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Abstract 
The aim of this paper is to derive Hadamard's inequality for trigonometrically  - convex 
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1    Introduction 
          

Trigonometrically  - convex functions have interesting applications in the theory of entire 

functions ( of order   < <0   ) and in the theory of cavitational diagrams for hydroprofiles, see 

for example [ 1, 2, 3 ]. In what follows, we shall be concerned with real finite functions defined 

on a finite or infinite interval  I  . The relation, see for example [ 4 ] 

                                     
1 ( ) ( )

( )
2 2

b

a

a b f a f b
f f x dx

b a

  
  

 
 ,                                 (1.1) 

is known in the literature as Hermite - Hadamard's inequality or Hadamard's inequality, which 

holds for convex functions   :f I  ,  and  ,a b I  with  a b .  This inequality has been 

generalized and applied in many various aspects, see for example [ 5, 6, 7 ].  
 

 

2    Definitions and Preliminary results 
 

In this section we present the basic definitions and results which will be used in the sequel , for 

more information see [ 1, 2 ]. 

 

Definition 2.1  A function  :f I    is said to be trigonometrically  - convex,  if for any 

arbitrary closed subinterval  ],[ vu   of  I   such that  0 < (  ) < v u  , the graph of  ( )f x   
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for  ],[ vux   lies nowhere above the  - trigonometric function, determined by the equation: 

( ) = ( ; , , ) = cos sinH x H x u v f A x B x  , 

where  A   and  B   are chosen such that   (  ) = (  ),H u f u  and  (  ) = (  ).H v f v  

Equivalently, if  for all  ],[ vux  

                 
( ) sin ( ) ( ) sin ( )

( ) ( ) = .
sin ( )

f u v x f v x u
f x H x

v u

 



  



                         (2.1) 

 

Definition 2.2  A function               

( ) = cos sinuT x A x B x   

is said to be supporting function  for ( )f x   at the point  ,u I  if 

                     ( ) = ( ), ( ) ( ) .u uT u f u and T x f x x I                                 (2.2)     

That is, if ( )f x   and  ( )uT x   agree at  ux = ,  and the graph of  ( )f x   does not lie under the 

support curve. 

 

Theorem 2.1 [ 8 ]  A function   :f I     is trigonometrically  - convex on  I  if and only 

if  there exists a supporting function for  ( )f x   at each point .x I  

 

Theorem 2.2  A trigonometrically  - convex function   :f I    has finite left and right 

derivatives   ( ), ( )f x f x 
    at every point  ,x I  and  ( ) ( )f x f x 

    for all  x I .    

 

Property 2.1  Under the assumptions of  Theorem 2.2, the function  f  is continuously 

differentiable on  I   with the exception of an at most countable set.  

 

Property 2.2 [ 8 ]  If   :f I     is differentiable trigonometrically  - convex function, 

then the supporting function for  ( )f x   at the point  u I   has the form: 

                                     
( )

( ) = ( ) cos ( ) sin ( ).u

f u
T x f u x u x u 




                                  (2.3) 

 

 

3    Main Results 
  

Theorem 3.1  Suppose  :f I    is trigonometrically  - convex function, and   ,a b I   

with  ,a b   such that 0 < (  ) < b a  . Then, one has the inequality: 

         
2 1

sin ( ) ( ) ( ) tan .
2 2 2

b

a

a b b a b a
f f x dx f a f b 

 

       
       

     
                  (3.1) 

Proof.  Let  u  be an arbitrary point in  ( , )a b . As  ( )f x   is trigonometrically  - convex 

function, then from Definition 2.1, and Definition 2.2, we observe that the graph of  ( )f x     lies 

nowhere above the  - trigonometric chord:    

                                 
( ) sin ( ) ( ) sin ( )

( ) =
sin ( )

f a b x f b x a
H x

b a

 



  


,                                     (3.2) 

joining  ( , ( ) )a f a  and  ( , ( ) )b f b , and nowhere below any support curve at ( , ( ) )u f u . The 

supporting function  ( )uT x   for  ( )f x  at the point  ( , )u a b  can be written as follows:  
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,( ) = ( ) cos ( ) sin ( )u u fT x f u x u K x u                            

                                       = sin ( ),K x u                                                                          (3.3) 

where 
,u fK  is a fixed real number depends on u and f , 

   2 2

,= ( ) ,u fK f u K   and     
,

( )
tan = .

u f

f u

K
  

Hence, 

                                    ( ) ( ) ( )uT x f x H x             [ , ],x a b  

and thus,              

                                     ( ) ( ) ( ) .

b b b

u

a a a

T x dx f x dx H x dx                                              (3.4)       

Using (3.2), one has 

        
1

( ) = ( ) sin ( ) ( ) sin ( )
sin ( )

b b b

a a a

H x dx f a b x dx f b x a dx
b a

 


 
   

  
    

                            
1 1 cos ( )

( ) ( )
sin ( )

b a
f a f b

b a



 

  
   

 
 

                            
1

( ) ( ) tan .
2

b a
f a f b 



 
   

 
                                                                 (3.5) 

Using (3.3), one obtains 

       

        ( ) sin ( )

b b

u

a a

T x dx K x u dx      

                            
2

sin sin
2 2

a b b a
K u  



     
      

    
 

                            
2

sin .
2 2

u

a b b a
T 



    
    

   
                                                                        (3.6) 

But from Definition 2.2, we observe that: 

                             
2 2

u

a b a b
T f

    
   

   
  for all  ( , ).u a b                                                 (3.7) 

Taking the maximum of the term   ( ) ( )

b b

u

a a

T x dx f x dx   in (3.4) and (3.6) for  ( , ),u a b  

and from (3.7), then it follows that: 

      ( ) ( )max
b b

u
a u ba a

f x dx T x dx
 

  
  

  
   

             
2

sin
2 2

max u
a u b

a b b a
T 

  

     
     

    
 

             
2

sin .
2 2

a b b a
f 



    
    

   
                                                                          (3.8) 

Hence, from (3.4), (3.5), and (3.8), the claim follows.                                                    
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Remark 3.1  For a trigonometrically  - convex function  :f I  , the constant 
,u fK in the 

above theorem is equal to  
( )f u




  if  f   is differentiable at the point  ,u I   otherwise,   

,

( ) ( )
[ , ].u f

f u f u
K

 
 
 

  

 

Now, we give an estimation for the inequality (3.1) of the power function  ( )nf x  instead of  

( ).f x   

 

Theorem 3.2  Let  :f I    be a non-negative  trigonometrically  - convex function, 

,n  and  ,a b I   with  ,a b   such that 0 < (  ) < b a  . Then, one has: 

        

   
0

( ) sin ( ) ( ) ( )

sin ( ) sin ( ) .

b n n
n r rn n

rra

b

r n r

a

f x dx b a f a f b

x a b x dx



 







 
   

 

  





                                               (3.9) 

Proof.  Since  ( )f x   is trigonometrically  - convex function, then it is clear from Definition 

2.1, that 

( ) ( )f x H x            [ , ].x a b     

As  ( )f x   is non-negative, we infer that: 

( ) ( )n nf x H x            .n   

Thus, using (3.2), one obtains 

         ( ) ( )

b b

n n

a a

f x dx H x dx     

                              
1

= ( ) sin ( ) ( ) sin ( )
sin ( )

b
n

n

a

f a b x f b x a dx
b a

 


  
   

                 

   
0

sin ( ) ( ) ( )

sin ( ) sin ( ) .

n n
n r rn

rr

b

r n r

a

b a f a f b

x a b x dx



 







 
   

 

  





 

Hence, the theorem follows.                                                                                             

  

Theorem 3.3  Assume  :f I    is  trigonometrically  - convex function, ,n  and  

,a b I   with  ,a b    such that 0 < (  ) < b a  . Then, one has the inequality: 

  

2 1 11 2 1
2 1

0

( 1)
( ) 4 sin sin ,

2 2

nb n rn n
n

rra

b a
f x dx m m

m


  



   




     
     

    
                            (3.10) 

where   2 2 1,m n r      
2

2 2

,
,

2
a b f

a b
f K 

 
  

 
   and   

2
,

2
tan .

a b f

a b
f

K




 
 
   

Proof.  As  ( )f x   is trigonometrically  - convex function, then from Definition 2.2, we have 
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( ) ( )uf x T x                 [ , ],x a b   

and consequently, 

                      2 1 2 1( ) ( )n n

uf x T x                  .n   

Thus, using (3.3), one has 

   2 1 2 1( ) ( )

b b

n n

u

a a

f x dx T x dx    

                          2 1 2 1= sin ( )

b

n n

a

K x u dx      

              

2 1 1 2 1
1

0

2 ( 1) sin (2 2 1)( )
2

n bn n
n r

rr a

K
n r x u dx 

  
 



  
        

   
   

                          

2 1 11 2 1

0

( 1)
4 sin

2 2

sin ,
2

n n rn n

rr

K b a
m

m

a b
m u




 

   



     
     

    

  
    

  


                                       (3.11) 

where,   2 2 1.m n r    

The best possible bound of  (3.11) can be obtained by taking the maximum of this inequality for  

( , ).u a b  In particular,  if   
2

a b
u


 , we get 

          

2 1 11 2 1
2 1

0

( 1)
( ) 4 sin sin ,

2 2

nb n rn n
n

rra

b a
f x dx m m

m


  



   




     
     

    
  

where    and      are as defined above, and hence the theorem.                                   

 

Remark 3.2   Hadamard's inequality (3.1) is an immediate consequence of      Theorem 3.2,  and 

Theorem 3.3 by taking  1.n   

  

Theorem 3.4  Let  :f I    be a differentiable trigonometrically  - convex function, 

,n  and  ,a b I   with  ,a b    such that 0 < 2 (  ) < b a  . If  ( ) 0f a    and  ( ) 0,f a   

one then has the following inequalities: 

 

2
2 12

2

0

( 1)
sin ( )( )

( ) ( ) 2 ,( )
2

cos ( ) ( 2 )

n r n
nb nn

n
r

n ra

n r b a
f x dx b a n r

n r b a




 







   
               

        

                        (3.12) 

 
2 1 11 2 1

2 1

0

( 1)
( ) 4 sin sin ,

2 2 2

nb n rn n
n

rra

b a b a
f x dx m m

m


  



   




         
         

        
                (3.13) 

 

where   

2

2 ( )
2 2 1, ( ) ,

f a
m n r f a



 
     

 
     and      

( )
tan .

( )

f a

f a


 


   

Proof.  As  ( )f x  is trigonometrically  - convex function, then from Definition 2.2, it follows 

that: 
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                                                    ( ) ( )af x T x                 [ , ].x a b                               (3.14) 

Since  ( )f x  is differentiable, then from Property 2.2,  ( )aT x  can be written in the form:                        

 

                            
( )

( ) = ( ) cos ( ) sin ( )a

f a
T x f a x a x a 




                           

                                       = sin ( ),x a                                                                          (3.15) 

where   

2

2 ( )
( ) ,

f a
f a



 
  

 
     and      

( )
tan .

( )

f a

f a


 


   

As  ( ) 0,f a    ( ) 0,f a    and   ( )b a     , then from (3.15), we conclude that 

                                            ( ) 0aT x             [ , ].x a b   

Thus, using (3.14), one obtains 

                                                 ( ) ( )n n

af x T x                 .n                                         (3.16) 

Therefore, from (3.15) and (3.16), the following two cases arise,  

Case 1.     

 2 2( ) ( )

b b

n n

a

a a

f x dx T x dx   

                      2 2= sin ( )

b

n n

a

x a dx     

                      

2 12 2

0

( 1) 2 cos 2 ( ) ( )
2

n b nn n
n r

n rra

n r x a dx


 






     
           
      

     

                      

2
2 12

0

( 1)
sin ( ) ( )

( ) 2 .( )
2

cos ( ) ( 2 )

n r n
n nn

r

n r

n r b a
b a n r

n r b a




 







   
               

        

                

Case 2.  

  2 1 2 1( ) ( )

b b

n n

a

a a

f x dx T x dx    

                         2 1 2 1= sin ( )

b

n n

a

x a dx       

                         

2 1 1 2 1
1

0

2 ( 1) sin (2 2 1)( )
2

n bn n
n r

rr a

n r x a dx


 

  
 



  
        

   
   

                         

2 1 11 2 1

0

( 1)
4 sin sin ,

2 2 2

n n rn n

rr

b a b a
m m

m


  



   



         
         

        
  

where,  2 2 1.m n r    

Hence, the theorem.                                                                                                          

 

Remark 3.2   For the trigonometric expansions in Theorem 3.3, and Theorem 3.4, one can refer 

to [9]. 

 

 



 7 

 

ACKNOWLEDGEMENTS. The author wishes to thank the anonymous referees for their 

fruitful comments and suggestions which improved the original manuscript. 

 

 

 

 

 

References 

 

[ 1 ]   B. Ya. Levin, Lectures on Entire Functions, American Mathematical 

          Society, 1996. 

[ 2 ]   L. S. Maergoiz, Asymptotic Characteristics of Entire Functions and their 

          Applications in Mathematics and Biophysics, Kluwer Academic 

          Publishers, 2003. 

[ 3 ]   F. G. Avhadief and D. V. Maklakov, A Theory of Pressure Envelopes for 

          Hydrofoils, Journal of Ship Resrarch, 42, (1995), 81-102. 

[ 4 ]   A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, 

          New York - London, 1973. 

[ 5 ]   S. S. Dragomir and J. E. Pečarić,  A Generalization of Hadamard's Inequality 

          for Isotonic Linear Functionals, Radovi Mathematički, 7, (1991), 103-107.  

[ 6 ]   S. S. Dragomir and B. Mond, Integral Inequalities of Hadamard Type for Log- 

          Convex Functions, Demonstratio Mathematica, XXXI(2), (1998), 355-364. 

[ 7 ]   Constantin P. Niculescu, The Hermite-Hadamard inequality for Convex 

          Functions of a Vector Variable, Mathematical Inequalities & Applications, 

          5, (2002), 619-623.   

[ 8 ]   Mohamed Sabri Salem Ali,  On Certain Properties of Trigonometrically  - 

          Convex Functions,  Advances in Pure Mathematics, 2(5), (2012), 337-340. 

[ 9 ]   I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 

          Academic Press, New York - London, 1983. 

  

 

 




