
AN OPERATOR ASSOCIATED TO HERMITE-HADAMARD
INEQUALITY FOR CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some fundamental properties of the
operator

Da+;b�f (x) :=
1

2

�
1

x� a

Z x

a
f (t) dt+

1

b� x

Z b

x
f (t) dt

�
; x 2 (a; b)

for various classes of functions f : [a; b]! R including, monotonic, convex and
Lipschitzian functions. Various Hermite-Hadamard type inequalities improv-
ing some classical results are also provided. Some examples for logarithm are
given.

1. Introduction

The following integral inequality

(1.1) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (t) dt � f (a) + f (b)

2
;

which holds for any convex function f : [a; b] ! R; is well known in the literature
as the Hermite-Hadamard inequality.
There is an extensive amount of literature devoted to this simple and nice result

which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, from which we would like to refer the reader to
the monograph [7], the recent survey paper [5], the research papers [1]-[2], [8]-[16]
and the references therein.
Assume that the function f : (a; b) ! C is Lebesgue integrable on (a; b) : We

introduce the following operator

(1.2) Da+;b�f (x) :=
1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#
; x 2 (a; b) :

We observe that if we take x = a+b
2 ; then we have

Da+;b�f

�
a+ b

2

�
=

1

b� a

Z b

a

f (t) dt:

Moreover, if f (a+) := limx!a+ f (x) exists and is �nite, then we have

lim
x!a+

Da+;b�f (x) =
1

2

"
f (a+) +

1

b� a

Z b

a

f (t) dt

#
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2 S. S. DRAGOMIR

and if f (b�) := limx!b� f (x) exists and is �nite, then we have

lim
x!b�

Da+;b�f (x) =
1

2

"
f (b�) + 1

b� a

Z b

a

f (t) dt

#
:

So, if f : [a; b]! C is Lebesgue integrable on [a; b] and continuous at right in a and
at left in b, then we can extend the operator on the whole interval by putting

Da+;b�f (a) :=
1

2

"
f (a) +

1

b� a

Z b

a

f (t) dt

#
and

Da+;b�f (b) :=
1

2

"
f (b) +

1

b� a

Z b

a

f (t) dt

#
:

If we change the variable t = (1� s) a+ sx for x 2 (a; b) then we have

1

x� a

Z x

a

f (t) dt =

Z 1

0

f ((1� s) a+ sx) ds

and if we change the variable t = (1� s)x+ sb for x 2 (a; b) ; then we also have

1

b� x

Z b

x

f (t) dt =

Z 1

0

f ((1� s)x+ sb) ds;

which gives the representation

(1.3) Da+;b�f (x) =
1

2

Z 1

0

[f ((1� s) a+ sx) + f ((1� s)x+ sb)] ds; x 2 (a; b) :

Using the representation (1.3), we observe that the operator Da+;b� is linear,
nonnegative and preserves the constant functions, namely

Da+;b� (�f + �g) = �Da+;b� (f) + �Da+;b� (g)

for any complex numbers �; � and integrable functions f; g: If f � 0 almost
everywhere on [a; b] and f is integrable, then Da+;b�f (x) � 0 for any x 2 (a; b) :
Also, if f = k; a constant, then Da+;b�k (x) = k for any x 2 (a; b) : If we de�ne the
function 1 (t) = 1; t 2 [a; b] ; then, obviously, Da+;b�1 = 1:
In this paper we establish some fundamental properties of the operatorDa+;b�f (x) ;

x 2 (a; b) for various classes of functions f : [a; b]! R including, monotonic, convex
and Lipschitzian functions. Various Hermite-Hadamard type inequalities improving
some classical results are also provided. Some examples for logarithm are given.

2. Some General Properties

The �rst result collects some of the fundamental properties of the operator
Da+;b� as follows:

Theorem 1. Let f : [a; b]! R and integrable function on [a; b] :
(i) If f is monotonic nondecreasing on [a; b] then Da+;b�f is monotonic non-

decreasing on (a; b) :
(ii) If f is convex on [a; b] then Da+;b�f is convex on (a; b) :
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(iii) If f is Lipschitzian with the constant L on [a; b] ; namely

(2.1) jf (x)� f (y)j � L jx� yj
for any x; y 2 [a; b] ; then Da+;b�f is Lipschitzian with the constant 12L on
(a; b) :

Proof. (i) Assume that f is monotonic nondecreasing on [a; b] : Let a < x < y < b:
Then

f ((1� s) a+ sx) � f ((1� s) a+ sy)
and

f ((1� s)x+ sb) � f ((1� s) y + sb)
for any s 2 [0; 1] :
If we sum these inequalities and divide by 2 we get

1

2
[f ((1� s) a+ sx) + f ((1� s)x+ sb)] � 1

2
[f ((1� s) a+ sy) + f ((1� s) y + sb)]

for any s 2 [0; 1] :
By integrating this inequality on [0; 1] and using the representation (1.3) we get

Da+;b�f (x) � Da+;b�f (y) :
(ii) Now, assume that f is convex on [a; b] : Then for x; y 2 (a; b) and �; � > 0

with �+ � = 1; we have

f ((1� s) a+ s (�x+ �y)) = f (� [(1� s) a+ sx] + � [(1� s) a+ sy])
� �f ((1� s) a+ sx) + �f ((1� s) a+ sy)

and

f ((1� s) (�x+ �y) + sb) = f (� [(1� s)x+ sb] + � [(1� s) y + sb])
� �f ((1� s)x+ sb) + �f ((1� s) y + sb)

for any s 2 [0; 1] :
If we add these two inequalities and divide by 2 we get

1

2
[f ((1� s) a+ s (�x+ �y)) + f ((1� s) (�x+ �y) + sb)]

� �1
2
[f ((1� s) a+ sx) + f ((1� s)x+ sb)]

+ �
1

2
[f ((1� s) a+ sy) + f ((1� s) y + sb)]

for any s 2 [0; 1] :
If we integrate this inequality and use the representation (1.3) we get

Da+;b�f (�x+ �y)

=
1

2

Z 1

0

[f ((1� s) a+ s (�x+ �y)) + f ((1� s) (�x+ �y) + sb)] ds

� �1
2

Z 1

0

[f ((1� s) a+ sx) + f ((1� s)x+ sb)] ds

+ �
1

2

Z 1

0

[f ((1� s) a+ sy) + f ((1� s) y + sb)] ds

= �Da+;b�f (x) + �Da+;b�f (y) ;
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which proves the convexity of Da+;b�f:
(iii) Let x; y 2 (a; b) : Then

jDa+;b�f (x)�Da+;b�f (y)j

=
1

2

����Z 1

0

[f ((1� s) a+ sx) + f ((1� s)x+ sb)] ds

�
Z 1

0

[f ((1� s) a+ sy) + f ((1� s) y + sb)] ds
����

=
1

2

����Z 1

0

[f ((1� s) a+ sx)� f ((1� s) a+ sy)] ds

+

Z 1

0

[f ((1� s)x+ sb)� f ((1� s) y + sb)] ds
����

� 1

2

����Z 1

0

[f ((1� s) a+ sx)� f ((1� s) a+ sy)] ds
����

+
1

2

����Z 1

0

[f ((1� s)x+ sb)� f ((1� s) y + sb)] ds
����

� 1

2

Z 1

0

jf ((1� s) a+ sx)� f ((1� s) a+ sy)j ds

+
1

2

Z 1

0

jf ((1� s)x+ sb)� f ((1� s) y + sb)j ds

=: K (x; y) :

Since f is Lipschitzian with the constant L on [a; b] ; thenZ 1

0

jf ((1� s) a+ sx)� f ((1� s) a+ sy)j ds

� L
Z 1

0

j(1� s) a+ sx� (1� s) a� syj ds = 1

2
L jx� yj

and Z 1

0

jf ((1� s)x+ sb)� f ((1� s) y + sb)j ds

� L
Z 1

0

j(1� s)x+ sb� (1� s) y � sbj ds = 1

2
L jx� yj

for any x; y 2 (a; b) :
Therefore

K (x; y) � 1

4
L jx� yj+ 1

4
L jx� yj = 1

2
L jx� yj ;

which shows that Da+;b�f is Lipschitzian with the constant 12L: �

Now, for �; � 2 C and [a; b] an interval of real numbers, de�ne the sets of
complex-valued functions, see for instance [6]

�U[a;b] (�;�)

:=
n
f : [a; b]! CjRe

h
(�� f (t))

�
f (t)� �

�i
� 0 for almost every t 2 [a; b]

o
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and

��[a;b] (�;�) :=

�
f : [a; b]! Cj

����f (t)� �+�2
���� � 1

2
j�� �j for a.e. t 2 [a; b]

�
:

The following representation result may be stated.

Proposition 1. For any �; � 2 C, � 6= �; we have that �U[a;b] (�;�) and ��[a;b] (�;�)
are nonempty, convex and closed sets and

(2.2) �U[a;b] (�;�) = ��[a;b] (�;�) :

Proof. We observe that for any z 2 C we have the equivalence����z � �+�2
���� � 1

2
j�� �j

if and only if
Re [(�� z) (�z � �)] � 0:

This follows by the equality

1

4
j�� �j2 �

����z � �+�2
����2 = Re [(�� z) (�z � �)]

that holds for any z 2 C.
The equality (2.2) is thus a simple consequence of this fact. �

On making use of the complex numbers �eld properties we can also state that:

Corollary 1. For any �; � 2 C, � 6= �;we have that
�U[a;b] (�;�) = ff : [a; b]! C j (Re�� Re f (t)) (Re f (t)� Re�)

+ (Im�� Im f (t)) (Im f (t)� Im�) � 0 for a.e. t 2 [a; b]g :

Now, if we assume that Re (�) � Re (�) and Im (�) � Im (�) ; then we can de�ne
the following set of functions as well:

�S[a;b] (�;�) := ff : [a; b]! C j Re (�) � Re f (t) � Re (�)
and Im (�) � Im f (t) � Im (�) for a.e. t 2 [a; b]g :

One can easily observe that �S[a;b] (�;�) is closed, convex and

; 6= �S[a;b] (�;�) � �U[a;b] (�;�) :

Theorem 2. Let f : [a; b] ! C is Lebesgue integrable on [a; b] and there exists
the constants �; � 2 C, � 6= �; such that f 2 ��[a;b] (�;�) ; then also Da+;b�f 2
��[a;b] (�;�) :

Proof. Let x 2 (a; b) : Then

Da+;b�f (x)�
�+�

2
=
1

2

Z 1

0

�
f ((1� s) a+ sx)� �+�

2

�
(2.3)

+
1

2

Z 1

0

�
f ((1� s)x+ sb)� �+�

2

�
ds:

Since f 2 ��[a;b] (�;�) ; then����f ((1� s) a+ sx)� �+�2
���� � 1

2
j�� �j
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and ����f ((1� s)x+ sb)� �+�2
���� � 1

2
j�� �j

for almost every s 2 [0; 1] :
By taking the modulus in (2.3), we get����Da+;b�f (x)� �+�2

���� � 1

2

Z 1

0

����f ((1� s) a+ sx)� �+�2
����

+
1

2

Z 1

0

����f ((1� s)x+ sb)� �+�2
���� ds

� 1

4
j�� �j+ 1

4
j�� �j = 1

2
j�� �j ;

which proves the statement. �

3. Some Inequalities for Convex Functions

We have the following lower and upper bounds for Da+;b�f :

Theorem 3. Let f : [a; b] ! R be a convex function on [a; b] : Then for any
x 2 (a; b) we have

f

 
x+ a+b

2

2

!
� 1

2

�
f

�
a+ x

2

�
+ f

�
x+ b

2

��
� Da+;b�f (x)(3.1)

� 1

2

�
f (x) +

f (a) + f (b)

2

�
� 1

2

�
(b� x) f (a) + (x� a) f (b)

b� a +
f (a) + f (b)

2

�
:

Proof. The �rst inequality in (3.1) follows by the convexity of f on [a; b] : By
Hermite-Hadamard inequality (1.1) we have

f

�
a+ x

2

�
� 1

x� a

Z x

a

f (t) dt � f (a) + f (x)

2

and

f

�
x+ b

2

�
� 1

b� x

Z b

x

f (t) dt � f (x) + f (a)

2

for any x 2 (a; b) :
If we add these two inequalities and divide by 2 we get

1

2

�
f

�
a+ x

2

�
+ f

�
x+ b

2

��
� 1

2

"
1

x� a

Z x

a

f (t) dt+
1

b� x

Z b

x

f (t) dt

#

� 1

2

�
f (x) +

f (a) + f (b)

2

�
;

which proves the second and the third inequalities in (3.1).
By the convexity of f we also have

f (x) = f

�
(b� x) a+ (x� a) b

b� a

�
� (b� x) f (a) + (x� a) f (b)

b� a



AN OPERATOR ASSOCIATED TO HERMITE-HADAMARD INEQUALITY 7

and then

1

2

�
f (x) +

f (a) + f (b)

2

�
� 1

2

�
(b� x) f (a) + (x� a) f (b)

b� a +
f (a) + f (b)

2

�
;

for any x 2 (a; b) ; which proves the last inequality in (3.1). �

We have the following reverse inequalities as well:

Theorem 4. Let f : [a; b] ! R be a convex function on [a; b] : Then for any
x 2 (a; b)

0 � 1

16

��
f 0+

�
a+ x

2

�
� f 0�

�
a+ x

2

��
(x� a)(3.2)

+

�
f 0+

�
x+ b

2

�
� f 0�

�
x+ b

2

��
(b� x)

�
� Da+;b�f (x)�

1

2

�
f

�
a+ x

2

�
+ f

�
x+ b

2

��
� 1

16

��
f 0� (x)� f 0+ (a)

�
(x� a) +

�
f 0� (b)� f 0+ (x)

�
(b� x)

	
and

0 � 1

16

��
f 0+

�
a+ x

2

�
� f 0�

�
a+ x

2

��
(x� a)(3.3)

+

�
f 0+

�
x+ b

2

�
� f 0�

�
x+ b

2

��
(b� x)

�
� 1

2

�
f (x) +

f (a) + f (b)

2

�
�Da+;b�f (x)

� 1

16

��
f 0� (x)� f 0+ (a)

�
(x� a) +

�
f 0� (b)� f 0+ (x)

�
(b� x)

	
:

Proof. We use the following re�nement-reverse inequality of the �rst Hermite-
Hadamard inequality obtained in [3]

0 � 1

8

�
f 0+

�
c+ d

2

�
� f 0�

�
c+ d

2

��
(d� c)(3.4)

� 1

d� c

Z d

c

f (s) ds� f
�
c+ d

2

�
� 1

8

�
f 0� (d)� f 0+ (c)

�
(d� c)

that holds for the convex function f on [c; d] :
Let x 2 (a; b) : Then by (3.4) we get

0 � 1

8

�
f 0+

�
a+ x

2

�
� f 0�

�
a+ x

2

��
(x� a)(3.5)

� 1

x� a

Z x

a

f (s) ds� f
�
a+ x

2

�
� 1

8

�
f 0� (x)� f 0+ (a)

�
(x� a)
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and

0 � 1

8

�
f 0+

�
x+ b

2

�
� f 0�

�
x+ b

2

��
(b� x)(3.6)

� 1

b� x

Z b

x

f (s) ds� f
�
x+ b

2

�
� 1

8

�
f 0� (b)� f 0+ (x)

�
(b� x) :

If we add (3.5) and (3.6) and divide by 2 we get (3.2).
Further on, by using the following re�nement-reverse inequality of the second

Hermite-Hadamard inequality obtained in [4]

0 � 1

8

�
f 0+

�
c+ d

2

�
� f 0�

�
c+ d

2

��
(d� c)

� f (c) + f (d)

2
� 1

d� c

Z d

c

f (s) ds � 1

8

�
f 0� (d)� f 0+ (c)

�
(d� c)

that holds for the convex function f on [c; d] ; we have

0 � 1

8

�
f 0+

�
a+ x

2

�
� f 0�

�
a+ x

2

��
(x� a)(3.7)

� f (a) + f (x)

2
� 1

x� a

Z x

a

f (s) ds � 1

8

�
f 0� (x)� f 0+ (a)

�
(x� a)

and

0 � 1

8

�
f 0+

�
x+ b

2

�
� f 0�

�
x+ b

2

��
(b� x)(3.8)

� f (x) + f (b)

2
� 1

b� x

Z b

x

f (s) ds � 1

8

�
f 0� (b)� f 0+ (x)

�
(x� a)

for any x 2 (a; b) :
If we add (3.7) and (3.8) and divide by 2 we get (3.3). �

The case of di¤erentiable convex functions that is important for applications
provides the following upper bounds:

Corollary 2. Let f : [a; b]! R be a convex function on [a; b] which is di¤erentiable
on (a; b) : Then for any x 2 (a; b) we have

0 � Da+;b�f (x)�
1

2

�
f

�
a+ x

2

�
+ f

�
x+ b

2

��
(3.9)

� 1

16

��
f 0 (x)� f 0+ (a)

�
(x� a) +

�
f 0� (b)� f 0 (x)

�
(b� x)

	

� 1

16

8>>>>>>>>>><>>>>>>>>>>:

�
1
2 (b� a) +

��x� a+b
2

��� �f 0� (b)� f 0+ (a)�
[(x� a)p + (b� x)p]1=p

�
��
f 0 (x)� f 0+ (a)

�q
+
�
f 0� (b)� f 0 (x)

�q�1=q
if p; q > 1 with 1

p +
1
q = 1;h

1
2

�
f 0� (b)� f 0+ (a)

�
+
���f 0 (x)� f 0�(b)+f

0
+(a)

2

���i (b� a)



AN OPERATOR ASSOCIATED TO HERMITE-HADAMARD INEQUALITY 9

and

0 � 1

2

�
f (x) +

f (a) + f (b)

2

�
�Da+;b�f (x)(3.10)

� 1

16

��
f 0 (x)� f 0+ (a)

�
(x� a) +

�
f 0� (b)� f 0 (x)

�
(b� x)

	

� 1

16

8>>>>>>>>>><>>>>>>>>>>:

�
1
2 (b� a) +

��x� a+b
2

��� �f 0� (b)� f 0+ (a)�
[(x� a)p + (b� x)p]1=p

�
��
f 0 (x)� f 0+ (a)

�q
+
�
f 0� (b)� f 0 (x)

�q�1=q
if p; q > 1 with 1

p +
1
q = 1;h

1
2

�
f 0� (b)� f 0+ (a)

�
+
���f 0 (x)� f 0�(b)+f

0
+(a)

2

���i (b� a) :
The proof follows from Theorem 3.2 by using the Hölder�s elementary inequality

mr + ns �

8<:
max fm;ng (r + s) ;

(mp + np)
1=p
(rq + sq)

1=q
; p; q > 1; 1p +

1
q = 1

for m; r; n; s � 0:

Remark 1. With the assumptions of Corollary 2 we have the following reverses of
Hermite-Hadamard type inequalities

0 � 1

b� a

Z b

a

f (t) dt� 1
2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

��
(3.11)

� 1

32

�
f 0� (b)� f 0+ (a)

�
(b� a)

and

0 � 1

2

�
f

�
a+ b

2

�
+
f (a) + f (b)

2

�
� 1

b� a

Z b

a

f (t) dt(3.12)

� 1

32

�
f 0� (b)� f 0+ (a)

�
(b� a) :

4. Inequalities for Hölder Continuous Functions

We say that the function f : [a; b]! C is of H-r-Hölder type if
jf (t)� f (s)j � H jt� sjr

for any t; s 2 [a; b] ; where H > 0 and r 2 (0; 1] : If r = 1 and we put H = L; then
we call the function of L-Lipschitz type.
We have:

Theorem 5. If f is of H-r-Hölder type on [a; b] with H > 0 and r 2 (0; 1] ; then
for any x 2 (a; b) we have

(4.1) jDa+;b�f (x)� f (x)j �
1

2 (r + 1)
H [(x� a)r + (b� x)r]

and

(4.2)

����Da+;b�f (x)� f (a) + f (b)2

���� � 1

2 (r + 1)
H [(x� a)r + (b� x)r] :
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In particular, if f is of L-Lipschitz type, then

(4.3) jDa+;b�f (x)� f (x)j �
1

4
L (b� a)

and

(4.4)

����Da+;b�f (x)� f (a) + f (b)2

���� � 1

4
L (b� a)

for any x 2 (a; b) :

Proof. We observe that, for any x 2 (a; b) we have that

1

2

"
1

x� a

Z x

a

[f (t)� f (x)] dt+ 1

b� x

Z b

x

[f (t)� f (x)] dt
#

=
1

2

"
1

x� a

Z x

a

f (t) dt� f (x) + 1

b� x

Z b

x

f (t) dt� f (x)
#

= Da+;b�f (x)� f (x) ;

and by taking the modulus, we get

jDa+;b�f (x)� f (x)j

� 1

2

"
1

x� a

����Z x

a

[f (t)� f (x)] dt
����+ 1

b� x

�����
Z b

x

[f (t)� f (x)]
����� dt
#

� 1

2

"
1

x� a

Z x

a

jf (t)� f (x)j dt+ 1

b� x

Z b

x

jf (t)� f (x)j dt
#

� 1

2

"
H

x� a

Z x

a

jt� xjr dt+ H

b� x

Z b

x

jt� xjr dt
#

=
1

2

�
H (x� a)r

r + 1
+
H (b� x)r

r + 1

�
=

1

2 (r + 1)
H [(x� a)r + (b� x)r]

that proves (4.1).
We observe that, for any x 2 (a; b) we also have that

1

2

"
1

x� a

Z x

a

[f (t)� f (a)] dt+ 1

b� x

Z b

x

[f (t)� f (b)] dt
#

=
1

2

"
1

x� a

Z x

a

f (t) dt� f (a) + 1

b� x

Z b

x

f (t) dt� f (b)
#

= Da+;b�f (x)�
f (a) + f (b)

2
;
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and by taking the modulus, we get

����Da+;b�f (x)� f (a) + f (b)2

����
� 1

2

"
1

x� a

����Z x

a

[f (t)� f (a)] dt
����+ 1

b� x

�����
Z b

x

[f (t)� f (b)]
����� dt
#

� 1

2

"
1

x� a

Z x

a

jf (t)� f (a)j dt+ 1

b� x

Z b

x

jf (t)� f (b)j dt
#

� 1

2

"
H

x� a

Z x

a

jt� ajr dt+ H

b� x

Z b

x

jt� bjr dt
#

=
1

2

�
H (x� a)r

r + 1
+
H (b� x)r

r + 1

�
=

1

2 (r + 1)
H [(x� a)r + (b� x)r] ;

that proves (4.2). �

We also have:

Theorem 6. If f is of H-r-Hölder type on [a; b] with H > 0 and r 2 (0; 1] ; then
for any x 2 (a; b) we have

����Da+;b�f (x)� 12
�
f

�
x+ a

2

�
+ f

�
x+ b

2

������(4.5)

� 1

2r+1 (r + 1)
H [(x� a)r + (b� x)r] :

In particular, if f is of L-Lipschitz type, then

(4.6)

����Da+;b�f (x)� 12
�
f

�
x+ a

2

�
+ f

�
x+ b

2

������ � 1

8
L (b� a)

for any x 2 (a; b) :

Proof. We observe that, for any x 2 (a; b) we have that

1

2

"
1

x� a

Z x

a

�
f (t)� f

�
x+ a

2

��
dt+

1

b� x

Z b

x

�
f (t)� f

�
x+ b

2

��
dt

#

=
1

2

"
1

x� a

Z x

a

f (t) dt� f
�
x+ a

2

�
+

1

b� x

Z b

x

f (t) dt� f
�
x+ b

2

�#

= Da+;b�f (x)�
1

2

�
f

�
x+ a

2

�
+ f

�
x+ b

2

��
:
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By taking the modulus we have����Da+;b�f (x)� 12
�
f

�
x+ a

2

�
+ f

�
x+ b

2

������
� 1

2

"
1

x� a

Z x

a

����f (t)� f �x+ a2
����� dt+ 1

b� x

Z b

x

����f (t)� f �x+ b2
����� dt

#

� 1

2

"
H

x� a

Z x

a

����t� x+ a2
����r dt+ H

b� x

Z b

x

����t� x+ b2
����r dt

#

=
1

2

"
H

x� a
(x� a)r+1

2r (r + 1)
+

H

b� x
(b� x)r+1

2r (r + 1)

#

=
H

2r+1 (r + 1)
[(x� a)r + (b� x)r]

for any x 2 (a; b) ; which proves the inequality (4.5). �

Remark 2. If we take in Theorem 6 x = a+b
2 ; then we get

0 �
����� 1

b� a

Z b

a

f (t) dt� 1
2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

�������(4.7)

� 1

4r (r + 1)
H (b� a)r

and

0 �
����� 1

b� a

Z b

a

f (t) dt� 1
2

�
f

�
3a+ b

4

�
+ f

�
a+ 3b

4

������� � 1

8
L (b� a) :

5. Applications

We de�ne the logarithmic mean L(x; y), given by

L(x; y) :=
y � x

ln y � lnx

and identric mean I(x; y), given by

I(x; y) :=
1

e

�
yy

xx

�1=(y�x)
;

for x; y > 0 and x 6= y: In each case we de�ne the mean as x when y = x.
We observe that if f�1 (t) = 1

t ; t > 0; then

1

y � x

Z y

x

f�1 (t) dt =
1

y � x

Z y

x

1

t
dt =

1

L(x; y)

and if f0 (t) = ln t; t > 0; then

1

y � x

Z y

x

f0 (t) dt =
1

y � x

Z y

x

ln tdt = ln I(x; y):
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Therefore we have

Da+;b�f�1 (x) :=
1

2

�
1

L(a; x)
+

1

L(x; b)

�
=
L(a; x) + L(x; b)

2L(a; x)L(x; b)
= H�1 (L(a; x); L(x; b)) ; x 2 (a; b)

and

Da+;b�f0 (x) :=
1

2
[ln I(a; x) + ln I(x; b)] = ln

�p
I(a; x)I(x; b)

�
= lnG (I(a; x); I(x; b)) ; x 2 (a; b) ;

where H (�; �) := 2��
�+� is the harmonic mean and G (�; �) :=

p
�� is the geometric

mean of the positive numbers �; � > 0:
Writing the inequality (3.9) for the functions f�1 and �f0 we get

0 � H�1 (L(a; x); L(x; b))�H�1 (A (a; x) ; A (x; b))(5.1)

� 1

16

�
a+ x

a2x2
(x� a)2 + x+ b

x2b2
(b� x)2

�
and

0 � lnG (A (a; x) ; A (x; b))� lnG (I(a; x); I(x; b))(5.2)

� 1

16

"
(x� a)2

ax
+
(b� x)2

xb

#
for x 2 (a; b) � (0;1) : Here A (�; �) := �+�

2 denoted the arithmetic mean.
Writing the inequality (3.10) for the functions f�1 and �f0 we get

0 � H�1 �x;H�1 (a; b)
�
�H�1 (L(a; x); L(x; b))(5.3)

� 1

16

�
a+ x

a2x2
(x� a)2 + x+ b

x2b2
(b� x)2

�
and

0 � lnG (I(a; x); I(x; b))� lnG (x;G (a; b))(5.4)

� 1

16

"
(x� a)2

ax
+
(b� x)2

xb

#
for x 2 (a; b) � (0;1) :
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