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Abstract. We generalize the inequality ab+bc+ac
3

≤ (a+b+c
3

)2 to n arbitrary positive real num-
bers and use that to obtain a non-homogenous version of the AM-GM inequality, given that their
arithmetic average is the reciprocal of their harmonic average.

1. Introduction

The famous Arithmetic Mean-Geometric Mean Inequality, or simply AM-GM inequality, is per-
haps the most frequent tool used in obtaining other inequalities needed in analysis or other areas
of mathematics. It is stating that for arbitrary n positive real numbers {aj}j=1,2,..,n, we have

(1) AM :=
a1 + a2 + · · ·+ an

n
≥ GM :=

 n∏
j=1

aj

 1
n

.

Also, equality in (1) takes place if and only if all numbers are equal to each other. In what
follows we are going to assume that {aj}j=1,2,..,n is not a constant sequence. There are many proofs
of this important inequality which are using various methods, ranging from induction to Lagrange
multiplies (see [2] for a recent approach and [1] for whole collection of proofs). Let us observe that
the inequality (1) is homogeneous. In this paper we are interested in a non-homogeneous version
(1), of the form

(2) AM ≥ GMα, α > 0,

under certain extra assumption on the numbers {aj}j=1,2,..,n. The extra assumption does not seem
that natural, but if we introduce the Harmonic mean, defined as usual as

HM :=
n∑n

j=1
1
aj

then we can write this extra condition in a more meaningful way:

(3) AM = HM−1.

Since we have HM ≤ AM then we need to have AM > 1 and then HM < 1, otherwise HM ≤
AM ≤ 1 which attracts HM = AM = 1. In the last scenario, all numbers must be equal to one
another and we excluded this situation. We may assume that GM > 1, otherwise (2) becomes
trivial. This is the case, if n = 2, since AM = HM−1 implies GM = 1. For this reason, we are
going to assume that we have at least three numbers. If n = 3, let’s say a+ b+ c = 1

a +
1
b +

1
c . We
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can choose a and b arbitrary positive numbers and then solve for c, since the map f : (0,∞) → R,
f(x) = x− 1

x is a bijection. In this case, let us show that

AM ≥ GM3.

This can be written as a + b + c ≥ 3abc. The relation between a, b and c implies that abc =
ab+ac+bc
a+b+c . Then the inequality above becomes (a+ b+ c)2 ≥ 3(ab+ ac+ bc) which is equivalent to

(a− b)2 +(b− c)2 +(a− c)2 ≥ 0. This insures that the inequality AM ≥ GM3 is true and equality
takes place only if a = b = c. The case n = 4 appeared as a proposed problem in [3] and that was
our starting point for this note. We are interested in the following result.

THEOREM 1.1. For n ≥ 3, if n positive real numbers {aj}j=1,2,..,n satisfy

(4)
n∑

j=1

aj =
n∑

j=1

1

aj
,

then

(5)
1

n

n∑
j=1

aj ≥ max

(

n∏
j=1

aj)
1

n−2 , (

n∏
j=1

aj)
−1
n−2

 ,

or

AM ≥ max(GM
n

n−2 , GM
−n
n−2 ).

We observe that in proving (5), we may actually assume that none of the aj are equal to 1 or
aiaj = 1 for some i and j in [n] := {1, 2, 3, ..., n}. It is interesting that for n = 4, we found rational
solutions for (3), such as a1 = 2, a2 = 7, a3 = 15 and a4 =

3
70 , but no such solutions for n = 3.

2. Proof of Theorem 1.1

Let us observe that (4) is invariant to the change aj → 1/aj . As a result, we only need to prove

(6)
1

n

n∑
j=1

aj ≥

 n∏
j=1

aj

 1
n−2

.

Let us introduce the notation: âj =
1
aj

∏n
k=1 ak. From the hypothesis we have

n∏
k=1

ak =

∑n
k=1 âk∑n
k=1 ak

.

The (6) becomes equivalent to

(7)

n∑
k=1

âk ≤ n

 1

n

n∑
j=1

aj

n−1

.

We observe that (7) is homogeneous. Let us show that (7) is true and independent of any other
hypothesis.

LEMMA 2.1. For n ≥ 3, if n positive real numbers {aj}j=1,2,..,n, then the inequality (7) takes
place.
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To prove this, we are going to use induction. The basis case, n = 3, was argued in the Introduc-
tion. Let us assume the inequality (7) is true for n numbers (n ≥ 3). Let us take n + 1 positive
numbers {bj}j=1,2,..,n,n+1. We need to prove that

(8)

n+1∑
k=1

b̂k ≤ (n+ 1)

 1

n+ 1

n+1∑
j=1

bj

n

.

Since this is a homogeneous inequality we may assume that
∑n+1

j=1 bj = n + 1. So, the inequality

(8) which we need to prove, becomes

(9)
n+1∑
k=1

b̂k ≤ n+ 1.

We observe that
n+1∑
k=1

b̂k = b1b2...bn + bn+1

n∑
k=1

b̃k,

where b̃k is 1
bj

∏n
k=1 bk. Using the induction hypothesis we get

n+1∑
k=1

b̂k = b1b2...bn + bn+1

n∑
k=1

b̃k ≤ b1b2...bn + bn+1n(
1

n

n∑
j=1

bj)
n−1.

Let us denote bn+1 = x. Also, using the AM-GM inequality, the above inequality can be continued
as

n+1∑
k=1

b̂k ≤ (
1

n

n∑
j=1

bj)
n + xn(

1

n

n∑
j=1

bj)
n−1 = [

1

n
(n+ 1− x)]n + xn[

1

n
(n+ 1− x)]n−1.

In order to show (9), it is enough to prove that

(10) [
1

n
(n+ 1− x)]n + xn[

1

n
(n+ 1− x)]n−1 ≤ n+ 1.

Let us then introduce the function f(x) = [ 1n(n+1−x)]n+xn[ 1n(n+1−x)]n−1 defined on [0, n+1].
This function can be written as

f(x) =
n+ 1

n
[
1

n
(n+ 1− x)]n−1[(n− 1)x+ 1].

If we differentiate f , we get

f ′(x) =
(n+ 1)(n− 1)

n
[
1

n
(n+ 1− x)]n−2[

(n+ 1− x)

n
− (n− 1)x+ 1

n
]

and in factored form

f ′(x) =
(n2 − 1)

nn−1
(n+ 1− x)n−2(1− x).

This implies that f has a maximum at x = 1 on [0, n+ 1]. Since f(1) = n+ 1, we obtain (10).
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