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SOME INEQUALITIES OF HERMITE-HADAMARD TYPE FOR
TRIGONOMETRICALLY p-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish several Hermite-Hadamard type integral
inequalities for trigonometrically p-convex functions. Applications for special
means are provided as well.

1. INTRODUCTION

The following integral inequality

a b a
8 (%) < it [ rwas HOTI0,

which holds for any convex function f : [a,b] — R, is well known in the literature
as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, for which we would like to refer the reader to the
monograph [8], the recent survey paper [7] and the references therein.

Let I be a finite or infinite open interval of real numbers and p > 0.

In the following we present the basic definitions and results concerning the class
of trigonometrically p-convex function, see for example [10], [11] and [3], [5], [6],
[9], [12], [13] and [14].

Following [1], we say that a function f : I — R is trigonometrically p-convex on
I'if for any closed subinterval [a, b] of I with 0 <b —a < 7 we have

sin [p (b — )] sin [p (z — a)]
(1.2) flz) < [p(bfa)]f(a * b= a)] f(®)
for all = € [a,b].
If the inequality (1.2) holds with ” >, then the function will be called trigono-
metrically p-concave on 1.
Geometrically speaking, this means that the graph of f on [a,b] lies nowhere
above the p-trigonometric function determined by the equation

H (z) = H (x;a,b, ) := Acos (pz) + Bsin (pzx)
where A and B are chosen such that H (a) = f (a) and H (b) = f (b).
If we take x = (1 —t)a +tb € [a,b], t € [0,1], then the condition (1.2) becomes
sin[p (1 —1¢) (b—a)] sin [pt (b — a)]
———=f (b
slpG-al O o
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for any t € [0, 1].
We have the following properties of trigonometrically p-convex on I, [1]

(i) A trigonometrically p-convex function f : I — R has finite right and left
derivatives f! (z) and f’ () at every point x € I and f’ (x) < f} (x). The
function f is differentiable on I with the exception of an at most countable
set.

(ii) A necessary and sufficient condition for the function f : I — R to be
trigonometrically p-convex function on I is that it satisfies the gradient
inequality

(1.4) f) = f(x)cos[p(y —x)] + Ky psinfp(y — z)]

for any @, y € I where K,y € [f_ (2), f} (z)] . If f is differentiable at the
point = then K, r = f' ().

(iii) A necessary and sufficient condition for the function f to be a trigonomet-
rically p-convex in I, is that the function

w(x):f’(prz/wf(t)dt

is nondecreasing on I, where a € I.

(iv) Let f : I — R be a two times continuously differentiable function on I.
Then f is trigonometrically p-convex on I if and only if for all z € I we
have

(1.5) " (@) + p*f (x) > 0.

For other properties of trigonometrically p-convex functions, see [1].
As general examples of trigonometrically p-convex functions we can give the
indicator function

log |F (re™)|
P

h (0) := lim sup , 0€(a,B),

T—00
where F' is an entire function of order p € (0,00).

fo<pg—-—ax< %, then, it was shown in 1908 by Phragmén and Lindelsf, see
[10], that hp is trigonometrically p-convex on («, ).

Using the condition (1.5) one can also observe that any nonnegative twice dif-
ferentiable and convex function on [ is also trigonometrically p-convex on I for any
p>0.

There exists also concave functions on an interval that are trigonometrically
p-convex on that interval for some p > 0.

Consider for example f (z) = cosx on the interval [fg, g] , then

f(2)+p°f (z) = —cosz + p® cosz = (p* — 1) cos

which shows that it is trigonometrically p-convex on the interval [—g, g] for all
p > 1 and trigonometrically p-concave for p € (0,1).

In this paper we establish several Hermite-Hadamard type integral inequalities
for trigonometrically p-convex functions. Applications for special means are pro-
vided as well.



SOME INEQUALITIES OF HERMITE-HADAMARD TYPE 3

2. SOME HERMITE-HADAMARD TYPE INEQUALITIES

We start with the following lemma of interest in itself:

Lemma 1. Assume that the function f: I — R is trigonometrically p-convexr on
I. Then for any a, b€ I with0 <b—a <7 andz € [a,b] we have

e (52 eos o (o= 550 )| < 5@+ flaro- o)
f(a)+ f(b) cos [p (z = 252)]

= 2 cos [p(b;a)]
Proof. From (1.2) we have by replacing = with a + b — = that
osmfpl—a),  sinfp(b-a)
(2.2) fla+b )Ssin[p(b—a)]ﬂ)+sin[p(b—a)]f(b>
for any x € [a,b].
If we add (1.2) with (2.2) we get
(2.3) f@)+ fla+b—2x)
sin [p (b — )] sin [p (z — a)]
e PR EACUe PO R
sin[p(e—a)] , . sinlp(b—2)
sinlp =) o6y
_sinfp(b- o) +sinfp(e-a) ,
T 2 A
sin [p (b — )] + sin [p (z — a)]
afp-a)
_sinfp(b—z)] +sinfp(z—a)] .
for any « € [a,].
Observe that
sin[p (b — )] +sin[p (z — a)]
24 sin[p (b~ a)
B 2sin [p(bz_a)} cos [p (z — “£2)] ~ cos [p (z — 2£2)]
B 2sin [p(b;a)} cos [p(b_a)} - cos [p(b;a)]

for any z € [a,}].
Using the equality (2.4) and dividing by 2 in (2.3) we get the second inequality
in (2.1).
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From (1.3) for t = 1 and a = u, b = v we get

wto) _sinfp(5)] o sinp ()]
f( 2 ) anlplv—w)]’ TS

sin [p (*5*)]

sin [p (v — u)]

1 f )+ f(v)
o] 2

which implies that

(2.5) f<u-;) H;u)] . f(u);f@)

for any u,v € I.
Now, if we in (2.5) take v = x and u = a + b — x, then we get the first inequality
n (2.1). O

Remark 1. By taking x = (1 —t)a + tb in (2.1) we get the equivalent double

o )b

2o f(%
[f(1—=t)a+1tb)+ f(ta+ (1 —1)b)]

- fla)+ f(b)cos[p(t—3)(b—a)
5 =)

l\')\»—t

cos[
foranya,belwith0<|b—a|<%andt€[0,1].

We have the following Hermite-Hadamard type inequality that was obtained in
a different and slightly more difficult manner in [2]

Theorem 1. Assume that the function f : I — R is trigonometrically p-convex on
I. Then for anya,be I with0 <b—a < % we have

) 7f (a“’)m {p(b;co] </abf(x)dm< f(a):f(b) o [p<b2—a>]'
Proof. Integrating the inequality (2.1) over z on [a, b] we get
o () oot
<s Vabf(z)dx+/abf(a+bz)dx]
(

b [ cos [p (2 — )] o

2 b—a
cos {p( - )}

IN
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and by the change of variable y =a+b—x

b b
/ f(a+b*fc)dér:/ f(y)dy,
hence by (2.8) we get (2.7). O

Remark 2. The inequality (2.7) for p = 1 was obtained in 2004 by M. Bessenyei in
his Ph.D. Thesis [4, Corollary 2.13] in the context of Chebyshev system (cos,sin) .

We use the notation sect = —L for t # (2k + 1) 5, k is an integer, to state the

cost

following weighted integral inequality of Hermite-Hadamard type:

Theorem 2. Assume that the function f : I — R is trigonometrically p-convex on
I. Then for anya,be I with0<b—a < % we have

(2.9) f(a;b> < bia/abf(x)sec [p(m—a;b)]dng(a);f(b).

Proof. From (2.1) we have

(2.10) f(a;b> S%[f(fﬁ)Jrf(aerfx)]sec {p<x“;b>}
LS+ {p(b—a)}

- 2
for any a, b € I with 0 <b—a <% and z € [a,b].
If we take the integral mean in (2.10) we get

(2.11) f(“;”’>g2(b1 )Lb[f(x)+f(a+bx)]sec[p<xa;b)]dx

h Sf(a);rf(b)sec{/J(ba)]_

Using the change of variable y = a + b — x we get

[ twsv oo (o= ) e [ ppse o (2]

and by (2.11) we obtain the desired result (2.9). O

The following weighted inequality also holds:
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Theorem 3. Assume that the function f: I — R is trigonometrically p-convex on
1. Then for any a, b€ I with0<b—a < % we have

-

§/abf(m)cos {p (z a;bﬂ dz

_boatgsinfp(b—a)l f(a)+ £ ()
- 2 cos [p(bT_a)} 2 |

Proof. If we multiply the inequality (2.1) by cos [p (z — “E)] > 0 we get

)

() + £ (a +b—x>]cos[p(x—“;b)}

L@t f W e )

for any z € [a,b].
If we integrate this inequality over = € [a, b] we get

(339 ol

/ [f (z) + f(a+b—x)]cos [p(x—a;bﬂdx

<

l\DM—l

Since

[ (o253 [0+ [ (o 25 ]

and
b _
a+b 1 a+b
cos 2p<x— )} dx = — sin 2p<:1c— ﬂ
/a [ 2 20 L 2 a
1 b 1 b
bl )] oo
1

b

hence
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Also, by the change of variable y = a + b — = we have

[ twsv s o (o= 2w [ oo (- 50)]

and by (2.13) we get (2.12). O

3. RELATED RESULTS

Theorem 4. Assume that the function f: I — R is trigonometrically p-convex on
I. Then for anya,be I with0<b—a< % we have

(3.1) /abf(t)dt > %sin {p (bQ“ﬂ
oo =2 s (2]

for any x € [a,b], where K, 5 € [f_ (2), f} ()] .
If f is differentiable in x, then

o [frowe Ll (5
S P A )}

Proof. If we take the integral over y € [a,b] in the gradient inequality (1.4) we get

b
83 [ 10a= 1@ [ eoslplv- st Kag [ smlpw-alay

where K, 7 € [f. (2), f} ()] .
Observe that

/bCoswyx)}dy Lsinfo(y - a))lk = S sin[p(b— 2)] + = sin [p (z — a)]
a P @ P P

=2l (457 eos[o (== 57),

/bsinwy—x)] dy = —= cos[p(y — )]’ = — cos [p (b — )] + = cos [o (a — =)
a p ¢ p p

= % [cos[p(a —z)] — cos[p(b—z)]]

(52 p(:5)
2 . b—a . a+b
i (15 b (222)
or any x € [a,b].

By utilising the inequality (3.3) we then get (3.1). O

and

Remark 3. We observe that, if we take x = “T'H’ in (3.1), then we recapture the
first inequality in (2.7).
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Theorem 5. Assume that the function f: I — R is trigonometrically p-convex on
I. Then for any a, be I with0 <b—a < % we have

b
(3.4) / F(t)seclp(t—z)]dt > f (@) (b—a) + %Kw,fln <

for any x € [a,b], where K, 5 € [f_ (2), f} ()] .
If f is differentiable in x, then

cos |p (@ — a)]
cos [p (b — ) )

’ COS r—a
(3.5) / Nﬂ%dp@@hﬁZf@Mb@+;f@am<aE&&_mﬁ>

for any = € [a,b].
Proof. We have by the gradient inequality (1.4) that

(3.6) fy)seclp(y— )] > f(z) + Ky ptan [p (y — @)]

for any z, y € [a, b] .
If we integrate (3.6) over y € [a,b], then we get

b b
(3.7) / fy)sec[p(y —)]dy > f(2) (b—a) + Ko g / tan [p (y — z)] dy

for any z € [a,}].
Since

b b o o
/tan[p(y*:v)]dy:/ wdy

cos [p (y — )]

1 [ 1
= _;/a md(cos [p(y — )]

= 7% In (cos [p (y — 33)])|Z

= —% In (cos [p (b — 2)]) + %ln (cos[p(a—z)])

(i)

for any x € [a, b], hence by (3.7) we get (3.4). O

Remark 4. We observe that, if we take v = ‘%b in (3.4), then we recapture the
first inequality in (2.9).

From a different perspective, we have:

Theorem 6. Assume that the function f: I — R is trigonometrically p-convex on
I. Then for anya,be I with0<b—a< % we have

38) — W) b=a)+ fO)sinlo(b—y)]+ @ sinlp(y - )]}

b
> [ f@)eoslpla - y)ds

for any y € [a,b].
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In particular, fory = %H’, we get

39 A {7 (5) e-ar e+ s@isnlo (50)]}

zleﬂmamP<xa;bﬂdx

Proof. The function f : I — R is differentiable almost everywhere and we have

(3.10) f) = f(z)cos[p(y — )]+ [ (z)sin[p (y — )]

for almost every x € [a,b] where y € [a, b].
If we integrate the inequality over x € [a, b] we get

b b
311  f(y)(b—a) Z/ f(x)cos[p(y — )] dﬂf+/ f(@)sinp(y — =) dz

for any y € [a, b].
Using the integration by parts, we have

b b
/f’(x)sin[p(yw)]dx:f(x)sin[p(yw)ﬂf;w/ f (@) cos [p (y — )] da
=—f(b)sin[p(b—y)] - f(a)

b
+p/ f(@)cos[p(y —a)]da

sin [p (y — a)]

and by (3.11) we get
fy)(b—a)=—=f0)sin[p(b—-y)] - f(a)sin]p(y —a)]

(p+1) / f(z)cosp(y — x)]dx,
for any y € [a,b] , which is equivalent to the desired result (3.8).

4. SOME INEQUALITIES FOR SPECIAL MEANS

Recall the following special means:
(1) The arithmetic mean

a+b
5

A= A(a,b):= a,b > 0;

(2) The geometric mean:
G:G(a,b)::\/%, a,b>0;

(3) The harmonic mean:

H = H (a,b) := T a,b>0;
at
(4) The logarithmic mean:
a ifa=»5
L=1L(a,b):= _ a,b > 0;
b-a ifab

Inb—1Ina
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(5) The identric mean:

a ifa=0b
I:=1(a,b)= L /B =4 a,b > 0;
- (> ifa#b
e \ a
(6) The p-logarithmic mean:
1
potl _ gpt+l r
_ if a # b;
L, =1L, (a,b) := {(p+ 1) (b—a)
a ifa=5

where p € R\ {—1,0} and a, b > 0.

It is well known that L, is monotonic nondecreasing over p € R with L_; := L
and Lo := 1.
In particular, we have the inequalities

(4.1) H<G<L<I<A.

Consider the function f : (0,00) — (0,00), f(z) = 2P with p € R\ {0}. If
p € (—00,0)U[1, 00) the function is convex and therefore trigonometrically p-convex
for any p > 0. If p € (0,1) then the function is concave and

1_
[ (@) + p*f () = p*a? —p (1 —p)aP™? = p*aP—? (w2 — p(2p)> , 2> 0.
P
This shows that for p € (0,1) and p > 0 the function f (x) = 2P is trigonometrically
p-convex on (% p(1—p), oo) and trigonometrically p-concave on (0, % p(l— p)) .
For p € R\ {—1,0} and 0 < a < b we have

1 b
Piy — [P
bia/amdx—Lp(a,b).

Now, by applying the inequality (2.7) we have for p >0 and 0 < b—a < % that

2 ,p _[p(b—a) DV IP (a 2 4 (a? b tan | PO
42 2@ isin| 2O < om0 1) < 240 202

where p € (—00,0) U [1l,00) and 0 < a < b < oo or p € (0,1) and %\/p(l—p) <
a<b<oo.lfpe(0,l)and 0 <a<b< %\/p(l — p) then the sign of inequality

reverses in (4.2).
If we use the inequality (2.9), then we have for p >0 and 0 <b—a < 7 that

(4.3) AP (a,b) < — /abxpsec[p<x—“;Lbﬂdng(ap,bp)

“b—a

where p € (—00,0) U [l,00) and 0 < a < b < oo or p € (0,1) and %\/p(l—p) <
a<b<oo.lfpe(0,])and 0 <a<b< %\/p(l — p) then the sign of inequality
reverses in (4.2).
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Finally, if we use the inequality (2.12), then we have for p > 0and 0 < b—a < 5
that

(4.4) b—a+ ! sin [p (b — a)]} AP (a,b)

1
2 p
b
g/ xP cos [p(a: a;b)} dz
b—a—i—%sin[p(b—a)}
2 cos [@}

A(a®,b?),

where p € (—00,0) U [l,00) and 0 < a < b < oo or p € (0,1) and %\/p(l —-p) <
a<b<oolfpe(0,])and 0 <a<b< %\/p(l — p) then the sign of inequality
reverses in (4.2).

Consider the concave function f: (0,00) — R, f (z) = Inz. We observe that

9(x) = [ (@) + 77 F (@) = Iz — 5, 2 >0

We have -
2
g'(x):—’_ipzx>0forx>0
x
and
lim g(z) = —oc0, lim g(z) =00
r—04 T—00

showing that the function g is strictly increasing on (0, c0) and the equation g (z) =
0 has a unique solution. Therefore g(z) < 0 for x € (0,z,) and g(z) > 0 for
x € (z,,00), where z, is the unique solution of the equation Inz = oz

In conclusion, if p > 0, then the function f(z) = Inz is trigonometrically p-
concave on (0,z,) and trigonometrically p-convex on (z,,0).

Since ,
1 blnb—alna — (b—
/ Inzdy = 00— 419 (b—a) =1InI(a,b),

b—a b—a
where I (a,b) is the identric mean, then by (2.7) we get for p > 0and 0 <b—a < %
that
Z:sin[p(bﬂl)] b—a 2tan[
(4.5) [A(a,b)]e = < [T (a,b)] " < [G(a,0)]°
provided [a, b] C (z,,00) where x, is the unique solution of the equation Inz =
If [a,b] C (0,2,), the inequality in (4.5) is reversed.

Other similar Hermite-Hadamard type inequalities may be stated, however the
details are left to the interested reader.

P(b;ﬂ)]

p2z2 "
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