FEJÉR-HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA CAPUTO FRACTIONAL DERIVATIVES

SAIRA NAQVI, GHULAM FARID, AND ATIQ UR REHMAN

ABSTRACT. In this paper we prove certain Fejér Hadamard type inequalities for *m*-convex functions via Caputo fractional derivatives and several known results are deduced. We deduce Fejér Hadamard-type inequalities for convex functions via Caputo fractional derivatives. As special cases we obtain Hadamard inequalities for *m*-convex functions via Caputo fractional derivatives.

1. Introduction

Definition 1. A function $f:[0,b] \to \mathbb{R}$, b > 0, is called m-convex, $0 \le m \le 1$, if for any $x, y \in [0,b]$ and $t \in [0,1]$ we have

$$f(tx + m(1-t)y) \le tf(x) + m(1-t)f(y).$$

For m=1 we have the definition of convex function.

The following inequality for a convex function $f: I \to \mathbb{R}$ holds;

$$(1.1) f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2},$$

where $a, b \in I$ with a < b. It is well known as Hadamard inequality.

In [5], Fejer established the following inequality which is the weighted generalization of Hadamard inequality (1.1).

Theorem 1. Let $f: I \to \mathbb{R}$ be a convex function. Then the inequality (1.2)

$$f\left(\frac{a+b}{2}\right)\int_a^b g(x)dx \le \frac{1}{b-a}\int_a^b f(x)g(x)dx \le \frac{f(a)+f(b)}{2}\int_a^b g(x)dx$$

holds, where $g:I\to\mathbb{R}$ is nonnegative, integrable and symmetric function about $\frac{a+b}{2}$.

²⁰¹⁰ Mathematics Subject Classification. 26A51, 26A33, 26D10, 26D15.

Key words and phrases. m-Convex functions; Hadamard inequality; Fejér-Hadamard inequality; Caputo fractional derivatives.

It is well known as Fejér-Hadamard inequality.

For more information related to (1.1) and (1.2) one can consult [1, 7, 10, 13]. In the following we give the definition of Caputo fractional derivatives [9].

Definition 2. Let $\alpha > 0$ and $\alpha \notin \{1, 2, 3, ...\}$, $n = [\alpha] + 1$, $f \in AC^n[a, b]$. The Caputo fractional derivatives of order α are defined as follows:

(1.3)
$${}^{C}D_{a+}^{\alpha}f(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{f^{(n)}(t)}{(x-t)^{\alpha-n+1}} dt, x > a$$

and

(1.4)
$${}^{C}D_{b-}^{\alpha}f(x) = \frac{(-1)^{n}}{\Gamma(n-\alpha)} \int_{x}^{b} \frac{f^{(n)}(t)}{(t-x)^{\alpha-n+1}} dt, x < b.$$

If $\alpha = n \in \{1, 2, 3, ...\}$ and usual derivative of order n exists, then Caputo fractional derivative $({}^{C}D_{a+}^{\alpha}f)(x)$ coincides with $f^{(n)}(x)$. In particular we have

(1.5)
$$(^{C}D_{a+}^{0}f)(x) = (^{C}D_{b-}^{0}f)(x) = f(x)$$

where n = 1 and $\alpha = 0$.

In this paper we assume that $||g^{(n)}||_{\infty} = \sup_{t \in [a,b]} |g^{(n)}(x)|$, where $g:[a,b] \to \mathbb{R}$ is continuous function and $g^{(n)}$ be positive and convex function on [a,b].

Here is the following convolution f * g of functions f and g for Caputo fractional derivatives.

(1.6)
$${}^{C}D_{a+}^{\alpha}(f*g)(x) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{x} \frac{f^{(n)}(t)g^{(n)}(t)}{(x-t)^{\alpha-n+1}} dt, x > a$$

and

(1.7)
$${}^{C}D_{b-}^{\alpha}(f*g)(x) = \frac{(-1)^{n}}{\Gamma(n-\alpha)} \int_{x}^{b} \frac{f^{(n)}(t)g^{(n)}(t)}{(t-x)^{\alpha-n+1}} dt, x < b.$$

In [3] following results for m-convex functions via Caputo fractional derivatives hold.

Lemma 1. Let $f:[a,mb] \to \mathbb{R}$ be a differentiable function on (a,mb) such that $f \in C^n[a,mb]$ with a < mb. Also let $f^{(n+1)}$ be positive and m-convex function on [a,mb]. Then the following equality for Caputo

fractional derivatives holds

$$(1.8) \frac{f^{(n)}(a) + f^{(n)}(mb)}{2} - \frac{\Gamma(n-\alpha+1)}{2(mb-a)^{n-\alpha}} [{}^{C}D_{a^{+}}^{\alpha}f(mb) + {}^{C}D_{mb^{-}}^{\alpha}f(a)]$$
$$= \frac{mb-a}{2} \int_{0}^{1} [(1-t)^{n-\alpha} - t^{n-\alpha}] f^{(n+1)}(ta + m(1-t)b) dt.$$

Theorem 2. Let $f:[a,mb] \to \mathbb{R}$ be a differentiable function on (a,mb) such that $f \in C^{n+1}[a,mb]$ with $0 \le a < mb$. If $|f^{(n+1)}|$ is m-convex on [a,mb], then the following inequality for Caputo fractional derivatives holds

$$\left| \frac{f^{(n)}(a) + f^{(n)}(mb)}{2} - \frac{\Gamma(n - \alpha + 1)}{2(mb - a)^{n - \alpha}} \left[{^{C}D_{a^{+}}^{\alpha}} f(mb) + {^{C}D_{mb^{-}}^{\alpha}} f(a) \right] \right| \\
\leq \frac{mb - a}{2(n - \alpha + 1)} \left(1 - \frac{1}{2^{n - \alpha}} \right) \left[f^{(n+1)}(a) + mf^{(n+1)}(b) \right].$$

There in [3] we remark that for m=1 in above results we get the results of [4], and for $\alpha=0$, n=1 along with m=1 in above results we get results of [2]. In [6] the following results related to Fejér-Hadamard type inequalities via Caputo fractional derivatives are reduced for m=n=1 along with $\alpha=0$.

Theorem 3. Let $f:[a,b] \to \mathbb{R}$ be the function with a < b and $f \in C^n[a,b]$. Also let $f^{(n)}$ be positive and convex functions on [a,b]. If $g:[a,b] \to \mathbb{R}$ is nonnegative, integrable and symmetric to $\frac{a+b}{2}$, then following inequalities for Caputo fractional derivatives hold

$$f^{(n)}\left(\frac{a+b}{2}\right) \left[{}^{C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a)\right]$$

$$\leq \left[{}^{C}D_{a+}^{\alpha}(f*g)(b) + (-1)^{nC}D_{b-}^{\alpha}(f*g)(a)\right]$$

$$\leq \frac{f^{(n)}(a) + f^{(n)}(b)}{2} \left[{}^{C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a)\right]$$

In [4] following results for convex functions via Caputo fractional derivatives hold.

Theorem 4. Let $f: I \to \mathbb{R}$, $0 \le a < b$ be a differentiable mapping on I^o such that $f \in C^n[a,b]$. If $|f^{(n+1)}|$ is convex on [a,b] and $g: [a,b] \to \mathbb{R}$ is continuous and symmetric to $\frac{a+b}{2}$, then following inequality for

Caputo fractional derivatives hold

$$\left| \frac{f^{(n)}(a) + f^{(n)}(b)}{2} [^{C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a)] \right|
- [^{C}D_{a+}^{\alpha}(f * g)(b) + (-1)^{nC}D_{b-}^{\alpha}(f * g)(a)] |
(1.11)$$

$$\leq \frac{(b-a)^{\alpha+1} ||g^{(n)}||_{\infty}}{(n-\alpha+1)\Gamma(n-\alpha+1)} \left(1 - \frac{1}{2^{n-\alpha}}\right) \left[|f^{(n+1)}(a)| + |f^{(n+1)}(b)| \right]$$

Theorem 5. Let $f: I \to \mathbb{R}$ be a differentiable mapping on I^o with a < b. If $|f'|^q$, q > 1 is convex on [a,b] and $g: [a,b] \to \mathbb{R}$ is continuous and symmetric to $\frac{a+b}{2}$, then following inequality for fractional integrals hold

$$\left| \frac{f^{(n)}(a) + f^{(n)}(b)}{2} \left[{^C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a) \right] - \left[{^C}D_{a+}^{\alpha}(f*g)(b) + (-1)^{nC}D_{b-}^{\alpha}(f*g)(a) \right] \right|$$

$$(1.12) \leq \frac{2(b-a)^{1-\alpha} ||g^{(n)}||_{\infty} \left(1 - \frac{1}{2^{\alpha}}\right)}{(n-\alpha+1)\Gamma(n-\alpha+1)} \left(\frac{|f^{(n+1)}(a)|^q + |f^{(n+1)}(b)|^q}{2} \right)^{\frac{1}{q}}$$

$$with_{\frac{1}{p}} + \frac{1}{q} = 1.$$

Theorem 6. Let $: I \to \mathbb{R}, 0 \le a < b$ be a differential mapping on I^o such that $f \in C^n[a,b]$. Also let $|f^{(n+1)}|^q$, q > 1 is convex on [a,b] and $g:[a,b] \to \mathbb{R}$ is continuous and symmetric to $\frac{a+b}{2}$, then following inequalities for Caputo fractional derivatives hold

$$(i) \left| \frac{f^{(n)}(a) + f^{(n)}(b)}{2} \left[{}^{C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a) \right] \right.$$

$$- \left[{}^{C}D_{a+}^{\alpha}(f * g)(b) + (-1)^{nC}D_{b-}^{\alpha}(f * g)(a) \right] |$$

$$(1.13)$$

$$\leq \frac{2^{\frac{1}{p}}(b-a)^{1-\alpha}\|g^{(n)}\|_{\infty}}{(n-\alpha p+1)^{\frac{1}{p}}\Gamma(n-\alpha+1)} (1-2^{\alpha p})^{\frac{1}{p}} \left(\frac{|f^{(n+1)}(a)|^{q} + |f^{(n+1)}(b)|^{q}}{2} \right)^{\frac{1}{q}}$$

$$(ii) \left| \frac{f^{(n)}(a) + f^{(n)}(b)}{2} \left[{}^{C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a) \right] - \left[{}^{C}D_{a+}^{\alpha}(f * g)(b) + (-1)^{nC}D_{b-}^{\alpha}(f * g)(a) \right] |$$

$$(1.14) \leq \frac{(b-a)^{1-\alpha}\|g^{(n)}\|_{\infty}}{(n-\alpha+1p)^{\frac{1}{p}}\Gamma(n-\alpha+1)} \left(\frac{|f^{(n+1)}(a)|^{q} + |f^{(n+1)}(b)|^{q}}{2} \right)^{\frac{1}{q}}$$

$$where \frac{1}{p} + \frac{1}{q} = 1.$$

In this paper we give Fejér-Hadamard type inequalities for m-convex functions via Caputo fractional derivatives and note that results in [6] are special cases of these inequalities. Also we present new results as generalizations of Hadamard inequalities for Caputo fractional derivatives and deduce some results of [3, 11].

In the whole paper $C^n[a,b]$ denotes the space of *n*-times differentiable functions such that $f^{(n)}$ are continuous on [a,b].

2. Fejér-Hadamard type inequalities for m-convex functions via Caputo fractional derivatives

Following lemma is proved in [4].

Lemma 2. If $g:[a,b] \to \mathbb{R}$ is an integrable and symmetric to $\frac{a+b}{2}$ with a < b, then

$$^{C}D_{a+}^{\alpha}g(b) = {^{C}D_{b-}^{\alpha}g(a)} = \frac{1}{2}[^{C}D_{a+}^{\alpha}g(b) + (-1)^{nC}D_{b-}^{\alpha}g(a)]$$

Following lemma is given in [16].

Lemma 3. [16] For $0 < \lambda \le 1$ and $0 \le a < b$, we have $|a^{\lambda} - b^{\lambda}| < (b - a)^{\lambda}$.

Here first we prove following result.

Lemma 4. If $g:[a,b] \to \mathbb{R}$ is an integrable and symmetric to $\frac{a+mb}{2}$ with a < b, then

$$^{C}D_{a+}^{\alpha}g(mb) = {^{C}D_{mb-}^{\alpha}g(a)} = \frac{1}{2}[^{C}D_{a+}^{\alpha}g(mb) + (-1)^{nC}D_{mb-}^{\alpha}g(a)]$$

Proof. We have

$$^{C}D_{a+}^{\alpha}g(mb) = \frac{1}{\Gamma(n-\alpha)} \int_{a}^{mb} (mb-x)^{n-\alpha-1} g^{(n)}(x) dx$$

Setting x = a + mb - x in the following integral we have

$$= \frac{1}{\Gamma(n-\alpha)} \int_a^{mb} (x-a)^{n-\alpha-1} g^{(n)}(a+mb-x) dx$$

By symmetricity of $g^{(n)}$ we have $g^{(n)}(a+mb-x)=g^{(n)}(x)$, using it we get

$$= \frac{1}{\Gamma(n-\alpha)} \int_{a}^{mb} (x-a)^{n-\alpha-1} g^{(n)}(x) dx$$
$$= {}^{C} D_{mb-}^{\alpha} g(a).$$

Using above lemma we prove following results.

Theorem 7. Let $f:[a,b] \to \mathbb{R}$ be the function with a < b and $f \in C^n[a,b]$. Also let $f^{(n)}$ be positive and m-convex functions on [a,b]. If $g:[a,b] \to \mathbb{R}$ is nonnegative, integrable and symmetric to $\frac{a+mb}{2}$, then following inequalities for Caputo fractional derivatives hold

$$(2.1) 2f^{(n)}\left(\frac{a+mb}{2}\right){}^{C}D_{b-}^{\alpha}g\left(\frac{a}{m}\right) \leq (1+m)^{C}D_{b-}^{\alpha}(f*g)\left(\frac{a}{m}\right)$$

$$\leq \frac{\left[f^{(n)}(a) - m^{2}f^{(n)}\left(\frac{a}{m^{2}}\right)\right]}{b - \frac{a}{m}}{}^{C}D_{b-}^{\alpha-1}g\left(\frac{a}{m}\right)$$

$$+ m\left[f^{(n)}(b) + mf^{(n)}\left(\frac{a}{m^{2}}\right)\right]{}^{C}D_{b-}^{\alpha}g\left(\frac{a}{m}\right).$$

Proof. Using m-convexity of $f^{(n)}$ we have

$$(2.2) f^{(n)}\left(\frac{a+mb}{2}\right) = f^{(n)}\left(\frac{ta+m(1-t)b+m\left(tb+(1-t)\frac{a}{m}\right)}{2}\right)$$

$$\leq \frac{f^{(n)}(ta+m(1-t)b)+mf^{(n)}(tb+(1-t)\frac{a}{m})}{2},$$

where $t \in [0, 1]$.

Multiplying both sides of above inequality with $2t^{n-\alpha-1}g^{(n)}(tb+(1-t)\frac{a}{m})$ and integrating the resulting inequality over [0,1] we have,

$$2f^{(n)}\left(\frac{a+mb}{2}\right) \int_0^1 t^{n-\alpha-1} g^{(n)}\left(tb + (1-t)\frac{a}{m}\right) dt$$

$$\leq \int_0^1 t^{n-\alpha-1} f^{(n)}(ta + m(1-t)b) g^{(n)}\left(tb + (1-t)\frac{a}{m}\right) dt$$

$$+ m \int_0^1 t^{n-\alpha-1} f^{(n)}\left(tb + (1-t)\frac{a}{m}\right) g^{(n)}\left(tb + (1-t)\frac{a}{m}\right) dt.$$

Putting $x = tb + (1-t)\frac{a}{m}$ and using $f^{(n)}(a+mb-mx) = f^{(n)}(x)$ we get

$$\frac{2}{\left(b - \frac{a}{m}\right)^{n - \alpha}} f^{(n)} \left(\frac{a + mb}{2}\right) \int_{\frac{a}{m}}^{b} \left(x - \frac{a}{m}\right)^{n - \alpha + 1} g^{(n)}(x) dx
\leq \frac{1}{\left(b - \frac{a}{m}\right)^{n - \alpha}} \left[\int_{\frac{a}{m}}^{b} \left(x - \frac{a}{m}\right)^{n - \alpha - 1} f^{(n)}(x) g^{(n)}(x) dx
+ m \int_{\frac{a}{m}}^{b} \left(x - \frac{a}{m}\right)^{n - \alpha - 1} f^{(n)}(x) g^{(n)}(x) dx \right]
= \frac{1}{\left(b - \frac{a}{m}\right)^{n - \alpha}} (1 + m) \int_{\frac{a}{m}}^{b} \left(x - \frac{a}{m}\right)^{n - \alpha - 1} f^{(n)}(x) g^{(n)}(x) dx
2 f^{(n)} \left(\frac{a + mb}{2}\right)^{C} D_{b-g}^{\alpha} \left(\frac{a}{m}\right) \leq (1 + m)^{C} D_{b-}^{\alpha} (f * g) \left(\frac{a}{m}\right).$$

For second inequality of (2.1) m-convexity of $f^{(n)}$ gives

$$f^{(n)}(ta + m(1-t)b) + mf^{(n)}\left(tb + (1-t)\frac{a}{m}\right) \le m\left[f^{(n)}(b) + mf^{(n)}\left(\frac{a}{m^2}\right)\right] + t\left[f^{(n)}(a) - m^2f^{(n)}\left(\frac{a}{m^2}\right)\right],$$

where $t \in [0, 1]$.

Multiplying both sides of above inequality with $t^{n-\alpha-1}g^{(n)}\left(tb+(1-t)\frac{a}{m}\right)$ and integrating the resulting inequality over [0,1] we get,

$$\int_{0}^{1} t^{n-\alpha-1} f^{(n)}(ta+m(1-t)b) g^{(n)}\left(tb+(1-t)\frac{a}{m}\right) dt$$

$$+ m \int_{0}^{1} t^{n-\alpha-1} f^{(n)}\left(tb+(1-t)\frac{a}{m}\right) g^{(n)}\left(tb+(1-t)\frac{a}{m}\right) dt$$

$$\leq m \left[f^{(n)}(b)+m f^{(n)}\left(\frac{a}{m^{2}}\right)\right] \int_{0}^{1} t^{n-\alpha-1} g^{(n)}\left(tb+(1-t)\frac{a}{m}\right) dt$$

$$+ \left[f^{(n)}(a)-m^{2} f^{(n)}\left(\frac{a}{m^{2}}\right)\right] \int_{0}^{1} t^{n-\alpha} g^{(n)}\left(tb+(1-t)\frac{a}{m}\right) dt$$

from which one can get second inequality of (2.1).

Remark 1. In Theorem 7, if we take m = 1 and use Lemma 2, we get Theorem 3.

Next we need following lemma.

Lemma 5. Let $f:[a,b] \to \mathbb{R}$ with $0 \le a < b$ be a positive and m-convex function on [a,b] such that $f \in C^{n+1}[a,b]$. If $g:[a,b] \to \mathbb{R}$

is integrable and symmetric to $\frac{a+mb}{2}$. If $g \in C^{n+1}[a,b]$ then following equality for Caputo fractional derivatives holds

$$\left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2}\right) \left[{\binom{C}{D_{a+}^{\alpha}}g}(mb) + (-1)^{n} {\binom{C}{D_{mb-}^{\alpha}}g}(a) \right]
- \left[{\binom{C}{D_{a+}^{\alpha}}(f*g)}(mb) + (-1)^{n} {\binom{C}{D_{mb-}^{\alpha}}(f*g)}(a) \right]
= \frac{1}{\Gamma(n-\alpha)} \int_{a}^{mb} \left[\int_{a}^{t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right]
(2.3) - \int_{t}^{mb} (s-a)^{n-\alpha-1} g^{(n)}(s) ds \right] f^{(n+1)}(t) dt.$$

Proof. One can note that

$$\frac{1}{\Gamma(n-\alpha)} \int_{a}^{mb} \left[\int_{a}^{t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds - \int_{t}^{mb} (s-a)^{n-\alpha-1} g^{(n)}(s) ds \right] f^{(n+1)}(t) dt$$
(2.4)
$$= \frac{1}{\Gamma(n-\alpha)} \left[\int_{a}^{mb} \left(\int_{a}^{t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right) f^{(n+1)}(t) dt + \int_{a}^{mb} \left(-\int_{t}^{mb} (s-a)^{n-\alpha-1} g^{(n)}(s) ds \right) f^{(n+1)}(t) dt \right],$$

By simple calculation one can get

$$\begin{split} & \int_{a}^{mb} \left(\int_{a}^{t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right) f^{(n+1)}(t) dt \\ & = \left[\left(\int_{a}^{mb} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right) f^{(n)}(mb) \\ & - \int_{a}^{mb} (mb-t)^{n-\alpha-1} f^{(n)}(t) g^{(n)}(t) dt \right] \\ & = \Gamma(n-\alpha) \left[f^{(n)}(mb) \binom{C}{D_{a+}^{\alpha}} g)(mb) - \binom{C}{D_{a+}^{\alpha}} (f*g))(mb) \right] \\ & = \Gamma(n-\alpha) \left[\frac{f^{(n)}(mb)}{2} [\binom{C}{D_{a+}^{\alpha}} g)(mb) + (-1)^{n} \binom{C}{D_{mb-}^{\alpha}} g)(a) \right] \\ & - \binom{C}{D_{a+}^{\alpha}} (f*g))(mb) \right], \end{split}$$

and

$$\begin{split} & \int_{a}^{mb} \left(-\int_{t}^{mb} (s-a)^{n-\alpha-1} g(s) ds \right) f^{(n+1)}(t) dt \\ & = \left(\int_{a}^{mb} (s-a)^{n-\alpha-1} g(s) ds \right) f(a) - \int_{a}^{mb} (t-a)^{n-\alpha-1} f^{(n)}(t) g^{(n)}(t) dt \\ & = \Gamma(n-\alpha) \left[\frac{f^{(n)}(a)}{2} [D_{a+}^{\alpha} g(mb) + (-1)^{nC} D_{mb-}^{\alpha} g(a)] - (-1)^{nC} D_{mb-}^{\alpha} (f*g)(a) \right]. \end{split}$$

Hence (2.3) is established.

Remark 2. In Lemma 5,

- (i) If we take g(x) = 1, then equality (2.3) becomes equality (1.8) of Lemma 1.
- (ii) If we take g(x) = 1 along with m = 1 in above lemma we get [4, Lemma 3].
 - (iii) If we take m = 1 in above lemma we get [6, Lemma 4].
- (iv) If we take $\alpha = 0$, n = m = 1 along with g(x) = 1 in above lemma we get [2, Lemma 2.1].

Theorem 8. Let $f:[a,b] \to \mathbb{R}$ with $0 \le a < b$ be a positive such that $f \in C^{n+1}[a,b]$. Also let $|f^{(n+1)}|$ is m-convex function on [a,b]. If $g:[a,b] \to \mathbb{R}$ is integrable and symmetric to $\frac{a+mb}{2}$. Also $g \in C^{n+1}[a,b]$ then following equality for Caputo fractional derivatives holds

$$\left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[(^{C}D^{\alpha}_{a+}g)(mb) + (-1)^{n} (^{C}D^{\alpha}_{mb-}g)(a) \right] - \left[(^{C}D^{\alpha}_{a+}(f*g))(mb) + (-1)^{n} (^{C}D^{\alpha}_{mb-}(f*g))(a) \right] \right|$$

$$\leq \frac{(mb-a)^{n-\alpha+1} \|g^{(n)}\|_{\infty}}{(n-\alpha+1)\Gamma(n-\alpha+1)} \left(1 - \frac{1}{2^{n-\alpha}} \right) \left[|f^{(n+1)}(a)| + m|f^{(n+1)}(b)| \right],$$
where $\|g^{(n)}\|_{\infty} = \sup_{x \in [a,b]} |g^{(n)}(x)|.$

Proof. Using Lemma 5 we have

$$\left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[{\binom{C}{D_{a+}^{\alpha}} g}(mb) + (-1)^{n} {\binom{C}{D_{mb-}^{\alpha}} g}(a) \right] \right.$$

$$\left. - \left[{\binom{C}{D_{a+}^{\alpha}} (f * g)}(mb) + (-1)^{n} {\binom{C}{D_{mb-}^{\alpha}} (f * g)}(a) \right] \right|$$

$$\leq \frac{1}{\Gamma(n-\alpha)} \int_{a}^{mb} \left| \int_{a}^{t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right.$$

$$\left. - \int_{t}^{mb} (s-a)^{n-\alpha-1} g^{(n)}(s) ds \right| |f^{(n+1)}(t)| dt.$$

Using m-convexity of $|f^{(n+1)}|$ we have

$$(2.6) |f^{(n+1)}(t)| \le \frac{mb-t}{mb-a} |f^{(n+1)}(a)| + m \frac{t-a}{mb-a} |f^{(n+1)}(b)|,$$

where $t \in [a, b]$.

One can have by symmetricity of $g^{(n)}$

$$\int_{t}^{mb} (s-a)^{n-\alpha-1} g^{(n)}(s) ds = \int_{a}^{a+mb-t} (mb-s)^{n-\alpha-1} g^{(n)}(a+mb-s) ds$$
$$= \int_{a}^{a+mb-t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds.$$

This gives

$$\left| \int_{a}^{t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds - \int_{t}^{mb} (s-a)^{n-\alpha-1} g^{(n)}(s) ds \right|$$

$$= \left| \int_{t}^{a+mb-t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right|$$

$$\leq \begin{cases} \int_{t}^{a+mb-t} |(mb-s)^{n-\alpha-1} g^{(n)}(s)| ds, & t \in [a, \frac{a+mb}{2}] \\ \int_{a+mb-t}^{t} |(mb-s)^{n-\alpha-1} g^{(n)}(s)| ds, & t \in [\frac{a+mb}{2}, mb]. \end{cases}$$

By virtue of (2.5), (2.6), (2.7), we have

$$\left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[(^{C}D_{a+}^{\alpha}g)(mb) + (-1)^{n} (^{C}D_{mb-}^{\alpha}g)(a) \right] \right| \\
- \left[(^{C}D_{a+}^{\alpha}(f * g))(mb) + (-1)^{n} (^{C}D_{mb-}^{\alpha}(f * g))(a) \right] \right| \\
\leq \frac{1}{\Gamma(n-\alpha)} \left[\int_{a}^{\frac{a+mb}{2}} \left(\int_{t}^{a+mb-t} \left| (mb-s)^{n-\alpha-1} g^{(n)}(s) \right| ds \right) \right] \\
\left(\frac{mb-t}{mb-a} \left| f^{(n+1)}(a) \right| + m \frac{t-a}{mb-a} \left| f^{(n+1)}(b) \right| \right) dt \\
+ \int_{\frac{a+mb}{2}}^{mb} \left(\int_{a+mb-t}^{t} \left| (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right| \right) \\
\left(\frac{mb-t}{mb-a} \left| f^{(n+1)}(a) \right| + m \frac{t-a}{mb-a} \left| f^{(n+1)}(b) \right| \right) dt \right] \\
\leq \frac{\|g^{(n)}\|_{\infty}}{\Gamma(n-\alpha+1)(mb-a)} \left[\int_{a}^{\frac{a+mb}{2}} \left((mb-t)^{n-\alpha} - (t-a)^{n-\alpha} \right) \right] \\
\left((mb-t) \left| f^{(n+1)}(a) \right| + m(t-a) \left| f^{(n+1)}(b) \right| \right) dt \\
+ \int_{\frac{a+mb}{2}}^{mb} \left((t-a)^{n-\alpha} - (mb-t)^{n-\alpha} \right) \\
(2.8) \left((mb-t) \left| f^{(n+1)}(a) \right| + m(t-a) \left| f^{(n+1)}(b) \right| \right) dt \right].$$

One can have

$$\int_{a}^{\frac{a+mb}{2}} ((mb-t)^{n-\alpha} - (t-a)^{n-\alpha})(mb-t)dt$$

$$= \int_{\frac{a+mb}{2}}^{mb} ((t-a)^{n-\alpha} - (mb-t)^{n-\alpha})(t-a)dt$$

$$= \frac{(mb-a)^{n-\alpha+2}}{n-\alpha+1} \left(\frac{n-\alpha+1}{n-\alpha+2} - \frac{1}{2^{n-\alpha+1}}\right)$$

and

$$\int_{a}^{\frac{a+mb}{2}} ((mb-t)^{n-\alpha} - (t-a)^{n-\alpha})(t-a)dt$$

$$= \int_{\frac{a+mb}{2}}^{mb} ((t-a)^{n-\alpha} - (mb-t)^{n-\alpha})(mb-t)dt$$

$$= \frac{(mb-a)^{n-\alpha+2}}{(n-\alpha+1)} \left(\frac{1}{n-\alpha+2} - \frac{1}{2^{n-\alpha+1}}\right).$$

Using (2.9), (2.10) in (2.8) we get required result.

Remark 3. In Theorem 8,

- (i) if we take m = 1 we get Theorem 4.
- (ii) if we take g(x) = 1 in above Theorem we get inequality (1.9) of Theorem 2.
- (iii) if we take g(x) = 1 along with m = 1 in above Theorem we get [4, Theorem 3].
- (iv) if we take $\alpha = 0$ along with g(x) = n = m = 1 in above Theorem we get [2, Theorem 2.2].

Theorem 9. Let $f:[a,b] \to \mathbb{R}, 0 \le a < b$ be a mapping such that $f \in C^{n+1}[a,b]$. If $|f^{(n+1)}|^q$, q > 1 is m-convex on [a,b] and $g:[a,b] \to \mathbb{R}$ is continuous and symmetric to $\frac{a+mb}{2}$. Also $g \in C^{n+1}[a,b]$, then following inequality for Caputo fractional derivatives hold

$$\left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[(^{C}D_{a+}^{\alpha}g)(mb) + (-1)^{n} (^{C}D_{mb-}^{\alpha}g)(a) \right] - \left[(^{C}D_{a+}^{\alpha}(f*g))(mb) + (-1)^{n} (^{C}D_{mb-}^{\alpha}(f*g))(a) \right] \right| \\
\leq \frac{2(mb-a)^{n-\alpha-1} ||g^{(n)}||_{\infty}}{(n-\alpha+1)\Gamma(n-\alpha+1)(mb-a)^{\frac{1}{q}}} \left(1 - \frac{1}{2^{n-\alpha}} \right) \\
(2.11) \left(\frac{|f^{(n+1)}(a)|^{q} + m|f^{(n+1)}(b)|^{q}}{2} \right)^{\frac{1}{q}}$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By Using Lemma 5, Hölder inequality, inequality (2.7) and m-convexity of $|f^{(n+1)}|^q$ respectively we have

$$\begin{split} & \left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[(^{C}D^{\alpha}_{a+}g)(mb) + (-1)^{n}(^{C}D^{\alpha}_{mb-}g)(a) \right] \\ & - \left[(^{C}D^{\alpha}_{a+}(f*g))(mb) + (-1)^{n}(^{C}D^{\alpha}_{mb-}(f*g))(a) \right] \right| \\ & \leq \frac{1}{\Gamma(n-\alpha)} \left[\int_{a}^{mb} \left| \int_{t}^{a+mb-t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right| dt \right]^{1-\frac{1}{q}} \\ & \left[\int_{a}^{mb} \left| \int_{t}^{a+mb-t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right| \left| f^{(n+1)}(t) \right|^{q} dt \right]^{\frac{1}{q}} \\ & \leq \frac{1}{\Gamma(n-\alpha)} \left[\int_{a}^{\frac{a+mb}{2}} \left(\int_{t}^{a+mb-t} \left| (mb-s)^{n-\alpha-1} g^{(n)}(s) \right| ds \right) dt \right] \\ & + \int_{\frac{a+mb}{2}}^{mb} \left(\int_{a+mb-t}^{t} \left| (mb-s)^{n-\alpha-1} g^{(n)}(s) \right| ds \right) dt \right]^{1-\frac{1}{q}} \\ & \left[\int_{a}^{\frac{a+mb}{2}} \left(\int_{t}^{t} \left| (mb-s)^{n-\alpha-1} g^{(n)}(s) \right| ds \right) \left| f^{(n+1)}(t) \right|^{q} dt \right] \\ & + \int_{\frac{a+mb}{2}}^{mb} \left(\int_{a+mb-t}^{t} \left| (mb-s)^{n-\alpha-1} g^{(n)}(s) \right| ds \right) \left| f^{(n+1)}(t) \right|^{q} dt \right]^{\frac{1}{q}} \\ & \leq \frac{\|g\|_{\infty}}{\Gamma(n-\alpha)} \left[\left(\frac{2(mb-a)^{n-\alpha-1}}{(n-\alpha)(n-\alpha-1)} \left(1 - \frac{1}{2^{n-\alpha}} \right) \right)^{1-\frac{1}{q}} \\ & \left(\frac{(|f^{(n+1)}(a)|^{q} + m|f^{(n+1)}(b)|^{q})(mb-a)^{n-\alpha-1}}{(n-\alpha)(n-\alpha+1)(mb-a)} \left(1 - \frac{1}{2^{n-\alpha}} \right) \right)^{\frac{1}{q}} \right]. \end{split}$$

From which after a little computation one can have required result. \Box

Remark 4. If we take m = 1 in Theorem 9 then we get Theorem 5.

By using Lemma 3, we prove the following results.

Theorem 10. Let: $[a,b] \to \mathbb{R}, 0 \le a < b$ be a mapping such that $f \in C^{n+1}[a,b]$. Also let $|f^{(n+1)}|^q$, q > 1 is m-convex on [a,b] and $g : [a,b] \to \mathbb{R}$ is continuous and symmetric to $\frac{a+mb}{2}$. Also $g \in C^{n+1}[a,b]$,

then following inequalities for Caputo fractional derivatives hold

$$(i) \left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[{\binom{C}{D_{a+}^{\alpha}} g}(mb) + (-1)^{n} {\binom{C}{D_{mb-}^{\alpha}} g}(a) \right] \right.$$

$$- \left[{\binom{C}{D_{a+}^{\alpha}} (f * g)}(mb) + (-1)^{n} {\binom{C}{D_{mb-}^{\alpha}} (f * g)}(a) \right] \right|$$

$$\leq \frac{2^{\frac{1}{p}} (mb - a)^{n-\alpha-1} ||g^{(n)}||_{\infty}}{(np - \alpha p + 1)^{\frac{1}{p}} \Gamma(n - \alpha + 1)} \left(1 - \frac{1}{2^{np-\alpha p}} \right)^{\frac{1}{p}}$$

$$\left(2.12 \right) \left(\frac{|f^{(n+1)}(a)|^{q} + m|f^{(n+1)}(b)|^{q}}{2} \right)^{\frac{1}{q}}.$$

$$(ii) \left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[(^{C}D^{\alpha}_{a+}g)(mb) + (-1)^{n} (^{C}D^{\alpha}_{mb-}g)(a) \right] - \left[(^{C}D^{\alpha}_{a+}(f*g))(mb) + (-1)^{n} (^{C}D^{\alpha}_{mb-}(f*g))(a) \right] \right|$$

$$(2.13)$$

$$\leq \frac{(mb-a)^{n-\alpha-1} ||g^{(n)}||_{\infty}}{(np-\alpha p+1)^{\frac{1}{p}} \Gamma(n-\alpha+1)} \left(\frac{|f^{(n+1)}(a)|^{q} + m|f^{(n+1)}(b)|^{q}}{2} \right)^{\frac{1}{q}},$$

where
$$\frac{1}{p} + \frac{1}{q} = 1$$
.

Proof. By Using Lemma 5, Hölder inequality, inequality (2.7) and mconvexity of $|f'|^q$ we have

$$\left| \left(\frac{f^{(n)}(a) + f^{(n)}(mb)}{2} \right) \left[(^{C}D_{a+}^{\alpha}g)(mb) + (-1)^{n} (^{C}D_{mb-}^{\alpha}g)(a) \right] \right|$$

$$- \left[(^{C}D_{a+}^{\alpha}(f * g))(mb) + (-1)^{n} (^{C}D_{mb-}^{\alpha}(f * g))(a) \right] \right|$$

$$\leq \frac{1}{\Gamma(n-\alpha)} \left(\int_{a}^{mb} \left| \int_{t}^{a+mb-t} (mb-s)^{n-\alpha-1} g^{(n)}(s) ds \right|^{p} dt \right)^{\frac{1}{p}}$$

$$\left(\int_{a}^{mb} |f^{(n+1)}(t)|^{q} dt \right)^{\frac{1}{q}}$$

$$\leq \frac{1}{\Gamma(n-\alpha)} \left[\int_{a}^{\frac{a+mb}{2}} \left(\int_{t}^{a+mb-t} |(mb-s)^{n-\alpha-1}g^{(n)}(s)|^{p} ds \right) dt \right]^{\frac{1}{p}}$$

$$\left[\int_{a+mb-t}^{mb} \left(\int_{a+mb-t}^{t} |(mb-s)^{n-\alpha-1}g^{(n)}(s)|^{p} ds \right) dt \right]^{\frac{1}{p}}$$

$$\left[\int_{a}^{mb} \left(\frac{mb-t}{mb-a} |f^{(n+1)}(a)|^{q} + m \frac{t-a}{mb-a} |f^{(n+1)}(b)|^{q} \right) dt \right]^{\frac{1}{q}}$$

$$\leq \frac{||g^{(n)}||_{\infty}}{\Gamma(n-\alpha+1)} \left[\int_{a}^{\frac{a+mb}{2}} \left((mb-t)^{n-\alpha} - (t-a)^{n-\alpha} \right)^{p} dt \right]$$

$$+ \int_{\frac{a+mb}{2}}^{mb} \left((t-a)^{n-\alpha} - (mb-t)^{n-\alpha} \right)^{p} dt \right]^{\frac{1}{p}}$$

$$(2.14) \left[\int_{a}^{mb} \left(\frac{mb-t}{mb-a} |f^{(n+1)}(a)|^{q} + m \frac{t-a}{mb-a} |f^{(n+1)}(b)|^{q} \right) dt \right]^{\frac{1}{q}} .$$
Now

$$(A-B)^q \le A^q - B^q, \quad A \ge B \ge 0$$

gives

$$(2.15) \quad [(mb-t)^{n-\alpha} - (t-a)^{n-\alpha}]^p \le (mb-t)^{(n-\alpha)p} - (t-a)^{(n-\alpha)p}$$
 for $t \in [a, \frac{a+mb}{2}]$, and

(2.16)
$$[(t-a)^{n-\alpha} - (mb-t)^{n-\alpha}]^p \le (t-a)^{(n-\alpha)p} - (mb-t)^{(n-\alpha)p}$$
 for $t \in [\frac{a+mb}{2}, mb]$.
Using (2.15) and (2.16) in inequality (2.14) and solving we get re-

quired result.

For (2.13) use (2.14) and Lemma 3.

Remark 5. In Theorem 10, if we take m = 1 we get Theorem 6.

References

- [1] M. Bombardelli, S. Varo sanec, Properties of h-convex functions related to the Hermite Hadamard Fejer inequalities, Comput. Math. Appl., 58 (2009), 1869–1877.
- [2] S. S. Dragmoir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett. 11(5) (1998), 91-95.
- [3] G. Farid, S. Naqvi, B. Tariq, Caputo fractional integral inequalities via m-convex functions, (Submitted).
- [4] G. Farid, S. Naqvi, A. U. Rehman, Hadamard and Fejér-Hadamard Inequalities And Related Results Via Caputo fractional derivatives, (Submitted).
- [5] L. Fejer, Uberdie Fourierreihen, II, Math. Naturwise. Anz Ungar. Akad., Wiss, 24 (1906), 369-390, (in Hungarian).
- [6] I. Işcan, Hermite Hadamard Féjer type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bolyai Math. 60(3) (2015), 355-366.
- [7] I. Işcan, New estimates on generalization of some integral inequalities for (α, m) -convex functions, Contemp. Anal. Appl. Math., 1(2) (2013), 253-264.
- [8] A. A Kilbas, M. Saigo, R. K. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integral Transform. Spec. Funct. 15 (2004), 31-49.
- [9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, *Theory and applications of fractional derivatial equations*, North-Holland Math. Stud. Elsevier New York-London, 2006.
- [10] M.Z. Sarikaya, On new Hermite Hadamard Fejér type integral inequalities, Stud. Univ. Babe s– Bolyai Math. 57(3) (2012), 377386.
- [11] M.Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, J. Math. Comput. Model. 57 (2013), 2403-2407.
- [12] H. M. Srivastava, and Z.Tomovski, Fractional Calculas with an integral operator containing generalized Mittag-Leffler function in the kerna, Appl. Math. Comput., 211 (2009), 198-210.
- [13] K.-L. Tseng, G.-S. Yang and K.-C. Hsu, Some inequalities for differentiable mappings and applications to Fej er inequality and

- weighted trapezoidal formula, Taiwanese j. Mathematics, 15(4) (2011), 1737-1747.
- [14] Z. Tomovski, R. Garra, Analytic solutions of fractional integrodifferential equations of volterra type with variable coefficients, Fractional Calc. Appl. Anal 17(1) (2014), 38-60.
- [15] Z.Tomovski, R. Hilfer, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler functions, Integral Transform Spec. Funct. Vol. 21(11) (2010), 797-814.
- [16] J. Wang, C. Zhu and Y. Zhou, New generalized Hermite-Hadamard type inequalities and applications to special means, J. Inequal. Appl., 2013(325) (2013), 15 pages.
- 1.S. Naqvi, Department of Mathematics, COMSATS Institute Of Information Technology , Attock Campus, Pakistan $E\text{-}mail\ address:}$ naqvisaira2013@gmail.com
- 2. G. Farid, COMSATS Institute of Information Technology, Attock Campus, Pakistan.

 $E ext{-}mail\ address: faridphdsms@hotmail.com,ghlmfarid@ciit-attock.edu.pk}$

3. ATIQ UR REHMAN, COMSATS INSTITUTE OF INFORMATION TECHNOLOGY, ATTOCK CAMPUS, PAKISTAN.

E-mail address: atiq@mathcity.org