OSTROWSKTI’S INEQUALITY FOR THE COMPLEX INTEGRAL
OF HOLOMORPHIC FUNCTIONS ON CONVEX DOMAINS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we extend the Ostrowski inequality to the complex
integral, by providing upper bounds for the quantity

Jw-w- [ e
Y

under the assumptions that « is a smooth path parametrized by z (¢), ¢ € [a, b],
u = z(a) and w = z (b) while f is holomorphic in G, convex domain, v C G
and z € G. Applications for some particular functions of interest are also given.

1. INTRODUCTION

In 1938, A. Ostrowski [8], proved the following inequality concerning the distance
between the integral mean 31— f; f () dt and the value f (z), € [a, b].

Theorem 1 (Ostrowski, 1938 [8]). Let f : [a,b] — R be continuous on [a,b] and
differentiable on (a,b) such that f': (a,b) — R is bounded on (a,b), i.e., |f'|| =

sup |f’ (¢)| < co. Then
2
1 o — atb
< 1+ (b—;> 1Nl (b—a),

te(a,b)
for all © € [a,b] and the constant  is the best possible.

b
(1) |f<m> S =l AL

For extensions of Ostrowski’s inequality in terms of the p-norms of the derivative,
see [1], [2] and [3]. For a recent survey on Ostrowski’s inequality, see [4].

In order to extend this result for the complex integral, we need some preparations
as follows.

Suppose v is a smooth path parametrized by z (¢), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =7 as

b
/f(z)dz: f(2)dz ::/ f(z(@) 2 (t)dt.

We observe that that the actual choice of parametrization of v does not matter.
This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
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and [c, b], then assuming that f is continuous on v we define

f(z)dz:= (2)dz + f(z)dz

Yu,w Yu,v Yv,w

where v := z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)|dz] == / £z (017 (1) dt

and the length of the curve ~y is then

() = / izl = / 12 ()] d.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

12 [ f@eEd=fwew - fwew - [ FEge)d

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

/ f(z)dz| < / F ) Jd2] < 1f ] £ ()

where [[f[|, o, := sup.e, [f (2)]-
We also define the p-norm with p > 1 by

191, = ( [uer |dz|>1/p.

I£1,0 = [ 17 @)l
¥
If p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

£, < UL, -

In the recent paper [5] we obtained the following result for functions of complex
variable:

(1.3)

For p =1 we have

Theorem 2. Let f be holomorphic in G, an open domain and suppose v C G
is a smooth path from z(a) = u to z(b) = w. If v = z () with x € (a,b), then
Yuw = Yuw U Yv,ws

(1) 'f(v) w-w- [ 7G)a

~

Wl e [ o= ulldal 417 e [ 12wl
Y Y

u,v v, w

SM

2 =ulldel + [ Je-ul |dz|] T~
:

U, v, w
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uﬁ>'f@Nw—u»—/f@wu

~
< max |z —ul [/
€00

/
1+ max |z =l |1 £]

Yu,v’ Vo, wil

!
< max {Zrél’ixv |z — ul ’ZIGI}YE?(w |z — w} If ”vl )

Ifp,g>1 with%—i—%:l, then

uﬁ>)fwﬂw—uy—/f@ww

<(L 7

1/q
|z—wqwz> 171, oo

1/q
z—uwd4> fwwwp+</‘
Yo, w
g(/ 2= ul'ldz| + [
v 2l

In this paper we extend the Ostrowski inequality to the complex integral, by
providing upper bounds for the quantity

Vwﬂw—w—quMz

u,v

1/q
q /
|Z—'U)| |d2|> ||f ||'\/u7w;p'

u,v v, w

under the assumptions that + is a smooth path parametrized by z (t), t € [a,],
u = z(a) and w = z (b) while f is holomorphic in G, convex domain, v C G and
z € G. Applications for some particular functions of interest are also given.

2. OSTROWSKI TYPE INEQUALITIES

We have:

Theorem 3. Let f: D C C — C be a holomorphic function on the conver domain
D and suppose v C D is a piecewise smooth path parametrized by z (t), t € [a,b],
u=z(a) and w = z(b). If v € D, then

@U'W—@f@—Lf@M

§L|v—z| /Olf’((l—t)z+tv)dt‘|dz|

max,e~ [v — 2| f7 ’fol (1=t z+tv) dt‘ |dz];

i —nz+wal jae)

IN

(1o =1a=) " (1,

42171 .
p,q>1wzth5+a 1;

J, Io— 2| |dz| max.c, ]fol P =)z + to) dt‘
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and

(22) '(zu —wf - [ £

</01 (AIU—ZIIf’((l—t)Z+tv)IdZI)dt

max,e~ |v — z|f0 (f If (1 —t)z + tv)| |dz\) dt;

(/) |v—z|”\dz|) L=tz + ) a]) " d
p7q>1wzth +7 1;

IN

Jolo = 2l dz] fy maxzeq | /(1= ¢) 2 + tv)| dt.

Proof. Due to the convexity of D, for any z, v € D we can define the function
¢, :00,1] =R by ¢, , (t) := f((1 —t)z+tv). The function ¢, , is differentiable
on (0,1) and

dp, , ()

o =w—2)f((1-t)z+tv) fort € (0,1).

We have

F0)= &) =0 D=0 O = [ d*";;%

vfz/f t)z+tv)d
for any z, v € D.

Integrating over z on vy we have

/dz—/f /v—z (/ £ 1t)z+tv)dt)d
(wu)f(v)Lf(z)dz[{(vz) </01f'((1t)z+tv)dt>dz

and by Fubini theorem, we get the equality of interest

namely

(2.3) (w—u)f(v)—/f(z)dzz/(v—z) (/Olf’((l—t)z+tv)dt)dz

Y Y

:/O1 <[Y(v—z)f’((1—t)z+tv)dz>dt.

Taking the modulus in the first equality in (2.3), we get ||

/ﬁ-@ </01f’((1—t)z+tv)dt>dz

§L|v—z| /Olf’((l—t)z+tv)dt

(2.4) }<w—u>f<v>—ﬁf<z>dz <

|dz|.
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Using Holder’s inequality we also have

JE
:

maxsey [0 = 2| [, | fo £/ (L= t) 2 + to) dt |z

/O1 F(L—1) 2+ t) dt‘ 1d2|

(o= 1a:0)" (1, 1f&f’<<1—t>z+tv>dt\q|dz|)”q
P, q>1w1th +f=

IN

max. \fol (1 =1) 2+ tv) dt’ S, lo = 2| ||,

which proves the inequality (2.1).
Using the second equality in (2.3) we get

g/ol A(u—z)f’((1—t)z+tu)dz

g/ol (le—zllf’((l—t)Z+tv)|d2|>dt

dt

(25) '<w —w - [ £

Using Holder’s inequality, we have

(2.6) / lo— 2| |f (1 = t) z + tv)] |dz]

maxzey [0 = 2| [ 1f (1= t) z + tv)| |dz];

(f \v—z|f’|dz\) ( |f’ (1—1) 2+ t)|? |dz\)/
p,q>1w1th +*=

IN

f7 |[v — 2| |dz| max.c | f' (1 —t) 2z + tv)]

for t € [0,1].
Integrating the inequality (2.6) over ¢ € [0,1], we obtain

maxeey o — 2| fy (S, 17 (1= 1) =+ t0)] |d]) dt;

(1o ==lasl) " J (4,1 (@ =12+ ) a=l)

. 1 _
p,q>1w1th;+a 1

IN

S v =2 |dz]| [y max.ey |/ (1 —t) 2+ to)| dt

and by (2.5) we get (2.2).
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Remark 1. From (2.1) we also have the inequalities in terms of the integrals of

modulus
(W) @)~ [ )z

</7|v—z| /Olf’((l—t)z+tv)dt’|dz|

< [o-s (/1|f’((1—t)2+tv)ldt> ]

max.e, [v — 2| [ (fo I (( z+tv)|dt> |dz|;

(2.7)

IN

(5 lo—=rw) ™ (1, (f& (1=t + )" dt) jaed)

D, q>1wzth +f:

Syl = 2| |dzl maxae, Jy |f (1= 1) = + to)] dt.

Iflf'lp.oo = sup.ep | f' (2)] < 0o, then we also have

(28) ’<w —w - [ £

</7|v—z| /Olf’((l—t)z+tv)dt’|dz|

<[ (/Olf’((l—t)zﬂv)ldt) ] < 17V Jo= 1]

Corollary 1. With the assumptions of Theorem 3 and if | f'| is convex on D, then

(29) '(wU)f(v) / F(2)dz
gé[/w—zw () 2] + 1f' (v >|/|v—z||dz]

1
<5 1o+ 1 @ /|v—z| 21 < 17 e | 1o =1l

provided
11,0 = sup | (2)| < o0.
zeD

Proof. If g : [0,1] — R is convex, then the following inequality is well known in the
literature as Hermite-Hadamard inequality

1
/O g(t)dt§ M

Let v € D and z € . By Hermite-Hadamard inequality for the convex function
[0,1] 2t — |f ((1 —t) z + tv)| we have

|-z s mia <308 @l 1r @1,
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which implies that

[{|vz| </01|f’((1t)z+tv)|dt> |dz|

<5 [ el G117 @l

-2 [ o= 2115 @)zl + 1 w) |

gl
and by (2.7) we get (2.9). O

v — z| |dz]

We also have:

Corollary 2. With the assumptions of Theorem 3 and if | f'|* with ¢ > 1 is convex
on D, then

(2.10) ‘(wU)f(v) / f (2)de

<o ( [ —zﬂdz)l/p (17 e+ [ |dz|)1/q,

wherep>1with%+%:1.

Proof. Using power inequality for integral and the convexity of |f/|?, with ¢ > 1,
we have

/01|f/((1—t)z+tv)|dt§ (/01|f/((1_t)Z+tv)|th>1/q

< <|f/ (2)| -|2- Vil (1})|q>1/q

forve D and z € 4.
Using (2.7) we get

(2.11) ‘(w—u)f(v)— JECLE

< [o=aA( [ 1=z wia) o
< fw- (I ' 1y <v>|Q>”qu|
< ( / o — zp|dz>”” ( / Ku' Qa4 <v>|Q>1/qr ‘ dz|>”q
(o) (] £ )

1/p 1/q
= ([=sria=) (5 [+ 51 @)
for v € D. O
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For z € C we have

lexp (2)| = |exp (Rez +iIm z)| = |exp (Re z) exp (i Im z)|
= |exp (Re 2)| |exp (i Im z)| = exp (Re 2) |cos (Im z) + i sin (Im 2)|
=exp (Re z).

Then for any ¢ € [0, 1] and for any z, w € C we have

lexp (1 —t) z + tw)|” = exp [ (Re ((1 — ) z + tw))]
=exp[(1 —t)aRez + taRew]
< (1—t)exp(aRez)+texp (aRew)
— (1= 1) exp (2)[* + texp (w)]®
which shows that the function g (2) = |exp (2)|” is convex for any a € R\ {0} .

Suppose v C D is a piecewise smooth path parametrized by z(t), t € [a,b],
u =z (a) and w = z (b). We also have for v =+, ,, that

L exp (2) dz = L exp (2) dz = exp (w) — exp (1)

w,w

Using the inequality (2.9) we get

(2.12)  |( xp (v) — exp (w) + exp (u)]

w—u)e
< % [L v — 2| exp (Re 2) |dz|+exp(Rev)/

v — 2| |dz]
¥

1
< 5 [lexpllp o+ exp(Rew)] [ o= 21dsl < lexplp o, [ 1021
v v

for any v € C.
By using the inequality (2.10), we get

(2.13)  |(w —u)exp (v) — exp (w) + exp (u)]

1 1/p 1/q
< gz ([o=a1asl) " (swotaren) o)+ [ exp(aren)aal)
Y 2l

Wherep>1with%+é:1,foranyv€([f.

3. RELATED RESULTS

Now, by the help of power series f(z) = Y.~ janz" we can naturally construct
another power series which will have as coefficients the absolute values of the coef-
ficients of the original series, namely, f,(z) = > oo |an|2". It is obvious that this
new power series will have the same radius of convergence as the original series.
We also notice that if all coefficients a,, > 0 then f, = f.
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‘We notice that if

_ - (_1)n n __ 1 .
(3.1) f(z)—ng1 — —lnilJrZ,zeD(OJ),
- (_1)" 2n
g(z):Z z“" =cosz, z €C;
— (2n)!
h(z)= i i22”+1 =sinz, z € C;
= (2n+1)! ’ ’
oo . 1
Z(Z)*Z(*l) z :m’ZGD(O’l);

n=0

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

o0 N 1
(3.2) fa(z)=)_ —=z"=In :

n! — 2z

, 2€ D(0,1);

=1
9a (2) = Z 22" = coshz, z € C;

s 1
ha (2) = Z — 22" —ginhz, 2 € C;

— (2n+1)!

- 1
la(z):ZZn::, ZGD(O,].)

n=0

Theorem 4. Consider the power series f(z) = Y ", anz"™ that is convergent on
the open disk D (0, R) and suppose v C D (0, R) is a piecewise smooth path para-
metrized by z (t), t € [a,b], u=z(a) and w = z(b). If v € D(0,R), then we have
the inequalities

39 Jw-wro- [1ea g imoree s [ e
and
) Jw-wro - [r@a] g Lo [ -]

Proof. We have f'(z) = > 7 na,z" ' and f.(z) =Y oo, nla,| 2"t For m > 1,
by using the generalized triangle inequality we have

m m
E na, 2" < E n|an|z"*1.
n=1 n=1

Since the series 7, na,z" ! and > 07 | nla,| 2" ! are convergent, then by letting
m — o0 in (3.5) we get

[f'(2)] < fa(lz]) for any z € D (0, R).

(3.5)

We observe that, since f! has nonnegative coefficients, then this functions is
convex as a real variable functions on the interval (—R, R) and increasing on [0, R).
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For z, v € D, consider the function h, ,, : [0,1] — [0,00), h; . () := fi, (|(1 — ) z + tv]).
For «, 8 € [0,1] with o+ 8 =1 and ¢4, t2 € [0, 1] we have
by (aty + Bt2) = fo (|(1 — aty — Bt2) z + aty + Btav])
= filla((T—t1) 2+ t1v) + B ((1 — t2) 2 + t20)]]
< frlal(l—t1) z + tio] + B (1 — t2) 2 + tav]]
< afy (I(L=t1) 2+ taw]) + B0 (J(1 = t2) 2 + t20])

which shows that h, , is convex on [0, 1].
If we write the Hermite-Hadamard inequality for k., on [0, 1] then we get

[fa ()| + 1fa (v)]
2

/ A =t)z+tv])dt <

for any z, v € D, which implies that

/7|v—z| (/01|f’((1—t)z+tv)|dt> 1dz|
< [ (/Olf;<|<1—t>z+tv|>dt) 22

< f1o- IACETAGT

-1 [/ o= AIf @l + 1 01 £0)

and the inequality (3.3) is proved.
We also have

fa (I =t) 2+ to]) < fo (1= 1) [z + t]v])

for any z, v € D and t € [0, 1] and since the function p, ,, () := f, (1 —t) |z| + t |v])
is convex, then by Hermite-Hadamard inequality we have

1 1 1 /
[ rta=ozruhas [ p-o v 2E L ED
0 0

This implies that

L|v—z| (/Olf;(|(1—t)z+tv|)dt> d2|
< [o-s ([ =i+ tihar)

< [ o E Ll — 2 o= 2 e b+ 22 o) )

which proves (3.4). O

Remark 2. If we consider, for instance f (z) = sinz, then f, (z) =sinhz, z € C
and by (3.8) and (3.4) we get

1
(3.6) |(w—wu)sinv+ cosw — cosu| < 5 {|coshv| £(y / |v — z]|cosh z] |dz|}
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and
(3.7)

[(w—u)sinv + cosw — cosu| < % [cosh (lv) £ () + / |v — z| cosh (|z]) |dz] ,
g

for any v € C and v, ,, C C a piecewise smooth path.

Corollary 3. If the power series f(z) = >, anz™ has nonnegative coefficients
and is convergent on the open disk D (0, R), then with the other assumptions in

Theorem 4 we have
(35) \(w—u>f<v>—/7f<z>d <3 |17 @it [lo=ar |
i <3 |7 Qe+ [l e

and
39 fw-ws 0= [ 1)

Important examples of functions as power series representations with nonnega-
tive coefficients in addition to the ones from (3.2), are:

(oo}

1
(3.10) exp (z) = Z Ez", z e G

n=0

1 1+2\ = 1 5. _
21n(1—z>_22n—12 , 2€D(0,1);

2n+1 DOl
Zf?n—i—l z , 2 € (7)7

1
tanh™ ( )22722" 1 2eD(0,1);

:1271—1
2 T(n+a)T(n+p6)T(y)
F (a7ﬁ77’z): Zn7a767’>/>07
2 nZ:;J n!T ()T (B)T (n+7)
z2€ D(0,1);

where ' is Gamma function.
If we write the inequalities (3.8) and (3.9) for the function f(z) =In (1 —2)"",
z€ D(0,1), then we get

In(1—2)""dz

=07 |ee+ [1o-+

(3.11) ‘(w —u)ln(1—v)"' =

<

o]

(1)1
and

(3.12) ‘(w—u)ln(l—v)l— In(l—2)""dz

I\D\HQ\

{(1|vl) t() + LIvZI (1Z|)1|d2],

where v € D (0,1) and v, ,, C D (0,1).
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