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Abstract
The aim of this paper is to derive Hadamard's inequality for trigonometrically p - convex

functions. Furthermore, we establish some integral inequalities for higher powers of
trigonometrically p - convex functions.
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1 Introduction

Trigonometrically p - convex functions have interesting applications in the theory of entire
functions ( of order 0< p <o ) and in the theory of cavitational diagrams for hydroprofiles, see

for example [ 1, 2, 3]. In what follows, we shall be concerned with real finite functions defined
on a finite or infinite interval 1 < R. The relation, see for example [ 4 ]

a+b 1 " f (@)+f (b)
f( )sb_a;[f(x)dx <= (1.1)

2

is known in the literature as Hermite - Hadamard's inequality or Hadamard's inequality, which
holds for convex functions f :1 — R, and a,b €l with a <b. This inequality has been

generalized and applied in many various aspects, see for example [ 5, 6, 7 ].

2 Definitions and Preliminary results

In this section we present the basic definitions and results which will be used in the sequel , for
more informationsee [ 1, 2 ].

Definition 2.1 Afunction f :1 — R issaid to be trigonometrically p - conve, if for any
arbitrary closed subinterval [u,v] of | suchthat 0 < p(v —u)<ux, thegraphof f (x)
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for xe[u,v] lies nowhere above the p - trigonometric function, determined by the equation:
H(x)=H(x;u,v, f)=Acospx +Bsinpx ,
where A and B arechosensuchthat H(u)=f (u), and H(v)=f (v).
Equivalently, if forall xe[u,v]
F(x)<H(X)= f(u)sinp(v—_x)+f(v)sinp(x—u)_ 2.1)
sin p(v —u)

Definition 2.2 A function
T, (x)=Acos px +B sin px
is said to be supporting function for f (x ) atthe point u el, if
T,w)=f@u), and T, (x)<f (x) V xel. (2.2)
Thatis, if f (x) and T,(x) agreeat x=u , andthe graphof f (x) does not lie under the
support curve.

Theorem 2.1 [8] Afunction f :1 — R istrigonometrically p -convexon | if and only
if there exists a supporting function for f (x ) ateach point x 1.

Theorem 2.2 A trigonometrically o - convex function f :1 — R has finite left and right
derivatives f'(x), f/(x) ateverypoint x el,and f'(x)<f/(x) forall x el .

Property 2.1 Under the assumptions of Theorem 2.2, the function f is continuously
differentiable on 1 with the exception of an at most countable set.

Property 2.2[8] If f :1 — R isdifferentiable trigonometrically o - convex function,
then the supporting function for f (x) atthe point u Il has the form:

( )

T,(x)=f () cosp(x —u)+ ——=sin p(x —u). (2.3)

3 Main Results

Theorem 3.1 Suppose f :1 — R istrigonometrically p - convex function,and a,b el
with a <b, suchthat 0 < p(b—a)<x. Then, one has the inequality:

%f [a;bjsinp(b%a)é !f (x)dx < = p L1t @)+ (b)]tanp(bzaj (3.1)

Proof. Let u be an arbitrary pointin (a,b).As f (x) istrigonometrically p - convex

function, then from Definition 2.1, and Definition 2.2, we observe that the graph of f (x) lies

nowhere above the o - trigonometric chord:

f (@) sinpb—x)+f (b) sin p(x a)
sin p(b —a)

joining (a,f (@)) and (b, f (b)), and nowhere below any support curve at (u,f (u)). The

supporting function T, (x) for f (x ) atthe point u € (a, b) can be written as follows:

H(x)= (3.2)
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T,(x)=f @) cosp(x —u) + K, sinp(x —u)
=K sinp(x +a-u), (3.3)
where K, ; is a fixed real number dependson u and f ,

K=Jf?u)+K?,, and tanpa = :c((u) :

u,f

Hence,
T,(x) <f(Xx)<H(X) xela,b],
and thus,
jTu(x)dx sjf(x)dx ng(x)dx. (3.4)
Using (3.2), one has a a a
! H (x )dx = m{f (a)! sin p(b —x )dx +f (b)! sin p(x —a)dx}
_ 1 1—cos p(b —a)
= [f (@)+f (b)]{ Sin oo —a) }
=Lt @)+ (b)]tanp(b;aj. (3.5)
Jo, 2

Using (3.3), one obtains

b b
jTu (x )dx = stinp(x +a—U)dx

=—Ksinp|| — |+a—-Uu |sinp| —
yo, 2 2

_27 (m}in p(b;aj. (3.6)
Jo, 2 2
But from Definition 2.2, we observe that:
T, (%) <f (%) forall ue(@b). 3.7)

b b
Taking the maximum of the term .[Tu (x)dx < If (x ) dx in(3.4) and (3.6) for ue(a,b),

and from (3.7), then it follows that:

jf(x)dx > max{iTu(x)dx}

a<uc<b

:.g. T (Ejjlj gn (9;:%}
p Max % L2

2 (a+b) . b-a
::;;f (_75_)5“n[?(_75_j. (SiD

Hence, from (3.4), (3.5), and (3.8), the claim follows. i



Remark 3.1 For atrigonometrically o - convex function f : 1 — R, the constant K, ; in the
P s
2

above theorem is equal to is differentiable at the point u I, otherwise,

K,, e[ =) LW,
P P

Now, we give an estimation for the inequality (3.1) of the power function f " (x ) instead of

f(x).

Theorem 3.2 Let f :1 — R be anon-negative trigonometrically p - convex function,
neN, and a,b el with a<b, suchthat 0 < p(b—a)<x. Then, one has:

if "(x)dx <sin™" p(b—a)i ( j[f @] [f ®)] =

n

r

b (3.9)
xj sin” p(x —a) sin"™" p(b —x )dx.

Proof. Since f (x) istrigonometrically o - convex function, then it is clear from Definition
2.1, that

f(x) <H(KX) Vxela bl
As f (x) isnon-negative, we infer that:
f"(x) <H"(x) vneNlN.

Thus, using (3.2), one obtains
b b

J.f”(x)dx < IH”(x)dx

_ 1 — o
_mj[f @) sin p(b —x)+f (b) sin p(x —a)]" dx

a

=sin™" p(b —a) Zn: (

b
xj sin” p(x —a) sin"" p(b —x )dx.

n

j[f @] [f ®)] x

r

Hence, the theorem follows. ]

Theorem 3.3 Assume f :1 — R is trigonometrically p - convex function, n e N, and
a,b el with a<b, suchthat 0 < p(b—a)<. Then, one has the inequality:

b 2n-1 4 _\nh+r-1 /2n4 —
J‘f 11 (x Y 2{&) > ) ( jsinpm (b_aj sin pm 3, (3.10)
2 2 r=0 pm r 2

a+hb
()
where m =2n-2r -1, A:\/fz(%j+wa’f, and tanpﬁ:K—Z.

S

Proof. As f (x) istrigonometrically o - convex function, then from Definition 2.2, we have
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f(x)=T,(x) VX ela,b],
and consequently,
f2r(x) =T/ (x) vneN.
Thus, using (3.3), one has
b b

f 2 (x)dx > | T2 (x)dx
j i

a

b
=K*! J. sin”™ ™ p(x +a —u )dx

d

j ) ni (—1)"”1(2“) T sin p(2n —2r —1) (X +a —u )dx

2n-1 g n+r-1 /on-1 _
4( j (l) ( ]sinpm(bza]x
r=0 ' (3.11)
. Ka+b} }
xSInpm T +a—-u |,
where, m=2n-2r -1.

The best possible bound of (3.11) can be obtained by taking the maximum of this inequality for

NR N| R

ue(a,b). Inparticular, if u :¥, we get

i f 2 (x )dx > 4[%) i ni & (mj sin pm (b Zaj sin pm 3,

r—o  PM r
where 4 and g are as defined above, and hence the theorem. O

Remark 3.2 Hadamard's inequality (3.1) is an immediate consequence of  Theorem 3.2, and
Theorem 3.3 by taking n=1.

Theorem 3.4 Let f :1 — R be adifferentiable trigonometrically p - convex function,
nelN,and a,b el with a<b, suchthat 0 <2p(b-a)<xz.If f (a)>0 and f '(a)=>0,
one then has the following inequalities:

b 2n G AN
J‘f 2 (x )dx Z(%) ( j(b a)+22p(n— )( jsmp(n—r)(b —a) x | (312
a " xcos p(n—r) (b -a+2y)

zf 27 (x )dx > 4(%) " 2%(Zijsin om (b%ajsin pm Kb%a}y}, (3.13)

f'@Y f(a
where m =2n-2r -1, u=[f > @)+ '@ , and tanpyzp_()_
P f'(a)

Proof. As f (x) istrigonometrically p - convex function, then from Definition 2.2, it follows
that:




f(x)=T,(x) Vxelab]. (3.14)
Since f (x) is differentiable, then from Property 2.2, T, (x ) can be written in the form:

T,(x)=f (a) cosp(x —a) + '@ sin p(x —a)
Yo,

= u sinp(X +y—a), (3.15)

, 2
where  pu=[f 2(a)Jr(f (a)j , and tanp;/=pf, (a)_

P f'(a)
As f (@)=0, f'(@)=0, and p(b+y—a)<x,then from (3.15), we conclude that

T.(x)=0 VX ela,b].
Thus, using (3.14), one obtains
fFP(x)=>T,(x) vneN. (3.16)

Therefore, from (3.15) and (3.16), the following two cases arise,

Case 1.
b b
jf 2 (x )dx ij;” (x )dx

b
=" J'sin2n p(x +y—a)dx

=( J }{(2}21 o Z(znjCOSZP(n—r)(x +y—a)} dx

| a

N =

N =

o | o (DT OV —a)x
] ( j(b—a)+22p(nr)(r]smp(n e -an
" " xcos p(n —r) (b —a+2y)

Case 2.
b b
j f 2 1(x )dx > j T2 (x )dx

b
= ot jsinz”‘l p(x +y—a)dx
-1

_ 2(@ i (—1)””_1(2“) T sin p(2n —2r ~1) (x +y—a)dx

r= r

:4@ b <—g;“ (“jsmpm (b%ajsmpm [(b%a)w}

where, m=2n-2r —1.
Hence, the theorem. ]

Remark 3.2 For the trigonometric expansions in Theorem 3.3, and Theorem 3.4, one can refer
to [9].
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