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OSTROWSKI TYPE FRACTIONAL INTEGRAL INEQUALITIES
FOR MAPPINGS WHOSE DERIVATIVES ARE (a,m)-CONVEX
VIA KATUGAMPOLA FRACTIONAL INTEGRALS

GHULAM FARID! AND MUHAMMAD USMAN3

ABSTRACT. In this paper we have established a new identity for Katugam-
pola fractional integrals. By using it we have found some generalizations of
Riemann-Liouville fractional integral inequalities of Ostrowski type for (o, m)-
convex functions. Also we prove some inequalities by taking particular appro-
priate values of a and m.

1. INTRODUCTION

The following inequality is known as Ostrowski inequality [9] (see also, [7, page
468]) which gives upper bound for approximation of integral average by the value
f(z) at point = € [a,b]. Tt is proved by Ostrowski in 1938.

Theorem 1.1. Let f: I — R where I is interval in R be a mapping differentiable
in I°the interior of I and a,b € I°, a < b. If |f'(t)| < M for allt € [a,b], then we
have

atb)2

b v
\f@) - ﬁ / f(t)dt‘ <|t+ ((b_” (b— a)M.

where x € [a, b].

Ostrowski inequality has aroused the curiosity of many researchers which con-
tributed many generalizations in literature recently Ostrowski type inequalities via
Riemann-Liouville fractional integrals are in focus (see, [3, 8] and references their
in). As we can find the bounds of different quadrature rules with the help of
Ostrowski and Ostrowski type inequalities so Ostrowski and Ostrowski type in-
equalities have great importance in numerical analysis. Over the years researchers
have worked to obtain Ostrowski type inequalities for different kinds of functions
1,2, 10].

Definition 1.2. A function f is called convex function on the interval [a, b] if for
any two points z,y € [a,b] and any ¢t where, 0 <¢ <1

[z + (1 =t)y) <tf(z)+ 1 =1)f(y).
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Definition 1.3. [8] A function f : [0,b] — R, b > 0 is said to be (o, m)—convex
function where (o, m) € [0,1]? if for any two points x,y € [0,b] and any ¢ where,
0<t<1

fltr + (1 —=t)y) <t f(x) +m(1 —t%) f(y).

Remark 1.4. It can be easily seen that.

(i) If @« = 1 and m = 1, then («, m)—convexity reduces to usual convexity defined
on [0,b], b > 0.

(ii) If &« = 1, then (o, m)—convexity reduces to m—convexity defined on [0,b], b > 0.
(iii) If m = 1, then («, m)—convexity reduces to a—convexity defined on [0, b], b > 0.

Laurent in [6] provided today’s definition of the Riemann-Liouville fractional
integral.

Definition 1.5. [6] Let f € Li[a,b]. The Riemann-Liouville fractional integral
J& f and Jg¥ f of order o > 0 with a > 0 are defined by

Tet@) = s | =0T @t > a
and

b
Jg f(x) = ﬁ / (t— 2)° f(t)dt, x < b,

where I'(«a) = fooo e~ “u“~!du is the integral representation of Euler gamma func-
tion. Here J) f(z) = J)_f(z) = f(z). In case of a = 1, the Riemann-Liouville
fractional integrals reduces to the classical integral.

Definition 1.6. J. Hadamard introduced the Hadamard fractional integral in [4],

and is given by
o 1 C" A dr
12 d@ = g [ (100%)" 10

for Re(a) >0, z > a > 0.

Recently Katugampola generalized Riemann-Liouville and Hadamard fractional
integrals into a single form called Katugampola fractional integrals.

Definition 1.7. [5] Let [a, b] be a finite interval in R. Then Katugampola fractional
integrals of order e > 0 for a real valued function f are defined by

P12 ] (@) = 131;; [ et - o
and o
@)= [ e e

with a < x < b and p > 0. where I'(a) is the Euler gamma function. For p = 1,
Katugampola fractional integrals give Riemann-Liouville fractional integrals, while
p — 0% produces the Hadamard fractional integral. For its proof one can check [5].

We organize the paper in such a way that in the following section we prove
some Ostrowski type fractional integral inequalities for mappings whose derivatives
are (a, m)-convex via Katugampola fractional integrals. We also present some
corollaries and some known results by taking particular values of o and m in our
results.
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2. OSTROWSKI TYPE FRACTIONAL INEQUALITIES FOR (&, m)-CONVEX
FUNCTIONS VIA KATUGAMPOLA FRACTIONAL INTEGRAL

In this section we present some Ostrowski type inequalities for (a,m)-Convex
functions via Katugampola fractional integrals. The following lemma is very useful
to obtain our results.

Lemma 2.1. Let I be an open real interval such that [0,00) C I and f: 1 — R
be a differentiable mapping on I such that f/ € Li[ma, mb|, where ma,mb € I with
a < b,m € (0,1], then for all x € (ma,mb) and p,a > 0 we have the following
equality

(20 — mPar)® + (mebe —a?)*\ - (ap+p—D(a)
( b—a )f(“ - a)

)a+1 1 ,
— / tOPTP=LE (PP 4 mP (1 — tP)a”)dt
- 0

[P I3 f(mPaP)

p(x? — mPaP

+ PIZ f(mPhP)] =

ppp — ppYat+l  rl ,
1) - plm - zf) / P to=L £ (10 2P 4 P (1 — t9)bP)dt.
— ;

Proof. 1t is easy to see that
1
/ toptr=ly (tPxP + mPmP(1 — t)a’)dt
0

_teetem L (400 4 omP(1 — t9)a?) ||
B ptP~1(zP — mraP)
+mP(1—tP)a’)dt

1
o ap+p— 1 tapflf(tpl,p)
o plar —mear) Jo

_ f@)  aptp-—1 /I y? —mPaP\ v W)
B p(xp —_ mpaﬂ) p(g]ﬂ — mpaP) ma P — mPaPf xrP — mPaP Yy
@ = 1@ Iy f(mPa?)(ap + p — 1) (e)
p(zP — mPaP) P2 (xP — mPar)ott

and
1 ’
/ toP Pl £ (PP 4o mP (1 — tP)bP)dt
0

! ap+p—1

« —1 1
_ t pEp f(tp.rp + mp(l - tp)bp) _ / ta/)—1f<tpxp
o plar —mebr) Jo

ptP=1(zP — mPbP)
+mP (1 —t°)b)dt

__ f@) . aptp-—1 /mb(yﬂ—mpbp)“l W),

p(mPbP — zP) — p(mPbP — xP) P — mPbP P — mPbP
@ - J6 R )@t p- DT
p(meP — ;L'P) p2_(¥(mpb/’ — _ij)a+1 ’

P —_ PP PHP — pp)otl
(@ bnj a and (3) by plm bb—cf ) , then adding

resulting equations we get (1). O

)a+1

Multiplying (2) by P

Theorem 2.2. Let I be an open real interval such that [0,00) C I and f: 1 —- R
be a differentiable mapping on I such that f € Ly [ma, mb], where ma, mb € I with
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a<b,me(0,1]. If ’f/’ is (a, m)— convex on [ma, mb] and |f/(:cp)| < M, then the
following inequality for Katugampola fractional integrals holds
(4)
(20 — mPa?)® + (mPb —af)*\ . (ap+p—1T(a) ,
- 7™ PP
|< b e H A
M [(zf — mPaP)*+t 4+ (mPbP — zP)* T [1 +mPa
b—a 1+2a |’

PLs f(mPOP)] | <

with o, p > 0 and = € [ma, mb.

Proof. Using Lemma 2.1, (o, m)—convexity of |f/|, and upper bound of |fl (xp)|
we have

(xP —mPal)™ + (mPHP — zP)™ o lap+p—1I(e)
‘( b—a ) )=

[PI?f f(mpap)+

p(xP — mPaP
b—a

a+1 1 ,
PI f(mPP)]| < ) / PP f (tPxf + mP (1 — tP)a)|dt
0

p(meb? — a7yt
b—a

< p(xP — mPaP
- b—a

1
/ taP+P71|f/ (tPz? +mP (1 — t”)b”)|dt
0

)a+1 1 ’ ’
et el @)+ me - )| (@) e
0

ppp — ppYatl  pl , ,
plmtF = o) / et 0| @) | 4+ me (1= 20) | 00)]] at
b —a 0
Mo(xP — mPaP)tl [l
< p(x ; mra ) / taerp—l [tap 4 mp(l _ tap)] dt
—a 0

Mp(mPbP — x
b—a

)a+1 1
/ toP P[P 4 omP (1 — t°)] dt
0

_ a+1 _ a+1 1
_ Mp [(a? = mPal)* T + (mPb? - 2)* ] / 1P PL [0 P (1 — 7)) dt
b —a 0
< M [(33" —mPaP)o T + (mPbP — mp)"‘+1] 1+ mPa
- b—a 14 2a
This completes the proof. (Il

Corollary 2.3. In Theorem 2.2, if we take « = 1 and m = 1 which means that
(o, m)— converity reduces to usual convezity, then (4) becomes the following inequal-

ity
b
i(i—f) (@) 2bp— al/a v

2M [(mp —a”)? + (b — :r:p)Q]
5) = 30— a)

; w € [a,b],

with a, p > 0.
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Corollary 2.4. In Theorem 2.2, if we take o« = 1 which means that (a,, m)— convezity
reduces to m— convezity, then (4) becomes the following inequality

‘ ("= oy - 2L [ g

b—a b—a Jia

M [(zf —mPaf)? + (mPbP — aP)?| 1+ mP
b—a 3

(6) <

} ; ¢ € [ma, mbl,

with a, p > 0.

Corollary 2.5. In Theorem 2.2, if we take m = 1 which means that (cc, m)— convezity
reduces to a— convexity, then (4) becomes the following inequality

((a:p —aP)® + (b — xp)a) Fae) (ap+p—1)(a)

= ey I @)+ P )

(7)

<

M [(mp —aP)*t 4 (b — xp)a—&-l] 1+a
b—a 14 2a

];xe (a,b],

with a, p > 0.
Remark 2.6. (i) If we put p=1in (4) we get [8, Theorem 4].

Theorem 2.7. Let I be an open real interval such that [0,00) C I and f: 1 — R
be a differentiable mapping on I such that f/ € Li[ma, mb], where ma,mb € I with
a<bme(0,1]. If |f/ Y ¢ > 1, is (o, m)—convex on [ma, mb] and |f/(mp)’ < M,
then the following inequality for Katugampola fractional integrals holds

(8)

(2P — mPaP)™ + (mPbP — P)™ o (ap+p—Dl(a) -, mPaP
‘ ( b—a ) T I A

_ a+1 _ a+1 é
12, fmerey) | < 2P 1" = mea?) ™+ & (meb — ) ]<1+mp“”> ,

(b—a) (plap+p—1)+1)7 apt1

with a, p > 0, %—&—%: 1 and x € [ma, mb].
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Proof. Using Lemma 2.1 and Holder’s inequality we have

(2 — mPar) + (meb? —29)*\ . (ap+p—1T(a)
( b—a )f(“ - a)

[P I3 f(mPa?)+

p_ mpgPatl 1l ,
oo, fme)) | < oz bm a”) / tP TP f(tPaf + mP (1 — t°)a”)|dt
—a 0
ppp _ ppYotl 1 ,
4 ol bb ; ) / 1Pt £ (P 4+ mP (1 — t0)bP)|dt
- 0

1
P _ mPaP)et! 1 ® v !
< p(x bm a ) (/ tp(ap+p1)dt) (/ |f (tpllfp + mp(l - tp)ap)}th>
—a 0 0
9)
1 1
pbp — pryatl 7 rl Pt ’
n p(m . ) (/ tp(ap-irp—l)dt) (/ ‘f (tPz? + mP(1 — t”)a")’th) .

Since |f/ |q is (a, m)-Convex and |fl (z°)| < M, z € [a,b], there for we have

M<1+mpap>‘ll

(10) (/01 |f (PP +mP(1 —t”)a")|th>}l

<
- ap+1
similarly
. 1 1
’ a 1+mpap q
11 PP + mP(1 — tP)bP th) <M <>
(11) ([ 1re (- ey)ffar) < ar (SEE

We also have
1
(12) / plerto=1) gt ! ,
0 1+plap+p—1)
Using (10), (11) and (12) in (9) we can get (8).
This completes the proof. ([l

Corollary 2.8. In Theorem 2.7, if we take « = 1 and m = 1 which means that
(o, m)— convezity reduces to usual convezity, then (8) becomes the following inequal-

ity
P _ qP _ b
’ (=) st = 2= [t enar
(13) _ MP[(zp—a")2+(bpfxf)2];x€[a7b],
(b—a)(p(2p—1)+1)»
with a, p > 0.

Corollary 2.9. In Theorem 2.7, if we take « = 1 which means that (a,, m)— convexity
reduces to m— convezity, then (8) becomes the following inequality

mb
‘ (2 gy - 22 [ e ey

b—a ma

(14)

L Mplar —arf 4 (¢~ o) (1 + pm?

(b_a)(p@ﬂ—l)—i—l)% p+1 ) ?me[mmmb]’
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with a, p > 0.

Corollary 2.10. In Theorem 2.7, if we take m = 1 which means that (o, m)— convexity
reduces to a—convexity, then (8) becomes the following inequality

(20— a?) + (b — )™\ . . (ap+p— D)
( b—a ) )=

[PL2-f(aP) + I f(07)]

(15)
M [(a? — a?)+ 4 (b — 2)+]

(b—a)(plap+p—1)+1)
with a, p > 0.

< s x € la,b],

=

Remark 2.11. (i) If we put p =1 in (8) we get [8, Theorem 5].
(ii) If we put p =1 and a =1 in (8) we get [8, Theorem 2].

Theorem 2.12. Let I be an open real interval such that [0,00) C I and f: 1 — R
be a differentiable mapping on I such that f/ € Li[ma, mb], where ma,mb € I with
a<bme(0,1]. If ’fl’q,q > 1 4s (a,m)—convex on [ma, mb] and ’fl(x”)‘ < M,
then the following inequality for Katugampola fractional integrals holds

(= s =2y g

_(ap+p—1I(e)
pt=(b—a)

Mp [(z” — mPa?)* L + (mPbP — 2P)* ] /1 + mPa .
) (b—a) (pla+ 1)) (P@a * 1>)> |

with o, p > 0 and = € [ma, mb.

[PI7- f(mPaP)+ PIZ f(mPbP)] ‘

(16)

Proof. Using Lemma 2.1 and power mean inequality we have

(29 = mPa?)* + (P — 22\ . (ap+p— ()
’( b—a )f(“ - a)

[PI- f(mPa”)+

PIZ f(mPbr)]

1
/ P e £ (1P 4+ mP (1 — tP)a”)|dt
0

m”b” —gp)otlt 1
Pt /
0

PP f (PP mP (1 — )bP)|dt

P — mpPar)otl ! T Yy %
< plx mPa </ aptp— ldt) (tocp+p—1/ ‘f (tPz? + mP(1 —tl’)ap)’th)
b—a 0 0
17
( ) 1—1

1
pbp — gP)ett 1 ? ! ’ !
n p(m x </ faptp— 1dt> </ teptp—1 |f (t/JIP + mp(l — tp)aﬁ)|th>
0 0
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Since |f/ |q is (o, m)-Convex and |f/ (zP)| < M, z € [a,b], there for we have

1 s i
(oo o) -a(2is

similarly
19 terte= (PP + mP (1 — t)bP)|%dt | <M [ ———
) ([ e e e )< v (S

We also have

1
1
20 / tortP g = — —
(20) 0 pla+1)
Using (18), (19) and (20) in (17) we can get (16).
This completes the proof. ([l

Corollary 2.13. In Theorem 2.12, if we take o = 1 and m = 1 which means
that (e, m)— convezity reduces to usual convezity, then (16) becomes the following
inequality

b — a? 20—1 [
’( =) @) = 2k [ e

TR TO R CY

with a, p > 0.

Corollary 2.14. In Theorem 2.12, if we take o« = 1 which means that (a, m)— convexity
reduces to m— convezity, then (16) becomes the following inequality

mb
(") pon) = =t [ e

b—a a Ja

(22)
M P _ P aP)2 PHP — 2P)2 1\"7 /1 P\ 7
. p (" —mPa?)? + (m fﬂ)]() ( +m) e € fma,ml
b—a 2p 3p

with a, p > 0.

Corollary 2.15. In Theorem 2.12, if we take m = 1 which means that (c, m)— convexity
reduces to a—convexity, then (16) becomes the following inequality

((xp —af)* + (b - mp)a> Flar) — (ap+p—1DI(a)

[PI2-f(a”) + ”I§“+f(b”)}‘

b—a pl=(b—a)
(23)
M p _ op)at1 pP — pp)otl 1—% %
< pl —at) ™+ (B —2) ]( 1 > (O”Ll)> ;2 € [a,b],
b—a pla+1) p(2a+1)
with a, p > 0.

Remark 2.16. (i) If we put p =1 in (16) we get [8, Theorem 6].
(ii) If we put p=1 and o =1 in (8) we get [8, Theorem 3].

To give more results we need the following lemma which we will use in squeal.
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Lemma 2.17. Let I be an open real interval such that [0,00) C I and f : I — R
be a differentiable mapping on I such that f/ € Li[ma, mb], where ma,mb € I with
a <b,me(0,1]. Then for all x € (ma, mb) we have the following equality

fay _ (a0t =) [ I fmlr) I fnt)
pl—a 2(xP — mPar)®  2(mPbP — xP)®
P _ PP 1 ,
_ pla? = mPa’) 2m a )/ P to=1 £ (1P 3P 4 mP(1 — tP)al)dt
0
PHO _ P 1 ,
(24) plm?y — 2%) b2 ° )/ (oL E (PP P (1 — 1)) dt
0
with a, p > 0.

Proof. 1t is easy to see that
1 ’
/ toP TPl (1P 2P 4 mPmP (1 — tP)aP)dt
0

1
_ O‘p_"p_ 1 tap_lf(tpxp)
o Plar—mrar) Jo

oL (e + mP (1 — t)a?) ||
B ptP~1(zP — mrPar)
+mP(1—tP)a”)dt

f@)  ap+p—1 /’” y —mPa?\ Ty )
- p(mp — ml)ap) p(xﬂ — mpap) ma P — mPaPf P — mPaPf Yy
Y { COMMNRY 8 {0 LR INGY
p(axP —mpaP) p2~(xP — mpPaP)otl
and
1 ’
/ toP TPl £ (PP 4omP (1 — tP)bP)dt
0
(10 4 me (1 — 9)bP) 1 _ ap+p-—1 /1 1001 f (190
ptP~H(xP — mPbr) o plar —mrbr) Jo
+mP (1 —t")bP)dt
—f(a") ap+p—1 /mb Y’ —mPb\ Tyl ()
= B ———=dy
p(mpbp — mp) p(mpbp — xﬂ) m P — mPhP xP — mpPbP

— p(mPbr — xP) p2=a(mpPbr — gp)otl

P — mPaP PHP — P
Multiplying (25) by M and (26) by M

equations we get (24). O

, then adding resulting

Theorem 2.18. Let I be an open real interval such that [0,00) C I and f: I — R
be a differentiable mapping on I such that f/ € Li[ma, mb], where ma, mb € I with
a<b me(0,1]. If ’f'| is (o, m)—convex on [ma, mb] and |fl(xp)| < M, then the
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following inequality for Katugampola fractional integrals holds

fary (00 = DP@) [ P2 fn0ar) 212 )
pl—@ 2(xP —mrPar)™  2(mPbP — )
MmP[b* —a”] [1+ mPa
2 < :
(27) < 5 [1+2a],m€[ma,mb],
with a, p > 0.

Proof. Using Lemma 2.17, (o, m)—convexity of |f,|7 and upper bound of |f/ (x”)|
we have

%uw—m””_”””[qgﬂww> pmﬁm%ﬂH

pl—@ 2(xP —mrar)™  2(mPbP — xP)*

P _ mPaP 1 ,
pa? = mPa?) / tP P f (P2 + mP (1 — t°)a’)|dt
0

- 2
PhP — P 1 ,
p(mPb: — 2) . ) / 1Pt (1P 4+ mP (1 — t0)P)|dt
0
P _ mPaP 1 , ,
< pla’ —mra?) 2m a”) / terte—l [t“”]f ()| +mP (1 —t*°)| f (ap)\] dt
0
PP — 1P 1 , ,
AP [ et [io0] (@0)] 4 me(a - )| )]
0
1
< Mp(x/’ 2_ mpa’)) / taptp—1 [tap + mp(l o tap)} dt
0
M I 1
p(m . X ) / tap+p71 [tap + mp(l _ tap)] dt
0
M PHP — mPal 1
_ p[m b2 mra ] / tap+p—1 [tap + mp(l _ tOLP)] dt
0
MmP [bP — a”] [14+ mPa
- 2 142 |
This completes the proof. ([

Corollary 2.19. In Theorem 2.18, if we take o = 1 and m = 1 which means
that (a, m)— convezity reduces to usual convezity, then (27) becomes the following
inequality

20— 1 [ [Tt p(tr)dt [T te= L f(te)dt
|f(xp) 2 l o —ar T p_ar
(28) < M; x € [a, b],

- 3

with a, p > 0.
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Corollary 2.20. In Theorem 2.18, if we take o« = 1 which means that (a, m)— convexity
reduces to m— convezity, then (27) becomes the following inequality

20— 1 [ [T tr=Lf@r)dt  [MP el f(#0)dt
raey 2= [Jaat T a0 [0 1)
2 TP — mPaPf mPbP — P
MmP b —af] T1 p
(29) < m o] tm ; « € [ma, mbl,
2 3
with a, p > 0.

Corollary 2.21. In Theorem 2.18, if we take m = 1 which means that (o, m)— convezity
reduces to a—convexity, then (27) becomes the following inequality

fary— lep TP = D) [ PIy f(af) ML F(0) }
pl—a 2(xP —ar)> = 2(bP — xP)™
(30) < MY -] [fj;;} )
with a, p > 0.

Remark 2.22. (i) If we put p = 1 in (27), then we get the result for Riemann-
Liouville fractional integrals

Theorem 2.23. Let I be an open real interval such that [0,00) C I and f: I — R
be a differentiable mapping on I such that f/ € Li[ma, mb], where ma,mb € I with
a<b,me(0,1]. If |f/ Y q>1, is (o, m)—convex on [ma, mb] and ’f/(xp)’ <M,
then the following inequality for Katugampola fractional integrals holds

(ap+p—1I(a) [ PIE f(mPa?)  PIS f(mPb?)
pl—« {2(95/’ —mPar)® = 2(mPbP — x/’)a}

e

(31) <

Mp [mPbP — mPaP) (1 + mpap) @
2(plap+p—1)+1)p \ aptl )

with a, p > 0, % + % =1 and x € [ma, mb).

Proof. Using Lemma 2.17 and Hélder’s inequality we have

(ap+p—1DI(a) [ PI3 f(mPa”) PIS, f(mPoP)
pl—@ {2(;10/) —mPal)®  2(mPbP — xp)a}

GO

P _mPaP 1 ,
plar —mra?) / Pt £ (P2 + mP (1 — tP)a’)|dt
0

= 2
PYP — P 1 ,
plm?t" = a7) . x)/ 1P| F (PP 4+ mP (1 — £9)b°) | dt
0

P _ mPaP 1 3 1, q
< plar —m’a) 2m a”) </ tP(O‘P*Pl)dt) (/ |f (P2 +mP(1 - tp)aﬂ)]th)
0 0
(32)

PLP P 1 % 1 ’ %
. W (/ tp(apﬂ)_l)dt) (/ |f (PP +mP(1 —tp)aﬂ)’th) .
0 0
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Since |f/ |q is (a, m)-convex and |f,(a:p)’ < M, x € [a,b], there for we have

(33) (/01 | (teaf +mP(1— t”)a")f%t)é <M (HWW’)

Q=

ap+1

similarly

) 1 1

/ ? 14+ mPap 9
34 tPa? +mP(1—t*)oP)|%dt ) <M [ ——
g ([ e emaepa) < (FEE)
We also have
" plapto-1) 1

35 tPePTPT Nt = .
(35) /0 L+plap+p—1)
Using (33), (34) and (35) in (32) we can get (31).
This completes the proof. (I

Corollary 2.24. In Theorem 2.22, if we take o« = 1 and m = 1 which means
that (., m)—convexity reduces to usual convezity, then (31) becomes the following
inequality

T b
20— 1 | [t f(r)dt  [7ePtf(tP)dt
‘f(xp) - 2 TP — aPf + bP — P
P _ P
(36) < Mol o),
2(p(2p—1)+1)»
with a, p > 0.

Corollary 2.25. In Theorem 2.22, if we take o« = 1 which means that (a, m)— convexity
reduces to m— convezity, then (31) becomes the following inequality

21 [f:w GO tplf(t”)dt] ’

2 TP — mPaPf mPbP — P

o

(37)

1

MmPolb? — aP 1 P\ 7

< m’p| a]l < +om ) ; ¢ € [ma, mb),
2(p2p—1)+1)» \ PH1

with a, p > 0.

Corollary 2.26. In Theorem 2.22, if we take m = 1 which means that (a, m)— convexity
reduces to a— convexity, then (31) becomes the following inequality

o (ap+p—1T(a) [ PI3 f(a”) I3 f(07)
‘f(ac ) pl-a [2(9:/’ —ar)” N 2(b° — IP)O‘} ’
(38) < Mp [bp — Clp} S [CL, b]v

1
2(plap+p—1)+1)7
with a, p > 0.

Remark 2.27. (i) If we put p = 1 in (31), then we get the result for Riemann-
Liouville fractional integrals
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Theorem 2.28. Let I be an open real interval such that [0,00) C I and f: I — R
be a differentiable mapping on I such that f/ € Li[ma, mb], where ma,mb € I with
a<bme(0,1]. If ’fl’q,q > 1 is (a,m)—convex on [ma, mb] and ’fl(x”)| <M,
then the following inequality for Katugampola fractional integrals holds

(ap+p— 1T (a) { PIO f(mPaf) | IS f(mPV) } ‘

pl—o 2(xP —mrar)™  2(mPbP — xP)

’f(:v”)—

(39)

< Mpm? [b° — a”] ( 1+ mPa
- 2(pla+ 1))1_% P20+ 1)

with a, p > 0.

))q ;¢ € [ma, mb],

Proof. Using Lemma 2.17 and power mean inequality we have

‘f(xl)) _ (Oép + P — 1)F(Oz> |: P_Z';Xif(mpap) pI£+f(mpbP) :|

pl—@ 2(xP —mrPar)™  2(mPbP — xP)

P _ mPaP 1 ,
< pla? —mPa’) 2m a”) / tP P P (P + mP (1 — tP)al)|dt
0

PHP _ P 1 /
M / tap+p—1’f (tPzP +mP (1 — tﬁ)bl’)|dt
0

1
< p(x? 72mﬂap) </ t“Pﬂ’ldt)
0

(40)
p(mPbP — ) ! =g 1 , a
+ 5= ( / t“ﬂ+f’—1dt> ( / 10 f (1P +mP (1 — tp)ap)\th>
0 0

Since |fl |q is (e, m)-Convex and |fl (z)| < M, € [a,b], there for we have

1—1

1
q T
<tap+ﬂ1 / f (tpxp+mp(1tp)ap)|th)
0

1
q

1 1
! / a 1+ mPa \¢
41 PP f (P2 + mP (1 —tP)al)|*dt ) <M | ——
an ([ et e s me e ftar) <o (SR
similarly
1 3 14+ mP 1
49 poptp=1| £ (1P 1P P(1— )% ) < a [ AT
) ([ e e e epla) < (S
We also have
! 1
43 / tort et = ——
) ; @+ 1)
Using (41), (42) and (43) in (40) we can get (39).
This completes the proof. ([l

Corollary 2.29. In Theorem 2.26, if we take o = 1 and m = 1 which means
that (o, m)— convezity reduces to usual convezity, then (39) becomes the following



14 GHULAM FARID! AND MUHAMMAD USMAN?

inequality
2 —1 [ [Fer=Lfe)dt  [Pte=lf(te)dt
|W) 2 lfa )t [t )
2 TP — aP be — xr
(44) CMplr —w) (LN 2N la,b]
_— [ = — ) sz €la

— 2 2p 3p b ) b

with a, p > 0.

Corollary 2.30. In Theorem 2.26, if we take o« = 1 which means that (a, m)— convexity
reduces to m— convezity, then (39) becomes the following inequality

20— 1 [ [C tr=Lf@r)dt [T ee=t f(te)dt
|W) B [fma fnde [ @)
2 TP — mPaP mprPbP — xP
MmPolb? — af 1 -3 1 P\ &
(45) < Zre — e p[2 o] <2p> ( ;pm > ; x € [ma, mb,

with a, p > 0.

Corollary 2.31. In Theorem 2.26, if we take m = 1 which means that (o, m)— convezity
reduces to a—convexity, then (39) becomes the following inequality

« — « PI* f(af P f(bP
f(l‘p) - ( £ +51o¢1)r( ) |:2(;0 f(ap))a Q(bf) _f(xp))a] ‘
Mp b — a”] 1 =3 a+1 %x .
w  <EEA ) Gearn) el
with a, p > 0.

Remark 2.32. (i) If we put p = 1 in (39), then we get the result for Riemann-
Liouville fractional integrals

Conclusion. All results proved in this research paper can also be deduced for
Hadamard fractional integrals just by taking limits when parameter p — 0F.
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