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Summary. In this paper, we introduced an error analysis with the help of Ostrowski
type inequalities for n-times differentiable mappings. by using n-times peano kernel.
A comparison is also presented to validate our results.

1 Introduction

Integral inequalities have many potential applications in practical problems
of the real world. Theory of integral inequalities is rapidly growing with the
help of some basic tools of functional analysis, topology and fixed point the-
ory. Ostrowski inequality is one of them, that can be defined as: Estimate
the deviation of functional value from its average value and the estimation of
approximating area under the curve. In the last few years, many researchers
have tried to obtain better bounds of Ostrowski inequality in the form of
different Lebesgue spaces (see for instance [13]-[14]). In many practical prob-
lems, it is important to bound one quantity by another quantity. The classical
inequalities such as Ostrowski are very useful for this purpose. To make new
Ostrowski type inequalities, Peano kernel is the most important tool. With the
help of different Peano kernels, different types of Ostrowski type inequalities
can be obtained. Efficiency of quadrature rules also depend on the selection
of kernel. An analysis with the help of some graphs are also shown. At the
end, a comparison with the previous results is also presented.
In 1938, Ostrowski [12] discovered the following useful integral inequality:

Theorem 1. Let f : [a, b] → R be continuous on [a, b] and differentiable on
(a, b) , whose derivative f ′ : (a, b)→ R is bounded on (a, b) , i.e.
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‖f ′‖∞ = sup
t∈[a,b]

|f ′ (t)| <∞,

then for all x ∈ [a, b]∣∣∣∣∣∣ f(x)− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
1

4
+

(
x− a+b

2

b− a

)2
 (b− a) ‖f ′‖∞ . (1)

We mention another inequality called Grüss inequality [10] which is stated
as the integral inequality that establishes a connection between the integral of
the product of two functions and the product of the integrals, which is given
below.

∣∣∣∣∣∣ 1

b− a

b∫
a

f(x)g(x)dx− 1

b− a

b∫
a

f(x)dx.
1

b− a

b∫
a

g(x)dx

∣∣∣∣∣∣ (2)

≤ 1

4
(Φ− ϕ)(Γ − γ),

where
ϕ ≤ f (x) ≤ Φ and γ ≤ g (x) ≤ Γ ,

for all x ∈ [a, b] . The constant 1
4 is sharp in (2) .

In [5], Dragomir and Wang combined Ostrowski and Grüss inequality to
give a new inequality which they named Ostrowski-Grüss type inequality.

In [6], Guessab and Schmeisser proved the following Ostrowski’s inequality:

Theorem 2. Let f : [a, b]→ R satisfy the Lipschitz condition i.e., |f(t)− f(s)| ≤
M |t− s| . Then for all x ∈

[
a, a+b

2

]
, we have∣∣∣∣∣∣f(x) + f(a+ b− x)

2
− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤
1

8
+ 2

(
x− 3a+b

4

b− a

)2
 (b− a)M.

(3)
In (3), the point x = 3a+b

4 yields the following trapezoid type inequality.∣∣∣∣∣∣f
(
3a+b
4

)
+ f

(
a+3b
4

)
2

− 1

b− a

b∫
a

f(t)dt

∣∣∣∣∣∣ ≤ b− a
8

M. (4)

The constant 1
8 is sharp in (4).

In [2], Barnett et.al proved some Ostrowski and generalized trapezoid in-
equalities. Dragomir [4] and Liu [7] established some companions of Ostrowski
type integral inequalities. Alomari [1] proved the following inequality:
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Let f : [a, b]→ R be a differentiable mapping on (a, b). If f ′ ∈ L1 [a, b] and
γ ≤ f ′(t) ≤ Γ , for all t ∈ [a, b] , then∣∣∣∣∣∣f (x) + f (a+ b− x)

2
− 1

b− a

b∫
a

f (t) dt

∣∣∣∣∣∣ ≤ 1

8
(b− a) (Γ − γ) . (5)

Recently, Liu [8] and Liu et.al [9] proved some Ostrowski type inequalities.
In all references mentioned above, authors proved their results by using kernels
with two or three steps.

Qayyum et. al [14] presnted a refinements of Ostrowski Ineuality for n-th
differentiable functions as:

Define n-times Peano kernel P (x, .) : [a, b]→ R by

Pn(x, t) =



1
n! (t− a)

n
, t ∈

(
a, a+x

2

]
1
n!

(
t− 3a+b

4

)n
, t ∈

(
a+x
2 , x

]
1
n!

(
t− a+b

2

)n
, t ∈ (x, a+ b− x]

1
n!

(
t− a+3b

4

)n
, t ∈

(
a+ b− x, a+2b−x

2

]
1
n! (t− b)n , t ∈

(
a+2b−x

2 , b
]
,

(6)

for all x ∈
[
a, a+b

2

]
,then following lemma holds:

Lemma 1. Let f : [a, b]→ R be an n-times differentiable function such that
f (n−1)(x) for n ∈ N is absolutely continuous on [a, b] then
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1

b− a

b∫
a

Pn(x, t)f (n)(t)dt (7)

=

n−1∑
k=0

(−1)
n+k+1

(k + 1)!

×

[
1

2k+1

{
(x− a)

k+1 −
(
x− a+ b

2

)k+1
}
f (k)

(
a+ x

2

)

+

{(
x− 3a+ b

4

)k+1

−
(
x− a+ b

2

)k+1
}
f (k) (x)

+ (−1)
k+1

{(
x− a+ b

2

)k+1

−
(
x− 3a+ b

4

)k+1
}
f (k) (a+ b− x)

+

(
−1

2

)k+1
{(

x− a+ b

2

)k+1

− (x− a)
k+1

}
f (k)

(
a+ 2b− x

2

)]

+
(−1)

n

b− a

b∫
a

f(t)dt

for all x ∈
[
a, a+b

2

]
.

2 Main Results

2.1 Integral inequalities for
∥∥f (n)

∥∥
∞

Theorem 3. Let f : [a; b]→ R be an n-times differentiable function such that
f (n−1) (x) for n ∈ N on (a, b) is absolutely continuous on [a, b], then
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b∫

a

f(t)dt− (b− a)

n−1∑
k=0

(−1)
k

(k + 1)!

[
1

2k+1

{
(x− a)

k+1 −
(
x− a+ b

2

)k+1
}

(8)

× f (k)
(
a+ x

2

)
+

{(
x− 3a+ b

4

)k+1

−
(
x− a+ b

2

)k+1
}
f (k) (x)

+ (−1)
k+1

{(
x− a+ b

2

)k+1

−
(
x− 3a+ b

4

)k+1
}
f (k) (a+ b− x)

+

(
−1

2

)k+1
{(

x− a+ b

2

)k+1

− (x− a)
k+1

}
f (k)

(
a+ 2b− x

2

)]

≤
∥∥f (n)∥∥∞
(n+ 1)!

[
1

2n
(x− a)

n+1
+ (1 + (−1)

n
)

(
x− 3a+ b

4

)n+1

+

(
−1 + (−1)

n+1

2n+1
− (1 + (−1)

n
)

)(
x− a+ b

2

)n+1
∣∣∣∣∣

for all x ∈
[
a, a+b

2

]
.

The following new quadrature rules can be obtained while investigating
error bounds using above Theorem.

Qn,1 (f) :=

b∫
a

f(t)dt

≈
n−1∑
k=0

(b− a)
k+2

2k+1 (k + 1)!

[
f (k) (a) + (−1)

k
f (k) (b)

]
+
[
f (n−1)(b)− f (n−1)(a)

] (b− a)
n

2n+1 (n+ 1)!
(1 + (−1)

n
)

Qn,2 (f) :=

b∫
a

f(t)dt

≈
n−1∑
k=0

(b− a)
k+2

(−1)
k

4k+1 (k + 1)!

[
f (k)

(
3a+ b

4

)
+
{

1 + (−1)
k
}
f (k)

(
a+ b

2

)
+ (−1)

k
f (k)

(
a+ 3b

4

)]
+
(
f (n−1)(b)− f (n−1)(a)

)
× 2

4n+1

(b− a)
n

(n+ 1)!
((−1)

n
+ 1)
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Qn,3 (f) :=

b∫
a

f(t)dt

≈
n−1∑
k=0

(−1)
k

(k + 1)!

(b− a)
k+2

4k+1

[
1 + (−1)

k

2k+1

(
f (k)

(
7a+ b

8

)
+ f (k)

(
a+ 7b

8

))
+

{
(−1)

k
f (k)

(
3a+ b

4

)
+ f (k)

(
a+ 3b

4

)}]
+
[
f (n−1)(b)− f (n−1)(a)

] (b− a)
n

4n+1 (n+ 1)!
((−1)

n
+ 1)

(
1

2n
+ 1

)
.

From [12], using Theorem 3.1, Cerone’s Quadrature Rules

Qn,1 (f) :=

b∫
a

f(t)dt

≈
n−1∑
k=0

(b− a)
k+1

(k + 1)!
f (k) (a)

Qn,2 (f) :=

b∫
a

f(t)dt

≈
n−1∑
k=0

(b− a)
k+1

(k + 1)!

(
1 + (−1)

k
)
f (k)

(
a+ b

2

)

Qn,3 (f) :=

b∫
a

f(t)dt

≈
n−1∑
k=0

1

(k + 1)!

(b− a)
k+1

4k+1

(
(1)

k+1
+ (−1)

k
)
f (k)

(
3a+ b

4

)
Now, we present a comparison between Cerone’s error bouds with obtained
error bounds.

3 A Comparison and Error Analysis of Error Bounds

From [3], Cerone’s error bounds are given:
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Ec,1 =
(b− a)

n+1

(n+ 1)!
,

Ec,2 =
(b− a)

n+1

2n (n+ 1)!
,

Ec,3 =
(b− a)

n+1 (
1 + 3n+1

)
4n+1 (n+ 1)!

.

Our error bounds obtained from above Theorem, are given below:

Ea,1 =
(b− a)

n+1

(n+ 1)!

[
1

2n+1
+

(−1)
n

+ 1

2n+1

]
,

Ea,2 =
(b− a)

n+1

2n (n+ 1)!

[
1

2n+3
+

(−1)
n

+ 1

23n+4

]
,

Ea,3 =
(b− a)

n+1 (
1 + 3n+1

)
4n+1 (n+ 1)!

×
[

(−1)
n

+ 1

1 + 33n+1
+

(−1)
n

+ 1

2n+1 (1 + 33n+1)
+

3

2n+1 (1 + 33n+1)

]
.

To show that our error bounds are less than Cerone’s error bound, we have
to show that

1

2n+1
+

(−1)
n

+ 1

2n+1
< 1

1

2n+3
+

(−1)
n

+ 1

23n+4
< 1

(−1)
n

+ 1

1 + 33n+1
+

(−1)
n

+ 1

2n+1 (1 + 33n+1)
+

3

2n+1 (1 + 33n+1)
< 1

Case. 1
First we will prove that

1

2n+1
+

(−1)
n

+ 1

2n+1
< 1

Since
1 < 2n ∀ n ∈ {1, 2, 3, ....}

Also

2n+1 > 0 ∀ n ∈ {1, 2, 3, ....}

=⇒ 1

2n+1
< 0 ∀ n ∈ {1, 2, 3, ....}

1

2n+1
.1 <

1

2n+1
2n ∀ n ∈ {1, 2, 3, ....}

Hence
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1

2n+1
<

1

2n
∀ n ∈ {1, 2, 3, ....}

Now, since

1 + (−1)
n

=

{
0, if n is odd
2, if n is even

And

1

2n+1
<

1

2
∀ odd n

1

2n+1
<

1

22
∀ even n

Therefore,

(−1)
n

+ 1

2n+1
= 0 ∀ odd n

(−1)
n

+ 1

2n+1
=

2

2n+1
∀ even n

<
2

22
=

1

2

Hence
(−1)

n
+ 1

2n+1
<

1

2
∀ even n

Therefore,
1

2n+1
+

(−1)
n

+ 1

2n+1
< 1.

Case. 2
Now, we will prove that

1

2n+3
+

(−1)
n

+ 1

23n+4
< 1

Since
1 < 2n ∀ n ∈ {1, 2, 3, ....}

Also

1

2n+3
> 0 ∀ n ∈ {1, 2, 3, ....}

1

2n+3
.1 <

1

2n+3
.2n ∀ n ∈ {1, 2, 3, ....}

1

2n+3
<

1

8
∀ n ∈ {1, 2, 3, ....}

Since

1 + (−1)
n

=

{
0, if n is odd
2, if n is even
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And

1

23n+4
<

1

26
∀ odd n

1

23n+4
<

1

29
∀ even n

1 + (−1)
n

23n+4
= 0 ∀ odd n

1 + (−1)
n

23n+4
=

2

23n+4
∀ even n

<
2

29
∀ even n

=
1

28
∀ even n

Therefore,
1

23n+4
<

1

512
∀ even n

Hence from (i) and (ii), we get

1

2n+3
+

(−1)
n

+ 1

23n+4
< 1 ∀ n ∈ {1, 2, 3, ....} .

Case. 3
Now, we will prove that

(−1)
n

+ 1

1 + 33n+1
+

(−1)
n

+ 1

2n+1 (1 + 33n+1)
+

3

2n+1 (1 + 33n+1)
< 1

Since

1 + (−1)
n

=

{
0, if n is odd
2, if n is even

Also

1

1 + 33n+1
<

1

9
∀ odd n

1

1 + 33n+1
<

1

27
∀ even n

Therefore

(−1)
n

+ 1

1 + 3n+1
= 0 ∀ odd n

(−1)
n

+ 1

1 + 3n+1
=

2

1 + 3n+1
∀ even n

<
2

27
∀ even n
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Now

1

2n+1
<

1

2
∀ odd n

1

2n+1
<

1

4
∀ even n

1

1 + 33n+1
<

1

9
∀ odd n

1

1 + 33n+1
<

1

27
∀ even n

(−1)
n

+ 1

2n+1 (1 + 33n+1)
= 0 ∀ odd n

(−1)
n

+ 1

2n+1 (1 + 33n+1)
=

2

2n+1 (1 + 33n+1)
∀ even n

<
2

4.27
=

1

54
(−1)

n
+ 1

2n+1 (1 + 33n+1)
<

1

54
∀ even n

Now
1

2n+1
<

1

2
∀ n ∈ {1, 2, 3, ....}

and

1

1 + 33n+1
<

1

9
∀ n ∈ {1, 2, 3, ....}

1

2n+1 (1 + 33n+1)
<

1

2
.
1

9
∀ n ∈ {1, 2, 3, ....}

1

2n+1 (1 + 33n+1)
<

1

18
∀ n ∈ {1, 2, 3, ....}

From (i) and (ii), we get

(−1)
n

+ 1

1 + 33n+1
+

(−1)
n

+ 1

2n+1 (1 + 33n+1)
+

3

2n+1 (1 + 33n+1)
< 1.

4 Discussion

Cerone et al. developed error bounds using 2-step kernel. But in our case,
we developed error bounds with the help of 5-step kernel. In fig. 1 & 2, we
established a comparison between error bounds E1, E2 and E3 for odd and
even number of intervals. These figures show that our error bounds are smaller
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Fig. 1. Comparison between error bounds of quadratures (a) Q1 (b) Q2 (c) Q3 for
odd number of intervals.

Fig. 2. Comparison between error bounds of quadratures (a) Q1 (b) Q2 (c) Q3 for
even number of intervals.

than the error bounds of Cerone et al. [3] in both cases i.e. for even and
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odd number of intervals. Also, it can be seen from the graphs that the error
decreases with the increase in number of intervals. Actually, use of 5-step
kernel and a proper choice of scheme play a major role in minimizing the
errors. It can be concluded that we have developed a very efficient new integral
inequality which gives us better approximations for the quadrature.
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