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SOME WEIGHTED INEQUALITIES FOR RIEMANN-STIELTJES
INTEGRAL WHEN A FUNCTION IS BOUNDED

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we provide some simple ways to approximate the
Riemann-Stieltjes integral of a product of two functions f: () g(t)dv(t) by
the use of simpler quantities and under several assumptions for the functions
involved, one of them satisfying the boundedness condition

T
‘f(t)—%

where f : [a,b] — C. Applications for continuous functions of selfadjoint
operators and functions of unitary operators on Hilbert spaces are also given.

1
< §|F—'y| for each t € [a, b],

1. INTRODUCTION

One can approximate the Stieltjes integral f; f (t) du (t) with the following sim-
pler quantities:

1 b
(1) @ -u@) [ fod (2, 20)
(1.2) f(@)[u®)—u(a)]  ([15], [16])
or with
(1.3) [w(b) —u ()] f () +[u(z) —ula) f(a)  ([24]),

where z € [a,D].
In order to provide a priory sharp bounds for the approzimation error, consider
the functionals:
b 1 b
D(fwab)= [ f)dul) ;= fu®) ~ua]- [ F@d

a

b

O (f,u;a,b,x) t=/ f () du(t) = f (2) [u(b) = u(a)]

a

and

b
T (f u;a,b,x) :=/ f () du(t) = [u(0) —u(x)] f(0) = [u(z) —u(a)l f(a).

If the integrand f is Riemann integrable on [a, b] and the integrator u : [a,b] — R
is L— Lipschitzian, i.e.,
(1.4) lu(t) —u(s)| < L|t— s for each ¢,s € [a,b],
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then the Stieltjes integral f; f(t) du(t) exists and, as pointed out in [25],

b b
(15) HﬂﬁmeSL/ ﬂﬂ—/gézﬂﬁwdt

The inequality (1.5) is sharp in the sense that the multiplicative constant C' =1 in
front of L cannot be replaced by a smaller quantity. Moreover, if there exists the
constants m, M € R such that m < f (t) < M for a.e. t € [a,b], then [25]

(1.6) 1D (fus0,8)] < 5L (M —m) (b—a).

The constant % is best possible in (1.6).
A different approach in the case of integrands of bounded variation were consid-
ered by the same authors in 2001, [26], where they showed that

b b
[ 1@V

provided that f is continuous and w is of bounded variation. Here \/Z (u) denotes
the total variation of u on [a,b]. The inequality (1.7) is sharp.
If we assume that f is K-Lipschitzian, then [26]

1.7 b)| <
(1.7) |D (f,u;a,b)]| tren[%

b
(1.8) |D (f,u;a,b)| < K (b—a)\/ (u)

with 1 the best possible constant in (1.8).

For various bounds on the error functional D (f,u;a,b) where f and u belong
to different classes of function for which the Stieltjes integral exists, see [21], [20],
[19], and [8] and the references therein.

For the functional 6 (f,u;a,b, ) we have the bound [15]:

(1.9)  10(f u;a,b,z)|

x b
il V00V )

b

[3(0—a)+ |z — 2"V (),

provided f is of bounded variation and w is of r-H-Hdlder type, i.e.,
(1.10) lu(t) —u(s)| < HI|t—s|" for each t,s € [a,b],
with given H > 0 and r € (0, 1].
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If f is of ¢-K-Holder type and w is of bounded variation, then [16]

r\:/w,

a+b
2

T —

(L.11) 0(F,usa,b.0)] < K [; (b—a)+

for any « € [a, ] .
If w is monotonic nondecreasing and f of g-K-Holder type, then the following
refinement of (1.11) also holds [8]:

(1.12) |0 (f,u;a,b,x)| < K[(b —2)"u(b) — (x —a)?u(a)

T u(t)dt bow(t)dt
+q{/a (x—t) 1 _/z (t—m)l_q}l

< K (6= [ (5) ~ w (@) + (&~ ) [ (2) (0]
<k [30-0+ o= 5] o) - ual,

for any « € [a,b].
If f is monotonic nondecreasing and u is of r-H-Holder type, then [8]:

(1.13) |0 (f,u;a,b,x)]|

<H [ (@ —a)" = (b—2)]f(x)

for any x € [a,b].

The error functional T (f,u;a,b,x) satisfies similar bounds, see [24], [8], [3] and
[2] and the details are omitted.

Motivated by the above results, in this paper we provide some simple ways to ap-
proximate the Riemann-Stieltjes integral of a product of two functions f; f(@®)gt)dv(t)
by the use of simpler quantities and under several assumptions for the functions
involved. Applications for continuous functions of selfadjoint operators and contin-
uous functions of unitary operators on Hilbert spaces are also given.

2. GENERAL RESULTS

We have the simple equality of interest for what follows:
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Lemma 1. Let f, g, v : [a,b] > C, \, p € C and x € [a,b]. If fg, g € Re (v, [a,z])N
Re (v, [z,b]), then fg, g € Re (v, [a,b]) and

b x b
(2.1) /f<t>g<t>dv<t>=A/ g(t)dvmw/ g (1) do (1)

T b
+ [ ro-Newww+ [ 176 -ugw
—u [ gwa@+0-w [ g@a

x b
+/ [f(t)—A]g(t)dv(t)ﬂL/ [f(t) = ulg () dv(t).

In particular, for = A, we have

(2.2) /f t) dv (t _/\/

b
+/ F (5~ Ag ()dv<t>+/ [ (6) = Al g (£) do (1)
b b
:A/ g(t)dv<t>+/ F(8) = Alg (t)do (£)

Proof. The integrability follows by Theorem 7. 4 from [1] which says that if a
function is Riemann-Stieltjes integrable on the intervals [a, z], [z, b] with x € [a, ],
then it is integrable on the whole interval [a, b] .

Using the properties of the Riemann-Stieltjes integral, we have

x b
/ [F (6) — Al g (£) do (8) + /[f(twu}gu)dv(t)

x b b
/f /g<t>dv<t>+/ f(t)g(t)dv(t)*u/ g (t) dv (t)
] xT b T
=/ f(t)g(t)dv(t)—A/ g(t)dv(t)—u/ g () dv(t),

which is equivalent to the first equality in (2.1).
The rest is obvious. O

Corollary 1. Assume that f, v : [a,b] — C and x € [a,b] are such that f €
Re (v, [a,z]) NRe (v, [x,b]). Then for any A, p € C we have the equality

b
@3) [ FOd® =M@ -o@]+plE) - o)
x b
+/ [f(t)fk]dv(tH/ [ (6) — sl dv (8).
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In particular, for p = X\, we have
b
(2.4) / “0¢40:AwUﬁfvwﬂ
T b
+/’wm—Awww+/[ﬂw—Mw@>

b

Ao ®) - @I+ [ O Ndo (o).

a

The proof follows by Lemma 1 for g (t) =1, ¢ € [a, b].

Remark 1. We observe that, see [1, Theorem 7.27], if f, g € Cc[a,b], namely,
are continuous on [a,b] and v € BV¢ [a,b], namely of bounded variation on [a,b],

then for any x € [a,b] the Riemann-Stieltjes integrals in Lemma 1 exist and the
equalities (2.1) and (2.2) hold.

Now, for v, I' € C and [a,b] an interval of real numbers, define the sets of
complex-valued functions

U[a,b] (v, [) = {f : [a, 0] — C|Re [(I‘ - (@) (m—ﬁ)} >0 for each t¢€ [cub]}

and

Ay (1.T) = {f :[a,b] — C| ‘f(t) - %

1
< §|I‘—7| for each ¢ € [a,b]}.

This family of functions is a particular case of the class introduced in [22]

Algpg (7, T)
v+ T

::{fﬂmMaCWNﬂ—QQUWS;W—ﬂWUﬂbW%htGWM}

where g : [a,b] — C.
The following representation result may be stated.

Proposition 1. For any~y, T € C, v # T', we have that U[a’b] (v,T') and A[a,b] (,T)
are nonempty, convexr and closed sets and

(25) U[a,b] (77 F) = A[a,b] (77 F) .
Proof. We observe that for any z € C we have the equivalence
vy+T 1
_ <ZIT—
2= =5 =l

if and only if
Re[(T —z) (2 —7)] > 0.

This follows by the equality

1 v+T 2 o
{0l = o= 535 =Refir =)z - )
that holds for any z € C.
The equality (2.5) is thus a simple consequence of this fact. ([

On making use of the complex numbers field properties we can also state that:
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Corollary 2. For any v, I' € C, v # I',we have that
(2.6) Upap) (v, 1) ={f:[a,b] > C | (Rel'=Re f (1)) (Re f (t) — Ren)
+(ImT —Im f (¢)) Im f (t) — Im~) > 0 for each t € [a,b]}.

Now, if we assume that Re (') > Re () and Im (T") > Im (), then we can define
the following set of functions as well:

(2.7) Sty (7.T) :=={f : [a,b] = C| Re(T') = Re f (t) = Re (7)
and Im (T') > Im f (¢) > Im (v) for each t € [a,b]}.
One can easily observe that g[a,b] (v,T) is closed, convex and
(2.8) 0 # Siap) (1, T) CUla) (7,T).
We consider the following functional
+1T [°
o= gdv ()

a

b
(2.9) P%WWIMM:/f@MWMU—

for the complex valued functions f, g, v defined on [a, b] and such that the involved
Riemann-Stieltjes integrals exist, and for v, I' € C.

Theorem 1. Let f, g € Cc[a,b] and v, T € C, v # T such that f € Ay (7,T).
(i) Ifve BVcla,b], then

(210) [P (f.g.v:7.Ta,0) < 5 |0 - ﬂ/lg w(V’ )

a

1
< -
2|

t[b] ‘\/

(ii) Ifv € L cla,b], namely, v is Lipschitzian with the constant L > 0,
lv(t) —v(s)| < L|t—s| foranyt, s € [a,b],

then we also have

1 b
(ZU)|PUﬂWWIJﬁNS§W—ﬂL/|Mﬂdt

F _
T —~| (b a)tren[g] lg ()] -

[\D\»—t

(iii) Ifv € M7 [a,b], namely, v is monotonic increasing on [a,b] , then we have
1 b
212) P (fgvnTab)] £ 510 [ loldo(o
1
< 20— - .
< 310 =10 ()~ (@) ma lo ()

Proof. (i) It is well known that if p € R (u, [a, b]) where u € BV [a, b] then we have

1, p. 177]
b b t b
/p(t)du(t) S/ p(t)|d<\/(U)> < sup [p()|\/ (w).

t€(a,b]

(2.13)
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By the equality (2.2) we have

b b b
e [Tos0an-155 [sowo= [ [10- 5] s0we.

Since f € A, (7,T) then by (2.13) and (2.14) we have

</ub 0= o ‘d<v >
/abm) T |d<\:/ )
%|r—vl/a Ig(U)d<\a/<”>>

and the first inequality in (2.10) is proved. The second part is obvious.
(ii) It is well known that if p € R (u, [a,b]), where u € L1, ¢ [a,D], then we have

b b
/p(t)dv(t) SL/ p (t)] dt.

By using (2.14) we then get (2.11).
(iii) It is well known that if p € R (u, [a,b]) , where u € M~ [a,b] , then we have

b))
b b
/pu)dv(t) SL/ Ip ()] dv (1)

By using (2.14) we then get (2.12). d

v+T

b
5 g(t)dv ()

a

(t) -

IN

(2.15)

(2.16)

Remark 2. We define the simpler functional for g =1 by

b
P(f0:7.T,ab) = P (f,1,0:7, T, a,b) :/ Ft)dv () — V;FF [ (b) — v (a)].

Let f € Cca,b] and v, T € C, v # T such that f € A[a,b] (v,T). If v € BV¢ [a,b],
then

b
1
(2.17) P (forTab) < 5 P =91\ (@)
a
Ifve Lpcla, b, then
1
(2.18) [P (fiviy Fhab)f < SLIT =] (b—a).

Ifve M7 [a,b], then

b
(2.19) [ PUsvrab|<5I0=-a100) - ).

We observe that, if f € C [a b], namely f is real valued and continuous on [a, b]
and if we put m := ming(qp) f (t) and M = max,c(qp) f () then by (2.17)-(2.19)
we get

|P(f,v;m, M,a,b)| <

b
(M —m)\/ (v)

N =
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if v e BVe[a,b],
[P (f,v:m, M,a,b)] < £ L(M ~m) (b~ a)
ifve Lycla,b] and
[P (f,v5m, M,a, D) < & (M —m) o () ~ v (@)

if v € M7 [a,b], that have been obtained in [22].
For other results of this type, see [17].

3. QuASI-GRUSsS TYPE INEQUALITIES

‘We consider the functional

b b
Q.07 Ta A= [ Fgb)do) - # g(0)do (1)
6+A 7+r 5+ A
A o 2 ) - v ()

for the complex valued functions f, g, v defined on [a, b] and such that the involved
Riemann-Stieltjes integrals exist, and for v, I', §, A € C.
We have the following quasi-Griiss type inequality:

Proposition 2. Let f, g € Ccla,b] and v, T', §, A € C, v # T, 0 # A such that
J€App (,T) and g € Ay (0,A). If v € BVc [a,b], then

b
(3.1) QU g.v:7 T ab)| < 10 —A11a — 5]\ ()
Ifve Lpcla,b], then '
QU901 T a,b)| < P —/|A 5| L(b—a).
Ifve M7 [a,b], then

Kﬂﬁ%w%rﬂiﬂSEW‘WHA*ﬂWQW*NWL

Proof. If we replace in (2.10) g by g — , then we get
+T
dv(t) = 1= [ g@Wdv(t)
0 + A 7 + r 0+ A
R0 S —v(a)

b t b t
[oo-52 d(\/w)) <2la-3 d(\/w)) =2 1a-8\/ @)

and the inequality (3.1) is proved.
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The proofs of the other two statements follow in a similar way and we omit the
details. ([l

Proposition 3. Let f, g € Cca,b], g € BVc [a,b] and v, I € C, v # I such that
f€Apy (,T). Ifve BVcla,b], then

b b
(32) QUf9.:9(@) 9 (8),a,0)] < 10—\ (9)/ (v)
where
b
Q(f.0.v:9(a).g(b).a.b) /f -5 [ g
+g 7+F 9(a)+g(b)
o 20 () — v (a).

IfveLpe [a,b},then

59 QUans@.a®).ad) <L r a1 Lo-aV ).
Ifve M7 [a,b], then a

(3.4) |Q<f,g,v;g<a>,g<b>,a7b>|si|r—v|\?<g>[v<b>—v<a>].

Proof. If we replace in (2.10) g by g — M, then we get

b
Ry ae )

Since g € BV¢ [a, b] , hence

(@) +9(b) (t) —g(a)+9(t) —g(b)
a2 29 ‘:‘g 9 gt)—yg ’

IN
N
£
—~
=
—
=
+
Y
—
~—
SS)
—
-
=
IN
DO | =
®<w
~—
)
=

for any ¢ € [a,b].
Therefore

¢ b b t b b
o0~ 2220 (Vo) < Ve [[a(Vio) -}V @V e

a

and the inequality (3.2) is proved.
The proofs of the other statements follow in a similar way and we omit the
details. (]
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Proposition 4. Let f, g € Cc[a,b] and v, T € C, v # I such that f € Ajg ) (7,T) .
If v e BV [a,b], then

b b
(35) 'Q (f,g,v;bfa/ g()ds = [ g(s)ds,a,b>
b t
<=l d(\a/w))

b
9) - ;= [ a()ds

1 1 ’
<3P -vlmax|g® - 5= | g(s)ds \a/(v),
where
b 1 b
Q(f,g,v'b/ g(s)ds,b_ /ag(s)ds,a,b>
b b
- [t0s@ane -5 [ @i
b b b
- [r0aw ;= [ swa+we v [

IfveLpcla,bl, then

b b
(3.6) 'Q (f,g,v;bla / g (s) ds, / g(s)ds,cub)

1 b
<D —~|L
,2| ol /a

b
9 -5 [ a()ds

Ifve M7 [a,b], then

b b
(3.7 ‘Q (ﬁg,v;b_la [o@as;— | g(s)ds,a7b>

1 b
<Zr—
_2| ’Y|/a

b
9= 5= [ 9(e)ds|dv(t)
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Proof. The first inequality follows by Theorem 1 by replacing g with gfﬁ ff g (s)ds.
The second part follows by the fact that
t

b
90) - ;= [ g()ds

/

b b t
< max o0 - 7 | g(s)ds/ad(\/<v>>
b b
max o)~ 5= [ a(s)ds V.

The proofs of the other statements follow in a similar way and we omit the details.
O

Remark 3. We observe that the quantity

, t € a,b

b
9) - 5= [ glo)ds

is the left hand side in Ostrowski type inequalities for various classes of functions
g. For a recent survey on these inequalities, see [12]. Therefore, if

a < Mgv[a,b] (t)v te [(L, b]

b
9) - 5= [ 9lo)ds

is such of inequality, then from (3.5) we get

b b
(3.8) iQ (f,g,v;b_la/ g(s)ds,ﬁ/ g(s)ds,a,b)

b

if v e BV¢ [a,b], from (3.6) we get

b b
(3.9 i@ (f,g,v;b_la [o@as = [ g(s)ds,a,b>

b
‘F_’Y‘L/ Mg,[a,b] (t) dt

<

| —

ifve Lpcla, b and from (3.7) we get

b
‘F_’Y‘ Mga[a,b] (t)d'l} (t)v

a

ifve M7 [a,b].
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For instance, if g : [a,b] — C is of bounded variation, then we have, see [10] and
[11]

|t - <3|

1 b
§+7b—a ]\a/(g)

for any t € [a,b]. The constant 1 is the best possible one.
Observe that

ol ()
v+ o (ve)

b

(3.11) <

b
9) - 5= [ ata

if v, g € BVc[a,b].
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The last inequality in (3.12) follows by Chebyshev’s inequality for monotonic
functions that gives that

1 b a+b ¢
I a+b I
> - =0.
b_a/(lsgn<t 3 >dtb—a/a \a/(v)dt 0

b atb
1|t — ot 3
A[2+ba ] dt ="~ (b—a),
then by (3.9) we get

b b
(3.13) ‘Q (f,g,v;bla/a g(s)ds,ﬁ/ﬂ g(s)ds,a,b)

b
T —~L(b-a)\/(9)

Observe also that

OO\CO

ifve Lpcla,b) and g € BVc [a,b].
Finally, since
/b 1 | _ atb

2 b—a

]dv(t)v(b)v(a)

then we get by (3.10) that

if v e M7 [a,b] and g € BVc¢ [a,b].

4. GrRUss TYPE INEQUALITIES

Consider the Griiss type functional

b
(41) G(f.g.v:a.b) = / £ (t)g () do (1)

b b
v(b)l_v(a)/ f(t)dv(t)/ g(t)dv(t)
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for the complex valued functions f, g, v defined on [a, b] and such that the involved
Riemann-Stieltjes integrals exist and v (b) # v (a).
We have:

Proposition 5. Let f, g € Cc[a,b] and~, T € C, v # T such that f € A[a,b] (v,T).
If v € BV¢ [a,b] with v (b) # v (a), then

(4.2) |G(f,g,v;a,b)]

b t
= ORI / g(s)dv (s) d(Y(”)>

Iy b 1 b

<35I \/ R Pl CAC Ay gy py / g(s)dv () dt.
Ifve Lpcla,b], then
(43) (G (f.g.v:0.)

1 b 1 b
<303l [ o)~ g [ o dvt)]a
1 1 b
< SI0 =L =0) max g ()~ s [ (o (o)

Ifve M7 [a,b], then
(4.4) |G (f,9,v;a,b)|

b
g<t>MLg<s>dv(s>.

Proof. By Theorem 1, on replacing g with g — m fab g (s)dv(s) we get

L0 [gu)—w / g<s>dv<s>] o (1)

b b
A [g(t)_v(b)v(a)/a g(s)d'v(s)] dv (t)

<5 0=l ()~ v ()] max
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b 1 b
/ [g () - (())_()/ g(s)dv <s>] do (t) =0,

hence the first inequality (4.2) is obtained. The second inequality is obvious.
The rest follow in a similar way and we omit the details. O

and

Remark 4. If g is of K-Lipschitzian and v is of bounded variation, then [16]

gKB(b—a)-ﬁ-'t—a;bH\b/(v),

a

g (1) [o(b) — v (a)] - / g(s)du (s)

for any t € [a,b].
By (4.2) we then have

G (f,g,v;0,0)]

Sl |F 7|

b
~v(a) - / g (s)dv (s)

g;MK\i/(v)/b ;(b—a)—k‘t—a;b“d(\;(v)).

a

Since, as above

[lae-oe - oveo)

a

:(b—a)\:/(v)_/absgn(t_;”’>\/( dt < b—a\:/ ,

a

then we get the following upper bounds for the magnitude of G (f,g,v;a,b)

(4.5) |G (f,g,v;a,b)|

1 I - 7| ’ a+b\y\
T K\/ lb—a\a/ /asgnQ_ ! )\a/(v)dt]
r b ’
S21’%7(\/ )

a

IA

Any other upper bounds for |0 (g,v;a,b,t)| with t € [a,b], see for instance the
survey [9], will provide the corresponding bounds for |G (f,g,v;a,b)|. The details
are left to the interested reader.

5. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows

1, for —oo < s <A,
px(s) =

0, for A < s < 4o00.
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Then for every A € R the operator
(5.1) Ey =, (4)

is a projection which reduces A.

The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [27, p. 256]:

Theorem 2 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min {\ |\ € Sp(A)} =: min Sp (A) and
b=max{\|\ € Sp(A)} =: maxSp(A). Then there exists a family of projections
{Ex} e, called the spectral family of A, with the following properties

a) Ex < Ey for A< \;

b) E, 0o=0,E,=1 and E)_;,.o =F, fO’I’ all A € R;

c) We have the representation

b
A= / AE).
a—0

More generally, for every continuous complex-valued function ¢ defined on R
there exists a unique operator ¢ (A) € B(H) such that for every € > 0 there exists
a § > 0 satisfying the inequality
n
TR SRS N

k=1

whenever
M<a=A\<..<MA\_1 </\n:b7

M — A1 <0 for1 <k<mn,

A, € [Me—1, M) for 1<k <n

this means that

b

(52) e = [ b,
a—0

where the integral is of Riemann-Stieltjes type.

Corollary 3. With the assumptions of Theorem 2 for A, E) and @ we have the
representations

b
go(A)x:/ 0 (AN dExx forallz e H
a—0
and
b
6.3 e Waw) = [ oW d(Brag) for s, ye

In particular,

b
(p(A)z,x) = /7O<p()\)d<E>\x,x> for allz € H.
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Moreover, we have the equality

b
|wmmW:/OWQWwwwwfwMMeH

We need the following result that provides an upper bound for the total variation
of the function R 3 A — (E)z,y) € C on an interval [«, 8], see [23].

Lemma 2. Let {Ex}, g be the spectral family of the bounded selfadjoint operator
A. Then for any x, y € H and o < 8 we have the inequality
3 2

V«&mwﬂ<«&—&mw«@—&wm7

[e%

(5.4)

where \/ )T, y denotes the total variation of the function <E(_)x, y> on [a, 5]

Remark 5. For a« = a — with e > 0 and § = b we get from (5.4) the inequality
b
(55) \/ (<E()Jf, y>) < <(I - Ea—a) Zz, $>1/2 <(I - Ea—&) Y, y>1/2
a—eg
for any x, y € H.
This implies, for any x, y € H, that
b

(56) V (o)) < lell vl
a—0
b
where \/ ) denotes the limit lim._q4 l\/ (<E(_)$7y>)] )

We can state the following result for functions of selfadjoint operators:

Theorem 3. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A|A € Sp(A)} =: minSp(A4) and b = max{\|A € Sp(A)} =:
max Sp (A) . Also, assume that {Ex},cp is the spectral family of the bounded self-

adjoint operator A and f, g : I — C are continuous on I, [a,b] C I (the interior of
I). Ifv, T €C, v #T such that f € A (7,1), then

y+r

61 [ W g)as) - 15

(o (2.1)
b

1 1
< 5 0=l max g O]\ ((Ey)) < 518 = a9 0) ol o]
a—0

for any x, y € H.
Proof. Using the inequality (2.10), we have

[ r0swaway - [ gwaa)
1 b
< gI0=nl max g (1) \_/ (Eoyz,y))
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for small € > 0 and for any z, y € H.
Taking the limit over ¢ — 0+ and using the continuity of f, g and the Spectral
Representation Theorem, we deduce the desired result (5.7). g

Corollary 4. With the assumptions of Theorem 3 and if v, I', , A € C, v # T,
§ # A such that f € Ajq ) (7,T) and g € Ay (6,A), then

y+T
2

5+ A y+T8+A

—TU(A)%ZJH' 2 5

(5:8)  |(f(A)g(A)z,y) - {9 (A)z,y)

(z,y)

b

1
T —AlAa=d \/ ((Boyzy)) < 7T = A =]yl
a—0

1
4
for any x, y € H.

Corollary 5. With the assumptions of Theorem 8 and if g € BVc¢ [a,b] and 7,
I'eC, v #T such that f € Ay (7,T), then

(69 [(/(A)g @)y~ TET (g(A)2,)
_g(a)—;g(b) <f(A)x,y>+7;Fg(a);g(b) (2,9)

b

<qIr- ﬂv )V (Eyey)) < 1T - ﬂv ) llal s

a—0
for any x, y € H.

Corollary 6. With the assumptions of Theorem 3 and if v, I' € C, v # I' such
that f € A[a,b] (73 F) )

y+r

(5.10) |{f(A)g(A)z,y) - —

(g (A)z,y)

b b
W) g [Cawart ) e [

1 1 b b
< 5|0 =] max g (1) - b_a/a g(s)ds a\i (B2 9))
<o) max |g ) - f(ﬁwwMH
1 o 1
-2 te[ab]g b—a ag 4

for any x, y € H.
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Finally, by the use of the inequality (4.2) in the form

p® =@l [ F0sOa0- [ oo [ oo

b
[v(b)—v(a)]—/ g(s)dv(s)|,

(5.11)

r—
<3 oy vl\/ v) max g

provided v € BVcla,b], f, g € Ccla,b] and v, T' € C, v # I such that f €
Aap (7,T), we have

Corollary 7. With the assumptions of Theorem 3 and if v, I' € C, v # T' such
that f € Ay (7,T), then

(5-12)  [(f (A) g (A) z,y) (z,y) = (f (A) z,y) (9 (A) z,9)]

b
< 51T =l max |9 2) @.0) — (o (D, \/ (Eeyo.)
a—0

%IF vl*gl% lg (t) (z,y) — (g (A) =, y)| ||lz] [|y]]

for any x, y € H.

6. APPLICATIONS FOR UNITARY OPERATORS

A unitary operator is a bounded linear operator U : H — H on a Hilbert space
H satisfying
U'U=UU"=1y
where U™ is the adjoint of U, and 1y : H — H is the identity operator. This
property is equivalent to the following:
(i) U preserves the inner product (-,-) of the Hilbert space, i.e., for all vectors
x and y in the Hilbert space, (Uz, Uy) = (z,y) and
(ii) U is surjective.
The following result is well known [27, p. 275 - p. 276]:

Theorem 4 (Spectral Representation Theorem). Let U be a unitary operator on
the Hilbert space H. Then there exists a family of projections {PA}/\e[O,zwp called
the spectral family of U, with the following properties

a) Py < Py for A < )\

b) Py =0, Py =1 and Pyxyo = Py for all X € [0,27);

c) We have the representation

2m
U:/ exp (i\) dPy.
0

More generally, for every continuous complex-valued function ¢ defined on the
unit circle C (0,1) there exists a unique operator ¢ (U) € B (H) such that for every
€ > 0 there exists a § > 0 satisfying the inequality

S fexp (i) [Py — Pry ]| <
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whenever
0=\ <..< A1 <A, =2m,

A —Ap—1 <0 for 1 <k <,

A, € M1, M) for1<k<n

this means that

27

(61) o) = [ olexpn) dpy,
0

where the integral is of Riemann-Stieltjes type.

Corollary 8. With the assumptions of Theorem 4 for U, Py and ¢ we have the
representations

27
e U)x = / @ (exp (iN)) dP x for allxz € H
0

and

62 (@)= [ plep)dPeg) foralag e H

In particular,

27
(p(U)z,z) = /o @ (exp (1N)) d (Paz,x) for all x € H.

Moreover, we have the equality

21
o (U) 2 = / o (exp (IN)P d||Pxa]]? for all z € H.

On making use of an argument similar to the one in [23, Theorem 6], we have:

Lemma 3. Let {P,\}AG[O’%] be the spectral family of the unitary operator U on the
Hilbert space H. Then for any x, y € H and 0 < a < 8 < 27w we have the inequality

8
(6.3) \ ((Poyz,)) < ((Ps — Pa)w,2)'? (Ps — Pa)y. )2,

[e3%

B
where \/ (<P(.)x, y>) denotes the total variation of the function <P(_)x, y> on [a, ]
In pgrticular,

27

(6.4) \ (Poz,y)) < =)l ly]

0

for any x, y € H.

Theorem 5. Let U be a unitary operator on the Hilbert space H and {P)\}AE[O,%]
the spectral family of projections of U. Also, assume that f, g : C(0,1) — C are
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continuous on C (0,1). If ¢, ® € C, ¢ # ® are such that foexp (i-) € A[ogw] (¢, @),
then

65) |(F0)g@)a9) - “22 g W) a)
%Ié ol max g (exp @I\ (Pyz.v))

0

< 2120l max |g(exp @) =] llyl

tel0,2m

N

for any x, y € H.

The proof follows by Theorem 1 and the Spectral Representation Theorem for
unitary operators in a similar way with the proof of Theorem 3 and we omit the
details.

Corollary 9. With the assumptions of Theorem 5 and if ¢, @, ¥, ¥ € C, ¢ # ®
such that f oexp (i-) € A ox) (¢, P), goexp (i-) € Aqg,2q) (¥, ¥) then

66) |7 )9 @)) 22 (o))
Y+ p+PyY+ U
T (fU)= y>+T 5 (,y)

1 1
< gle-dllv - 1/J|\/ ((Poyzy)) < 71® =@l 1V =[] [yl

for any x, y € H.

Corollary 10. With the assumptions of Theorem 5 and if ¢, ® € C, ¢ # ® such
that f oexp (i-) € A2 (¢, ), then

61 (@90 - 252 @) 2)
1 27 ) ¢+® 1 2 )
@ g [ aepna @) S50 L [T atewnal
1 . 1 2 ‘ 21
<310 ol max otew )~ 50 [ gl is| Y (Ron)
2
< 10—l max |g(exp (i)~ 5= [ g(exp(is) ds| ] I

for any x, y € H.
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Corollary 11. With the assumptions of Theorem 5 and if ¢, ® € C, ¢ # ® such
that f oexp (i-) € Ajo,2x] (6, P), then

(6.8) [{f(U)gU)z,y)(z,y) —(f(U)z,y) (g (U)z,y)]

2w

1 .
< 512 =6l max |g(exp (it)) (z.y) = (g )20}V (Poz.y)
34T 0
1 .
< 51® = ¢f max |g(exp (it)) {z,y) — (g (U) z, y)| [l ly]
€[0,27]
for any x, y € H.
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