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APPROXIMATION OF INTEGRAL OPERATORS FOR
ABSOLUTELY CONTINUOUS FUNCTIONS WHOSE
DERIVATIVES ARE ESSENTIALLY BOUNDED

S. S. DRAGOMIR

ABSTRACT. Approximations via Ostrowski type inequalities for the integral
transform with the kernel K (.,.) of absolutely continuous functions g : [a, b] —
R whose derivative g’ : [a,b] — R belongs to L [a,b] are obtained. Appli-
cations for particular integral transforms such as the Finite Mellin transform,
the Finite Sine and Cosine transforms are also given .

1. INTRODUCTION

Let K : R? — K be a Lebesgue measurable function. Define the integral operator

b
(1.1) A(g)(t) ::/ K (t,s)g(s)ds, t € [a,b]

for g a measurable function and such that the Lebesgue integral on the finite interval
[a, ] exists for almost every real number ¢ from [a, b] .

Such examples of integral operators are the finite Fourier transform, the finite
Mellin transform and other well known finite transform from Mathematical Physics
(see for instance [5]).

The finite Fourier transform, as a specific Integral Operator of type (1.1), has
long been a principle analytical tool in such diverse fields as linear systems, optics,
random process modelling, probability theory, quantum physics and boundary-value
problems [5].

In what follows we briefly mention some approximation results for the finite
Fourier transform whose proofs have employed recent techniques and facts from
integral inequalities theory of Ostrowski type.

Let g : [a,b] — K (K = C,R) be a Lebesgue integrable mapping defined on the
finite interval [a,b] and F (g) its finite Fourier transform, i.e.,

b
Fg) @) = / g (s) e *™ 5 ds with t € [a, D] .

a

The following inequality was obtained in [6].
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Theorem 1. Let g : [a,b] — K be an absolutely continuous mapping on [a,b]. Then
we have the inequality

b
F(g) (x) — E (—2miza, —2m’xb)/ g(t)dt

gl (b—a)? if ¢ € Loola,b];

s

e
[(g+1)(a+2)]a

b—=a)llg'lly

for all x € [a,b], (z # 0) where E is the exponential mean of two complex numbers,
that 1is,

IN

1 .
b=a) "7 |gll, if g € Lyla,b],
1 1 _ 1.
p>1, 5+5_1’

z w

e —e

if z#w,
E(z,w):= oW z,we C.

exp (w) if z=w,
For functions of bounded variation, the following result holds as well (see [7]):

Theorem 2. Let g : [a,b] — K be a mapping of bounded variation on [a,b]. Then
we have the inequality

b 3 b
F(9) (x) fE(fzmm,meb)/ g(s)ds| < 5 (b=a)\/ (9).

for all x € [a,b], x # 0, where \/Z (9) is the total variation of g on [a,b].

Finally, we mention the following result obtained in [8] providing an approxima-
tion of the Fourier transform for Lebesgue integrable functions:

Theorem 3. Let g : [a,b] — K be a measurable function on [a,b]. Then we have
the estimates:

b
‘.7: (9) (z) — FE (—2miza, —27rixb)/ g(s)ds

Zlal(b-a)llgll.e i g€ Lo ab];

o ‘
<q 20 Laalllgl, if g€ Lylab],
[(a+1)(q+2)] 4
p>1, % + % =1;
2 [z] (b—a) |9l » if g€ Lifa,b

for all x € [a,b], x # 0.

For other inequalities for integral transform, see [1]-[4], [9] and [10].

Motivated by the above results and utilising the Montgomery identity that plays
a crucial role in obtaining different Ostrowski type inequalities we consider in the
following the problem of approximating the type of Integral Operators considered
in (1.1) and apply the obtained results for some particular instances such as the
Mellin Transform and the Sine and Cosine transforms.
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2. INTEGRAL INEQUALITIES
We start with the following integral inequality.

Theorem 4. Let g : [a,b] — K be an absolutely continuous mapping on [a,b] with
g € Lo [a,b]. Then we have the inequality

b—a/ dS/KtS
/\Kts|ds+7/ ( —“”) K <t,s>|ds] 19/l

—a
I [ 1K (&9l ds
for allt € [a,b].

21 A9 (@) -

Proof. Using the integration by parts formula for absolutely continuous mappings
on [a,b], we have

(2.2) | G-ag@ds=e-ag@- [ g
and

b b
(2.3) [ =g s =b-a)g@ - [ g(s)ds

for all x € [a,b].
Adding (2.2) and (2.3) we obtain Montgomery’s identity:

b b
(2.4) g(z) = L / ()ds+L p(xs) "(s)ds,x € [a,b],

b—a b—a
where the kernel p : [a, b]2 — R is defined by

v—aifvé€la,z],
p(z,0) ==
v—>bifv e (zb)

Now, using the definition of the integral operator A, we obtain

(2.5) A(g) ()

:/ab lba/ dz+—/ (s, 2) dz] (t, 5) ds
bfa/ dz/ Ktsds+7// (s,2) K (t,5) g’ (2) dzds.

Now, if we use the representation (2.5) and the properties of modulus, we obtain

K
b—a/ ds/ (t,s)d

(s, 2)| [K (£, 9)] 19" (2)] dzds.

(2.6) A(g) (1) —

“b—a
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If we assume that ¢’ € Ly [a, b], then we have

b b
[ [ el sl @] deds

b b
Il [ [ o2 15 ) dzds
a a

b [ ps b
Nl [ | [ sl [ |p<s,z>|dz] K ()] ds

:||g’|oo/ab /as(z—a)dz—l—/sb(b—z)dzl |K (t,5)|ds

o [Pl —a)? 0 -s)
~l'l.. | :

i [ 1055+ (-5
:[U’ T >|ds+/:<s—“;")2K(t,snds] 191

and the first inequality in (2.1) is proved.
2
For the second part, we observe that (s — ‘17“’)2 < %, and then

which proves the desired inequality. ([l

|K (t,5)| ds

K (t,5)] ds

Remark 1. We observe that the integral

/ab (s—“;b)2|K<t,s>|ds

can also be upper-bounded in the following manner by applying Holder’s integral
inequality:

(2.7) /ab <s— a;b)2|K(t,s)|d8

1 1
b 2q a b D
b
< [/ s—a+ ds] [/ |K(t,s)|pd31
o (b=a)*" 7% 5
= | === / |K (t,s) |pd3 = / |K (t,s)|Pds|
29+1 2q +1)4




APPROXIMATION OF INTEGRAL OPERATORS 5

where %—t—%: 1,p>1.
Using (2.1) and (2.7) we can state that:

Alg) (t) — b_a/ ds/Kts

[ /Kts|ds+/( ““’)| <t,s>|czs] 19
~ /|Kts|ds+ [/ |Kts|pds] 19/l

In addition, we have

(2.9) /ab(s—“;rb> K (t,5)|ds < sup |K (,5)| ( a+b> ds

s€(a,b]

(2.8)

IN

(b—a)’®
= sup |K (t,s)|.
ER K (L, 5)]

Then, by (2.1) and (2.8), we have

Alg)(8) b_a/ ds/Kts
/|Kts|ds—|—/( ”*b) K <t,s>|ds] I/l

<[ - /IKtslder(b = gy K(t,snl 19/l

(2.10)

s€[a,b]
(b

sup, 1K (& 9)] 9]l

56 a,

Remark 2. If we use the notations | K (¢,-)||; := ff |K (t,s)|ds and ||K (t,-)||, ==
SUPsefa) | K (¢, 8)], then we conclude with the inequality:

b b
(2.11) A(g) (1) bia g(s)ds~/ K (t,s)ds
{ 5 IE (&) 19 e

b—a)?
LK ()0 119l

IA

for allt € [a,b].

Remark 3. If we use the second inequality in (2.11) for the kernel K (t,s) =

e~ 2™ we recapture the first inequality in Theorem 1.



6 S. S. DRAGOMIR

3. A QUADRATURE FORMULA

Let us consider the division of the interval [a, b] given by I, : a = zp < 1 < ... <
Tp-1 <Tp=bandput h; =x,41—z; (i=0,..,n—1)and v (h) := max;_g7—1 hi-
Define the sum

Tit1 Tit1
(3.1) Alg, In,t) : Z / s)ds x / K (t,s)ds,

where t € [a, b].
The following is an approximation result for the integral operator A.

Theorem 5. Let g : [a,b] — K be an absolutely continuous mapping on [a, b] with
g € Lo [a,b]. Then we have

(3.2) A(g) (t) = A(g,In,t) + R(g, In,t), t € [a,b],

where A(g, I,,-) is the approximation formula defined in (3.1) and the remainder
R (g, I,,-) satisfies the bound

3V (M) 119 lloo 11 (£, )11

(3-3) B9, I ) <4 -
3 19l 1 (2, )l Z:O hi
3 119" o 1 ()
<wv(h)x
3 (0=a)llg'llc 1K (£ )l
for all t € [a,
Proof. Apply (2.1) on the intervals [z;, z;41] and for ¢t € [a,b] to obtain

bl.

(

Tit1 Ti+1 Ti4+1
/ tsds——/ / K (t,s)ds

L -
sgngn/ K (1)) ds

for all i € {0,...,n — 1}.
Summing over 4 from 0 to n — 1, we deduce

R (g, In, 1)

n—1 Tit1 1 Tif1 Tit1
Z/ g(s)K(t,s)dS—K/ g(s)dsx/ K (t,s)ds

1=0
B
< 21l Zh/ K (t,9)]ds < 5o (h ||gHOOZ/ K (t, )| ds
1 !
S0 (1) g 1S (2.1

and the first part of (3.3) is proved.
Now, if we write the inequality (2.10) on the intervals [z;, z;11], we obtain

Tit1 1 Tit1 Tit+1 h12 ,
[ e [ Tods [ K ks)ds < 191 1K (0]
x; i Ja; 4

i i

IN
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for all i € {0,...,n —1}.
Summing over ¢ from 0 to n — 1 and using the generalized triangle inequality we
obtain the second part of (3.3). O

In practical applications it is useful to assume that the partition I, is an equidis-
tant division of [a,b] . That is,

. a .
I,:x;:=a+1- ,1=0,...,n.

In this particular case, we can consider the sum

n "ol opat(itn) Rt a+(i+1)- 222
(3.4) Ay (g,t) = Z/ g (s)ds x / K (t,s)ds.

b—a 2 Jayit=e yib=a

The following corollary holds.

Corollary 1. Let g : [a,b] — K be as in Theorem 5. Then we have the approzima-
tion formula

(35) A (Q) (t) = A, (97 t) + R, (ga t) >

where Ay (g,t) is as given in (3.4) and the remainder satisfies the estimate

St N9 e 1K ()]l
(3.6) R (g, In,t)| < ;

ot 9 oo 1K (8, ) o
for all t € [a,b].

4. APPLICATIONS FOR THE MELLIN TRANSFORM

Consider the Mellin transform for a mapping f defined on a finite interval [a, b] C
Ry =1[0,00), i.e.,

b
M) 0) = [ o) st e b,
The following approximation result holds.

Proposition 1. Let g : [a,b] — K be an absolutely continuous mapping on [a, b]
with ¢’ € Lo [a,b]. Then

b
(4.1) ‘M(Q) (t) — LiZ) (a,b)/ g(s)ds

IN

{6 +4%(@b)| L7} - 24(a.b) L (a,0) + LT} (@) | 9]

(- a)?
2
for allt € [a,b]\{0,1}, where

Li~{ (a,b)

pp+1 _ gp+l
(p+1)(b—a)
a+b

is the p-logarithmic mean of the positive numbers a, b and A(a,b) = 432 is the
arithmetic mean.

Ly(et) = | f,<b7éa>,peR\{—1,0}
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Proof. We use Theorem 4 for the kernel K (t,s) = s*~1.

Observing that
b
7@/}(7:3 bia/ s'7ds = L!~1{ (a,D),

/ K (t,8)]ds = (b—a) L=} (a,b)

1 b a+b\’
bfa/a <s— 5 ) |K (t,5)|ds

b
=7 1 / [s* —2A4(a,b) s + A? (a,b)] s~ 'ds
—a ),

1 v e 1 ® 2 1 g
:m/s ds —2A (a, b)b_ / ds+ A (a,b)b_a/as ds

= L1 (a,b) — 24 (a,b) Li (a,b) + A% (a,b) L; 73 (a,b),

and

then from (2.1) we deduce the desired inequality (4.1). O

Remark 4. Now, let us observe that
at=tift e (0,1),
1K (t. )l = sup |K (t,5)| = sup [s"7}| =
s€la,b] s€[a,b] bilift € (1,00).

Consequently, by using Remark 2, we can also state the inequality

b
(4.2) M (g) (t) — L (a, D) / g (s)ds

(b—a)? at=1ift e (0,1),
< 5 9l x

bl ift € (1,00)
for all t € [a,b]\ {0,1}.
For a given division I, : a = 29 < 1 < ... < Tp—1 < Tp, = b of the interval [a, b],
consider the sum
Ti+1
(4.3) M (g,1,,t) Z L1 (w4, m4401) X / g (s)ds.

Using Theorem 5, we can state the following approximation result for the Mellin
transform.

Proposition 2. Let g : [a,b] — K be an absolutely continuous mapping on [a,b]
and g’ € L [a,b]. Then
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where M (g, I, ), given by (4.3), approximates the Mellin transform and Ry (g, I, -)
is the remainder of this transform that satisfies the bound

3V () 119 llo (b= a) L1 (a,b)
(4.5) |Ras (g, Ins t)] < ) a1t ift e (0,1),
319"l X270 B %
bitift € (1,00)
for allt € [a,b] \ {0,1}.

The proof is obvious from Theorem 5 applied for the kernel K (¢, s) = s'=1, (s,t) €
[a, b]2 .

5. APPLICATIONS FOR SINE AND COSINE TRANSFORMS

Let us consider the Sine and Cosine Transforms of an absolutely continuous
mapping g on [a,b] C (0,00)

b
S(g)(t):= / g (s)sin (27ts) ds,

b
C(g)(t) = / g (s) cos (2mts) ds,

where t € [a, b].
Also, consider the special trigonometric means

cosa if b=aq;
SIN (a,b) := _ ‘

sin lb):s{;na if b # a;

—sina if b=a;
COS (a,b) :=

cosb—cosa :
= b—a lf b 7é a.

The following proposition holds:

Proposition 3. Let g : [a,b] — K be an absolutely continuous mapping on [a,b].
Then

b
(5.1)  |S(g)(t) + (27t)? COS (2mth, 27ta) / q(s)ds
b—a [*® 1 b a+0b\?
<. 070 : 1 _ .
<t 5 ). |sinv| dv + T /a (s 5 > sin (27ts)| ds

27tb
<7t (b—a) ||9'||Oo/ sinv|dv < 2(7t)* (b= a)* ¢/ ||,

2nta
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and
b
(5.2) C(g) (t) + (2nt)*> SIN (2xtb, 27rta)/ g (s)ds
b—a [* 1 b a+0b\>
< . - _ 9
<t 5 /%ta |cosv|dv+bia/a (s 5 ) |cos (27ts)| ds
27th
<t (b—a)llg'lls / jcosv|dv < 2 (mt)* (b= a)* [1¢' |
27ta
fort € la,b].

Proof. Choose in Theorem 4, K (t,s) := sin (2nts). Then

b 27th
/ sin (27ts) ds = 27rt/ sinvdv = 27t (- COS”@:Z)
a 2

ta
cos 27tb — cos 2wta

= (=2m) 2t (b—a)
= — (2nt)* (b — a) COS (27tb, 27ta)

27t (b— a)

b 27th
/ |sin (27ts)| ds = 27Tt/ |sinv|dv < 27th (27th — 27ta)
a 2

wta
= (27t)* (b—a).
Now, by the inequality (2.1), we deduce (5.1).
A similar proof applies to the second inequality, and we omit the details. ([
For a given partition I,, : a = zg < 1 < ... < Tp_1 < T, = b of the interval
[a,b], consider the sums

n—1

Ti41
C (g, In,t) := (2mt)? Z COS (27txziqq, 2mte;) X / g(s)ds
i=0 i
and
n—-1 Tit1
S(g, In,t) 1= (2t)* > SIN (2mtw;ys, 2mta;) X / g (s)ds,
i=0 i

where ¢ € [a,b] .
Using Theorem 5, we can state the following approximation result for the Sine
and Cosine transforms.

Proposition 4. Let g : [a,b] — K be an absolutely continuous mapping on [a,b]
and g’ € L [a,b]. Then

S(9) () = =C (g, In,t) + Ri (g, In, 1) and C(g) (t) = S (g, In,t) + Ra (9, In; 1) ,

where

27th
(5.3) |R1 (g, In, )| < 7t|g'|l v (h)/ |sin v| dv
2nta
and
27th
(5.4) Re (g0 Tust)| < 7t/ cv () [ feosl o
2nta

where h; := Tiy1 — x4, (i =0,....,n—1), v(h) :=max,_g—7hi and t € [a,b].
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Proof. Apply inequality (5.1) on the intervals [z;, z;41] (¢ =0,...,m — 1) to obtain

Tit1 Ti41
/ g (s)sin (27ts) ds + (27t)° COS (2mtaiyq, 2ta;) / g(s)ds
n—1 2mtri4
<t -z lgle Y. [ finvlde
=0 Y 2mtx;

for all ¢ € [a,b] . Summing over 4 from 0 to n — 1 and using the generalized triangle
inequality, we obtain

‘Rl (g7I’rL7t)|

n—1
<D
=0

Tit1 Tit+1
/ g (s)sin (2rts) ds + (27t)* COS (2mta; 1, 2mta;) / g(s)ds

i

n—1 2mtxi 27th
gthg’HmZhi/ \sinv\dvgm||g'||oou(h)/ Isin v] do.
i=0 27tx; 27th
The proof of second part is similar. (I
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