations have been conjectured [22,

Conjecture 3.7]:

3G+ 2T

5
< P <

G+ T

2
, (1.11)

3L+ T

4
< P <

L+ T

2
, (1.12)

2P + T

3
< A <

(4− π)P + (π − 2)T

2
, (1.13)

1

4
P +

3

4
Q < T <

π − 2
√

2

π −
√

2
P +

√
2

π −
√

2
Q. (1.14)

The first aim of this paper is to offer a proof of these inequalities (Theorems 2.1–2.4).

Remark 1.1. Let (x − y)/(x + y) = z, and suppose x > y. Then z ∈ (0, 1), and the following

identities hold:

H(x, y)

A(x, y)
= 1− z2,

G(x, y)

A(x, y)
=
√

1− z2,
L(x, y)

A(x, y)
=

2z

ln 1+z
1−z

,

P (x, y)

A(x, y)
=

z

arcsin z
,

T (x, y)

A(x, y)
=

z

arctan z
,

Q(x, y)

A(x, y)
=
√

1 + z2.

By Remark 1.1, the left side of (1.13) may be written also as

2
( z

arcsin z

)
+

z

arctan z
< 3, 0 < z < 1. (1.15)

The second aim of this paper is to give an improvement of (1.15) (Theorem 3.1).

The following lemmas are needed in the sequel.

Lemma 1.1. The following inequalities hold:

Q+G < 2A (1.16)

and

A
√

2 < Q+ (
√

2− 1)G. (1.17)
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Proof. From the inequality (Q+G)2 < 2(Q2 +G2) and the equality Q2 +G2 = 2A2, we obtain

(1.16).

The proof of (1.17) makes use of the following inequality:
√
u+ (

√
2− 1)

√
v >
√
u+ v for u > v > 0. (1.18)

By squaring both sides of (1.18), it is immediately seen that (1.18) is equivalent to (
√

2−1)(
√
u−

√
v) > 0 for u > v > 0. The choice u = x2 + y2 and v = 2xy in (1.18) yields (1.17). The proof is

complete. �

Lemma 1.2 ( [2]). The following inequalities hold:

1

9
H +

8

9
Q < T <

π − 2
√

2

π
H +

2
√

2

π
Q. (1.19)

The double inequality (1.19) was conjectured by Vukšić [22, Conjecture 3.6, (3.19)]. Recently,

Chen and Elezović [2] gave a proof of (1.19).

The numerical values given in this paper have been calculated via the computer program

MAPLE 13.

2. Proofs of the inequalities (1.11)–(1.14)

Theorem 2.1. The inequalities (1.11) are true.

Proof. By Remark 1.1, the left side of (1.11) may be rewritten as

3

5

√
1− z2 +

2

5

z

arctan z
<

z

arcsin z
, 0 < z < 1. (2.1)

Using the following inequality (see [1, Lemma 3]):

x

1 + x2

3

< arctanx, x > 0, (2.2)

we have

z

arcsin z
− 3

5

√
1− z2 − 2

5

z

arctan z
>

z

arcsin z
− 3

5

√
1− z2 − 2

5

(
1 +

1

3
z2

)
.

In order to prove (2.1), it suffices to show that

z

arcsin z
− 3

5

√
1− z2 − 2

5

(
1 +

1

3
z2

)
> 0, 0 < z < 1. (2.3)

By an elementary change of variable z = sinx (0 < x < π/2), the inequality (2.3) becomes

g(x) > 0, 0 < x <
π

2
,

where

g(x) =
sinx

x
− 3

5
cosx− 2

5

(
1 +

1

3
sin2 x

)
.

We find

g(x) =
sinx

x
− 3

5
cosx+

1

15
cos(2x)− 7

15
=

1

36
x4 − 1

189
x6 +

∞∑
n=4

(−1)nun(x),
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where

un(x) =
(2n+ 1)4n − 18n+ 6

15 · (2n+ 1)!
x2n.

Elementary calculations reveal that, for 0 < x < π/2 and n ≥ 4,

un+1(x)

un(x)
=

x2

n+ 1

(4n+ 6)4n − 9n− 6

(2n+ 3)
(

(2n+ 1)4n − 18n+ 6
)

<
(π/2)2

n+ 1

(4n+ 6)4n − 9n− 6

(2n+ 3)
(

(2n+ 1)4n − 18n+ 6
)

<
(4n+ 6)4n − 9n− 6

(2n+ 3)
(

(2n+ 1)4n − 18n+ 6
) .

We find, for n ≥ 4,

(2n+ 3)
(

(2n+ 1)4n − 18n+ 6
)
−
(

(4n+ 6)4n − 9n− 6
)

= (4n2 + 4n− 3)

(
4n − 36n2 + 33n− 24

4n2 + 4n− 3

)
> 0.

This inequality can be proved by induction on n, we omit it.

Hence, for all 0 < x < π/2 and n ≥ 4,

un+1(x)

un(x)
< 1.

Therefore, for fixed x ∈ (0, π/2), the sequence n 7−→ un(x) is strictly decreasing for n ≥ 4. We

then obtain

g(x) > x4

(
1

36
− 1

189
x2

)
> 0, 0 < x <

π

2
.

Hence, (2.1) holds.

We now prove the right side of (1.11). In order to prove P < (G + T )/2, it suffices to show

by (1.7) that

P <
G+ sA+ (1− s)Q

2
,

i.e.,

2(π − 2
√

2)

(2−
√

2)π
= s <

G+Q− 2P

Q−A
. (2.4)

By Remark 1.1, (2.4) may be rewritten as

2(π − 2
√

2)

(2−
√

2)π
<

√
1− z2 +

√
1 + z2 − 2z

arcsin z√
1 + z2 − 1

, 0 < z < 1. (2.5)

By an elementary change of variable z = sinx (0 < x < π/2), the inequality (2.5) becomes

2(π − 2
√

2)

(2−
√

2)π
< J(x), 0 < x <

π

2
, (2.6)
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where

J(x) =
cosx+

√
1 + sin2 x− 2 sin x

x√
1 + sin2 x− 1

.

Differentiation yields

J ′(x) = − J2(x)− J1(x)

x2
√

1 + sin2 x
(√

1 + sin2 x− 1
)2 ,

where

J2(x) = (2x2 − 4) sinx+ x2 sinx cosx+ 2x cosx+ 2 sinx cos2 x > 0

and

J1(x) = (x2 sinx+ 2x cosx− 2 sinx)
√

1 + sin2 x > 0.

Following the same method as was used in the proof of g(x) > 0, we can prove J1(x) > 0 and

J2(x) > 0, we omit them.

Elementary calculations reveal that

J2
2 (x)− J2

1 (x) = 2 sinxJ3(x),

where

J3(x) = 2x3 cos2 x+ 2x3 cos3 x+ 2 sinx cos4 x+ 2x2 sinx cos3 x

+ (x4 − 6) sinx cos2 x+ (2x4 − 4x2) sinx cosx+ (4− 4x2 + x4) sinx.

We find

J3(x) = 2x3

(
1 + cos(2x)

2

)
+ 2x3

(
cos(3x) + 3 cosx

4

)
+ 2 sinx

(
cos(4x) + 4 cos(2x) + 3

8

)
+ 2x2 sinx

(
cos(3x) + 3 cosx

4

)
+ (x4 − 6) sinx

(
1 + cos(2x)

2

)
+ (x4 − 2x2) sin(2x)

+ (4− 4x2 + x4) sinx

= x3 + x3 cos(2x) +
1

2
x3 cos(3x) +

3

2
x3 cosx+

1

8
sin(5x) +

1

4
x2 sin(4x)

+

(
1

4
x4 − 9

8

)
sin(3x) +

(
x4 − 3

2
x2

)
sin(2x) +

(
5

4
x4 − 4x2 +

11

4

)
sinx

=
13

540
x9 − 299

18900
x11 +

∞∑
n=6

(−1)nvn(x)

with

vn(x) =
cn

216 · (2n+ 1)!
x2n+1,

where

cn = 135 · 25n − 27n(2n+ 1)16n + (32n4 − 128n3 − 8n2 + 32n− 729)9n

+ 108n(2n+ 1)(2n2 − 5n+ 5)4n + 4320n4 − 6912n3 + 2376n2 + 3456n+ 594.
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Elementary calculations reveal that, for 0 < x < π/2 and n ≥ 6,

vn+1(x)

vn(x)
=

9x2

2(2n+ 3)

an
bn

<
9(π/2)2

2(2n+ 3)

an
bn

<
an
bn
,

where

an = 375 · 25n − (96n2 + 240n+ +144)16n + (32n4 − 200n2 − 240n− 801)9n

+ (192n4 + 384n3 + 240n2 + 336n+ 288)4n + 480n4 + 1152n3 + 840n2 + 528n+ 426

and

bn = (n+ 1)
(

135 · 25n − (54n2 + 27n)16n + (32n4 − 128n3 − 8n2 + 32n− 729)9n

+ (432n4 − 864n3 + 540n2 + 540n)4n + 4320n4 − 6912n3 + 2376n2 + 3456n+ 594
)
.

Elementary calculations reveal that

bn − an = (135n− 240)25n − 3(n+ 1)(18n2 − 23n− 48)16n

+ (32n5 − 128n4 − 136n3 + 224n2 − 457n+ 72)9n

+ 12(n+ 1)(36n4 − 88n3 + 29n2 + 41n− 24)4n

+ 4320n5 − 3072n4 − 5688n3 + 4992n2 + 3522n+ 168.

We claim that

bn − an > 0 for n ≥ 6. (2.7)

Direct computations show that bn − an > 0 holds for n = 6, and n = 7. Noting that

(32n5 − 128n4 − 136n3 + 224n2 − 457n+ 72)9n > 0,

12(n+ 1)(36n4 − 88n3 + 29n2 + 41n− 24)4n > 0,

4320n5 − 3072n4 − 5688n3 + 4992n2 + 3522n+ 168 > 0

hold for n ≥ 8, we have

bn − an
(135n− 240)16n

>

(
25

16

)n

− 3(n+ 1)(18n2 − 23n− 48)

135n− 240
> 0 for n ≥ 8.

The last inequality can be proven by induction on n, we omit it. Hence, the claim (2.7) holds.

We then obtan, for all 0 < x < π/2 and n ≥ 6,

vn+1(x)

vn(x)
< 1.

Therefore, for fixed x ∈ (0, π/2), the sequence n 7−→ vn(x) is strictly decreasing for n ≥ 6. We

then obtain, for 0 < x < π/2,

J3(x) > x9

(
13

540
− 299

18900
x2

)
> 0 and J ′(x) < 0.

So, J(x) is strictly decreasing for 0 < x < π/2, and we have

2(π − 2
√

2)

(2−
√

2)π
= J

(π
2

)
< J(x), 0 < x <

π

2
.
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Hence, the right side of (1.11) holds. The proof is complete. �

Theorem 2.2. The inequalities (1.12) are true.

Proof. Noting that G < L holds, we see that the upper bound in (1.11) is sharper than the upper

bound in (1.12). Hence, the right side of (1.12) holds.

By Remark 1.1, the left side of (1.12) may be rewritten for 0 < x < 1 as

4

arcsinx
>

6

ln 1+x
1−x

+
1

arctanx
. (2.8)

We first prove (2.8) for 0 < x < 0.7. From the well known continued fraction for ln 1+x
1−x

(see [6, p. 196 Eq. (11.2.4)]), we find that for 0 < x < 1,

2x(15− 4x2)

3(5− 3x2)
=

2x

1 +
− 1

3x
2

1+
− 4

15
x2

1

< ln
1 + x

1− x
. (2.9)

It follows from (2.9) and (2.2) that

4

arcsinx
−

(
6

ln 1+x
1−x

+
1

arctanx

)
>

4

arcsinx
−

 6
2x(15−4x2)
3(5−3x2)

+
1
3x

3+x2


= 4

[
1

arcsinx
− 90− 39x2 − 2x4

6x(15− 4x2)

]
.

In order to prove (2.8) for 0 < x < 0.7, it suffices to show that

U(x) =
6x(15− 4x2)

90− 39x2 − 2x4
− arcsinx > 0 for 0 < x < 0.7.

Differentiation yields

U ′(x) =
6(1350− 495x2 + 246x4 − 8x6)

(90− 39x2 − 2x4)2
− 1√

1− x2
.

Direct computation yields(
6(1350− 495x2 + 246x4 − 8x6)

(90− 39x2 − 2x4)2

)2

− 1

1− x2
=

U1(x) + U2(x)

(90− 39x2 − 2x4)4(1− x2)
,

where

U1(x) = 12757500− 28503900x2 + 12786255x4 − 2911464x6

and

U2(x) = 110376x8 − 3552x10 − 16x12.

We now prove U ′(x) > 0 for 0 < x < 0.7. It suffices to show that

U1(x) > 0 and U2(x) > 0 for 0 < x < 0.7.

Differentiation yields

U ′1(x) = −x(57007800− 51145020x2 + 17468784x4) < 0 for 0 < x < 0.7.
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Hence, U1(x) is strictly decreasing for 0 < x < 0.7, and we have

U1(x) > U1

(
7

10

)
=

379509499341

250000
> 0 for 0 < x < 0.7.

Clearly,

U2(x) = x8(110376− 3552x2 − 16x4) > 0 for 0 < x < 0.7.

We then obtain U ′(x) > 0 for 0 < x < 0.7, and we have

U(x) > U(0) = 0 for 0 < x < 0.7.

Hence, (2.8) holds for 0 < x < 0.7.

Second, we prove (2.8) for 0.7 ≤ x < 1. Let

y(x) = y1(x) + y2(x),

where

y1(x) = −

(
6

ln 1+x
1−x

+
1

arctanx

)
and y2(x) =

4

arcsinx
.

Let 0.7 ≤ r ≤ x ≤ s < 1. Since y1(x) is increasing and y2(x) is decreasing, we obtain

y(x) ≥ y1(r) + y2(s) =: σ(r, s).

We divide the interval [0.7, 1] into 30 subintervals:

[0.7, 1] =

29⋃
k=0

[
0.7 +

k

100
, 0.7 +

k + 1

100

]
for k = 0, 1, 2, . . . , 29.

By direct computation we get

σ

(
0.7 +

k

100
, 0.7 +

k + 1

100

)
> 0 for k = 0, 1, 2, . . . , 29.

Hence,

y(x) > 0 for x ∈
[
0.7 +

k

100
, 0.7 +

k + 1

100

]
and k = 0, 1, 2, . . . , 29.

This implies that y(x) is positive on [0.7, 1). This proves (2.8) for 0.7 ≤ x < 1. Hence, (2.8)

holds for all 0 < x < 1. The proof is complete. �

Theorem 2.3. The inequalities (1.13) are true.

Proof. Using the second inequalities in (1.2) and (1.4), combined with (1.16), we find

2P + T <
2G+ 4A+A+ 2Q

3
=

5A+ 2(Q+G)

3
<

5A+ 4A

3
= 3A.

This proves the left side of (1.13).

By (1.6) and (1.7), after some elementary computations we obtain

(4− π)P + (π − 2)T > 2Am+ n
[
(
√

2Q+ (2−
√

2)G
]
, (2.10)
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where

m =
π2 − 4π − π

√
2 + 8

π(2−
√

2)
and n =

(π − 2)(4− π)

π(2−
√

2)
.

By multiplying both sides of inequality (1.17) by
√

2, we obtain

√
2Q+ (2−

√
2)G > 2A. (2.11)

Noting that m+ n = 1 holds, it follows from (2.10) and (2.11) that

(4− π)P + (π − 2)T > 2A(m+ n) = 2A,

This proves the right side of (1.13). The proof is complete. �

Theorem 2.4. The inequalities (1.14) are true.

Proof. By Remark 1.1, the left side of (1.14) may be rewritten for 0 < z < 1 as

z

arcsin z
+ 3
√

1 + z2 <
4z

arctan z
. (2.12)

The proof of (2.12) makes use of the following inequality:

z

arcsin z
<

3(20− 9z2)

60− 17z2
, 0 < z < 1 (2.13)

and

z

arctan z
>

3(3z2 + 5)

4z2 + 15
, 0 < z < 1. (2.14)

We now prove (2.13) and (2.14). For 0 < z < 1, let

f1(z) = arcsin z − z(60− 17z2)

3(20− 9z2)
and f2(z) =

z(4z2 + 15)

3(3z2 + 5)
− arctan z.

Differentiation yields

f ′1(z) =
1√

1− z2
− 400− 160z2 + 51z4

(20− 9z2)2
> 0 (2.15)

and

f ′2(z) =
4z6

(3z2 + 5)2(1 + z2)
> 0.

The inequality (2.15) holds, because

1

1− z2
−
(

400− 160z2 + 51z4

(20− 9z2)2

)2

=
z6(24400− 12360z2 + 2601z4)

(1− z2)(20− 9z2)4
> 0.

Therefore, f1(z) and f2(z) are both strictly increasing for 0 < z < 1, and we have

f1(z) > f1(0) = 0 and f2(z) > f2(0) = 0 for 0 < z < 1.

This proves (2.13) and (2.14).
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We now prove (2.12). For 0 < z < 1, we have, by (2.13) and (2.14),

z

arcsin z
+ 3
√

1 + z2 − 4z

arctan z
<

3(20− 9z2)

60− 17z2
+ 3
√

1 + z2 − 12(3z2 + 5)

4z2 + 15

= −3

{
3(145z2 + 300− 56z4)

(60− 17z2)(4z2 + 15)
−
√

1 + z2

}
. (2.16)

Direct computation yields(
3(145z2 + 300− 56z4)

(60− 17z2)(4z2 + 15)

)2

− (1 + z2) =
x4(36000 + 26025z2 + 21560z4 − 4624z6)

(60− 17z2)2(4z2 + 15)2
> 0

for 0 < z < 1. From (2.16), we obtain (2.12). Hence, the left side of (1.14) holds.

We now prove the right side of (1.14). By (1.6) and the right side of (1.19), we have

π − 2
√

2

π −
√

2
P +

√
2

π −
√

2
Q− T

>
π − 2

√
2

π −
√

2

(
π − 2

π
G+

2

π
A

)
+

√
2

π −
√

2
Q−

(
π − 2

√
2

π
H +

2
√

2

π
Q

)

=
π − 2

√
2

π(π −
√

2)

{
(π − 2)G+ 2A− (π −

√
2)H −

√
2Q
}
.

In order to prove the right side of (1.14), it suffices to show that

(π − 2)G+ 2A− (π −
√

2)H >
√

2Q,

which may be rewritten, by Remark 1.1, as

(π − 2)
√

1− z2 + 2− (π −
√

2)(1− z2) >
√

2
√

1 + z2, 0 < z < 1.

By an elementary change of variable x =
√

1− z2 (0 < z < 1), it suffices to show that

(π − 2)x+ 2− (π −
√

2)x2 >
√

2
√

2− x2, 0 < x < 1. (2.17)

Elementary calculations reveal that(
(π − 2)x+ 2− (π −

√
2)x2

)2

−
(√

2
√

2− x2
)2

= xD(x),

where

D(x) = −8 + 4π + (6 + π2 − 8π + 4
√

2)x

+ (−2π2 + 2π
√

2 + 4π − 4
√

2)x2 + (−2π
√

2 + π2 + 2)x3.

Differentiation yields

D′(x) = 6 + π2 − 8π + 4
√

2 + 2(−2π2 + 2π
√

2 + 4π − 4
√

2)x

+ 3(π2 − 2π
√

2 + 2)x2 < 0, 0 < x < 1.

So, D(x) is strictly decreasing for 0 < x < 1, and we have

D(x) > D(1) = 0, 0 < x < 1.

Therefore, (2.17) holds. Hence, the right side of (1.14) holds. The proof is complete. �
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Remark 2.1. Vukšić conjectured (see the left side of (3.22) of Conjecture 3.6 in [22]) that

L+ T

2
< A. (2.18)

In fact, the left side of (1.13) is sharper than (2.18), as the inequality (L+T )/2 < (2P +T )/3 is

equivalent to (3L + T )/4 < P , which is the left side of (1.12). Therefore, one has the following

refinement of (2.18):

L+ T

2
<

2P + T

3
< A. (2.19)

Remark 2.2. Relation (1.4) can be used to prove the following Conjecture (see the right side of

(3.20) of Conjecture 3.6 in [22]):

T <
H + 2N

3
. (2.20)

Remark that H = G2/A and N = Q2/A, so inequality (2.20) may be rewritten as

T <
G2 + 2Q2

3A
. (2.21)

The inequality (2.21) follows by the right side of (1.4), as the inequality (A + 2Q)/3 < (G2 +

2Q2)/(3A) via the identity G2 +Q2 = 2A2 may be rewritten as 2AQ < A2 +Q2, or (Q−A)2 > 0,

which is true.

Remark 2.3. Vukšić conjectured (see the left side of (3.23) of Conjecture 3.6 in [22]) that

L+ 4Q

5
< T. (2.22)

By the left sides of (1.14) and (1.12), we have

T >
P + 3Q

4
>

(3L+ T )/4 + 3Q

4
=

3L+ T + 12Q

16
,

which implies (2.22).

Remark 2.4. Vukšić conjectured (see the right side of (3.24) of Conjecture 3.6 of [22]) that

T <
2

3
A+

1

3
N (typing mistake corrected). (2.23)

Noting that the following identity holds true:

H +N = 2A, (2.24)

we can state that (2.23) is the same as (2.20).

The left side of (3.24) of Conjecture 3.6 of [22] is

(2π − 4)A+ (4− π)N

π
< T, (2.25)

and the left side of (3.20) of Conjecture 3.6 of [22] is

(π − 2)H + 2N

π
< T. (2.26)

In fact, (2.25) and (2.26) are the same, by identity (2.24). The inequality (2.25) appears (with

notation C in place of N) in [23] (Corollary 8.2).
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Similarly, the right side of (3.18) of Conjecture 3.6 of [22]

A <
πT + (4− π)H

4
(2.27)

may be written as

T >
4A− (4− π)H

π
=

(π − 2)H + 2N

π
(2.28)

by identity (2.24). Thus inequality (2.28) is the same as (2.26), and this proves also (2.27).

The left side of (3.18) of Conjecture 3.6 of [22]

A >
H + 3T

4
(2.29)

can be written for 0 < x < 1 as

1− x2 +
3x

arctanx
< 4,

which can be rewritten as (2.2). Therefore, (2.29) is proved.

3. An improvement of (1.15)

Theorem 3.1. For 0 < x < 1, we have

2
( x

arcsinx

)
+

x

arctanx
< 3− 11

60
x4
( x

arcsinx

)
. (3.1)

The constant 11
60 is the best possible.

Proof. For 0 < x < 1, we have

2x+ 11
60x

5

arcsinx
+

x

arctanx
− 3

<
2x+ 11

60x
5

x+ 1
6x

3 + 3
40x

5 + 5
112x

7 + 35
1152x

9 + 63
2816x

11

+
x

x− 1
3x

3 + 1
5x

5 − 1
7x

7 + 1
9x

9 − 1
11x

11
− 3

= − 15x6P (x)

(887040 + 147840x2 + 66528x4 + 39600x6 + 26950x8 + 19845x10)Q(x)
, (3.2)

where

P (x) = 6667584 + 13142052x2 − 32340x4 − 13134605x6 + 2355507x8

− 2384305x10 − 169785x12 − 1250235x14

and

Q(x) = 3465− 1155x2 + 693x4 − 495x6 + 385x8 − 315x10.

Now we prove P (x) > 0 and Q(x) > 0 for 0 < x < 1. Define functions F (t) and G(t) by

F (t) = P (
√
t) and G(t) = Q(

√
t).
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We find that for 0 < t < 1,

F ′′(t) = −64680− t(78807630− 28266084t+ 47686100t2)− 5093550t4 − 52509870t5 < 0.

Hence, F (t) is strictly concave for 0 < t < 1, and we have

F (t) > min{F (0), F (1)} = 5193873 > 0, 0 < t < 1 =⇒ P (x) > 0, 0 < x < 1.

We find that for 0 < t < 1,

G′(t) = −1155 + 1386t− 1485t2 + 1540t3 − 1575t4

and

G′′′(t) = −2970 + 9240t− 18900t2 < 0.

Hence, G′(t) is strictly concave for 0 < t < 1, and we have

G′(t) ≤ max
0<t<1

{G′(t)} = −728.419216 . . . < 0, 0 < t < 1.

Thus, G(t) is strictly decreasing for 0 < t < 1, and we have

G(t) > G(1) = 2578 > 0, 0 < t < 1 =⇒ Q(x) > 0, 0 < x < 1.

From (3.2), we obtain (3.1).

Write (3.1) as

−
2
(

x
arcsin x

)
+ x

arctan x − 3

x5/ arcsinx
>

11

60
.

We find

lim
x→0

{
−

2
(

x
arcsin x

)
+ x

arctan x − 3

x5/ arcsinx

}
=

11

60
.

This means that inequality (3.1) holds with the best possible constant 11
60 . The proof is complete.

�
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[8] N. Elezović, Asymptotic expansions of gamma and related functions, binomial coefficients, inequalities and

means, J. Math. Inequal. 9, 4 (2015), 1001–1054.
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