GENERALIZED TRAPEZOID INEQUALITY FOR THE COMPLEX INTEGRAL OF HOLOMORPHIC FUNCTIONS ON CONVEX DOMAINS

SILVESTRU SEVER DRAGOMIR 1,2

ABSTRACT. In this paper we extend the generalized trapezoid inequality to the complex integral, by providing upper bounds for the quantity

$$\left[\left[\lambda f\left(u\right) +\left(1-\lambda \right) f\left(w\right) \right] \left(y-x\right) -\int_{\gamma }f\left(z\right) dz\right]$$

under the assumptions that γ is a smooth path parametrized by $z\left(t\right)$, $t\in\left[a,b\right]$, $x=z\left(a\right)$ and $y=z\left(b\right)$ while f is holomorphic in G, convex domain, $\gamma\subset G$, $u,w\in D$ and $\lambda\in\mathbb{C}$. Applications for some particular functions of interest are also given.

1. Introduction

Inequalities providing upper bounds for the quantity

$$(1.1) \qquad \left| (t-a) f(a) + (b-t) f(b) - \int_a^b f(s) ds \right|, \qquad t \in [a,b]$$

are known in the literature as generalized trapezoid inequalities and it has been shown in [2] that

(1.2)
$$\left| (t-a) f(a) + (b-t) f(b) - \int_{a}^{b} f(s) ds \right|$$

$$\leq \left[\frac{1}{2} + \left| \frac{t - \frac{a+b}{2}}{b-a} \right| \right] (b-a) \bigvee_{a}^{b} (f)$$

for any $t \in [a, b]$, provided that f is of bounded variation on [a, b]. The constant $\frac{1}{2}$ is the best possible.

If f is absolutely continuous on [a, b], then (see [1, p. 93])

(1.3)
$$\left| (t-a) f(a) + (b-t) f(b) - \int_{a}^{b} f(s) ds \right|$$

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 26D10, 30A10, 30A86.

 $Key\ words\ and\ phrases.$ Complex integral, Continuous functions, Holomorphic functions, Trapezoid inequality.

$$\leq \begin{cases}
\left[\frac{1}{4} + \left(\frac{t - \frac{a+b}{2}}{b-a}\right)^{2}\right] (b-a)^{2} \|f'\|_{\infty} & \text{if } f' \in L_{\infty} [a,b]; \\
\frac{1}{(q+1)^{1/q}} \left[\left(\frac{t-a}{b-a}\right)^{q+1} + \left(\frac{b-t}{b-a}\right)^{q+1}\right]^{\frac{1}{q}} (b-a)^{1+1/q} \|f'\|_{p} & \text{if } f' \in L_{p} [a,b]; \\
p > 1, \frac{1}{p} + \frac{1}{q} = 1; \\
\left[\frac{1}{2} + \left|\frac{t - \frac{a+b}{2}}{b-a}\right|\right] (b-a) \|f'\|_{1}
\end{cases}$$

for any $t \in [a, b]$. The constants $\frac{1}{2}$, $\frac{1}{4}$ and $\frac{1}{(q+1)^{1/q}}$ are the best possible.

For other recent results on the trapezoid inequality, see [3], [4], [8], [9], [10] and [12].

In order to extend this result for the complex integral, we need some preparations as follows.

Suppose γ is a smooth path parametrized by z(t), $t \in [a, b]$ and f is a complex function which is continuous on γ . Put z(a) = u and z(b) = w with $u, w \in \mathbb{C}$. We define the integral of f on $\gamma_{u,w} = \gamma$ as

$$\int_{\gamma} f\left(z\right) dz = \int_{\gamma_{u,w}} f\left(z\right) dz := \int_{a}^{b} f\left(z\left(t\right)\right) z'\left(t\right) dt.$$

We observe that that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are *piecewise smooth*. Suppose γ is parametrized by z(t), $t \in [a, b]$, which is differentiable on the intervals [a, c] and [c, b], then assuming that f is continuous on γ we define

$$\int_{\gamma_{u,w}} f(z) dz := \int_{\gamma_{u,v}} f(z) dz + \int_{\gamma_{v,w}} f(z) dz$$

where v := z(c). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

$$\int_{\gamma} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt$$

and the length of the curve γ is then

$$\ell(\gamma) = \int_{\gamma_{u,w}} |dz| = \int_a^b |z'(t)| dt.$$

Let f and g be holomorphic in G, an open domain and suppose $\gamma \subset G$ is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the *integration by parts formula*

(1.4)
$$\int_{\gamma_{u,w}} f(z) g'(z) dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{u,w}} f'(z) g(z) dz.$$

We recall also the triangle inequality for the complex integral, namely

(1.5)
$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz| \leq ||f||_{\gamma,\infty} \ell(\gamma)$$

where $\|f\|_{\gamma,\infty} := \sup_{z \in \gamma} |f(z)|$.

We also define the p-norm with $p \ge 1$ by

$$\|f\|_{\gamma,p} := \left(\int_{\gamma} |f(z)|^p |dz|\right)^{1/p}.$$

For p = 1 we have

$$||f||_{\gamma,1} := \int_{\mathbb{R}} |f(z)| |dz|.$$

If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then by Hölder's inequality we have

$$||f||_{\gamma,1} \le [\ell(\gamma)]^{1/q} ||f||_{\gamma,p}.$$

We have the following recent result for functions of complex variable [6]:

Theorem 1. Let f be holomorphic in G, an open domain and suppose $\gamma \subset G$ is a smooth path from z(a) = u to z(b) = w. If v = z(x) with $x \in (a,b)$, then $\gamma_{u,w} = \gamma_{u,v} \cup \gamma_{v,w}$,

$$(1.6) \quad \left| \left(v - u \right) f \left(u \right) + \left(w - v \right) f \left(w \right) - \int_{\gamma} f \left(z \right) dz \right|$$

$$\leq \left\| f' \right\|_{\gamma_{u,v};\infty} \int_{\gamma_{u,v}} \left| z - v \right| \left| dz \right| + \left\| f' \right\|_{\gamma_{v,w};\infty} \int_{\gamma_{v,w}} \left| z - v \right| \left| dz \right|$$

$$\leq \left\| f' \right\|_{\gamma_{u,w};\infty} \int_{\gamma_{v,w}} \left| z - v \right| \left| dz \right|,$$

and

$$(1.7) \quad \left| (v-u) f(u) + (w-v) f(w) - \int_{\gamma} f(z) dz \right|$$

$$\leq \|f'\|_{\gamma_{u,v};1} \max_{z \in \gamma_{u,v}} |z-v| + \|f'\|_{\gamma_{v,w};1} \max_{z \in \gamma_{v,w}} |z-v|$$

$$\leq \|f'\|_{\gamma_{u,w};1} \max_{z \in \gamma_{v,w}} |z-v| .$$

If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then

$$\begin{aligned} (1.8) \quad & \left| \left(v - u \right) f \left(u \right) + \left(w - v \right) f \left(w \right) - \int_{\gamma} f \left(z \right) dz \right| \\ & \leq \| f' \|_{\gamma_{u,v};p} \left(\int_{\gamma_{u,v}} |z - v|^q \left| dz \right| \right)^{1/q} + \| f' \|_{\gamma_{v,w};p} \left(\int_{\gamma_{v,w}} |z - v|^q \left| dz \right| \right)^{1/q} \\ & \leq \| f' \|_{\gamma_{u,w};p} \left(\int_{\gamma_{u,w}} |z - v|^q \left| dz \right| \right)^{1/q}. \end{aligned}$$

In this paper we extend the generalized trapezoid inequality to the complex integral, by providing upper bounds for the quantity

$$\left| \left[\lambda f(u) + (1 - \lambda) f(w) \right] (y - x) - \int_{\gamma} f(z) dz \right|$$

under the assumptions that γ is a smooth path parametrized by z(t), $t \in [a, b]$, x = z(a) and y = z(b) while f is holomorphic in G, convex domain, $\gamma \subset G$, and $u, w \in D$ and $\lambda \in \mathbb{C}$. Applications for some particular functions of interest are also given.

2. Generalized Trapezoid Inequalities

We have:

Theorem 2. Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$ be a holomorphic function on the convex domain D and suppose $\gamma \subset D$ is a piecewise smooth path parametrized by z(t), $t \in [a,b]$, x = z(a) and y = z(b). If $\lambda \in \mathbb{C}$ and $u, w \in D$ then

$$(2.1) \quad \left| \left[\lambda f\left(u \right) + \left(1 - \lambda \right) f\left(w \right) \right] \left(y - x \right) - \int_{\gamma} f\left(z \right) dz \right|$$

$$\leq \left| \lambda \right| \int_{\gamma} \left| u - z \right| \left| \int_{0}^{1} f'\left(\left(1 - t \right) z + tu \right) dt \right| \left| dz \right|$$

$$+ \left| 1 - \lambda \right| \int_{\gamma} \left| w - z \right| \left| \int_{0}^{1} f'\left(\left(1 - t \right) z + tw \right) dt \right| \left| dz \right| =: A\left(\lambda \right)$$

and

$$(2.2) \quad \left| \left[\lambda f\left(u \right) + \left(1 - \lambda \right) f\left(w \right) \right] \left(y - x \right) - \int_{\gamma} f\left(z \right) dz \right|$$

$$\leq \left| \lambda \right| \int_{0}^{1} \left| \int_{\gamma} \left(u - z \right) f'\left(\left(1 - t \right) z + t u \right) dz \right| dt$$

$$+ \left| 1 - \lambda \right| \int_{0}^{1} \left| \int_{\gamma} \left(w - z \right) f'\left(\left(1 - t \right) z + t w \right) dz \right| dt = B\left(\lambda \right).$$

Proof. Due to the convexity of D, for any $z,v\in D$ we can define the function $\varphi_{z,v}:[0,1]\to\mathbb{R}$ by $\varphi_{z,v}\left(t\right):=f\left(\left(1-t\right)z+tv\right)$. The function $\varphi_{z,v}$ is differentiable on (0,1) and

$$\frac{d\varphi_{z,v}(t)}{dt} = (v-z) f'((1-t)z + tv) \text{ for } t \in (0,1).$$

We have

$$f(v) - f(z) = \varphi_{z,v}(1) - \varphi_{z,v}(0) = \int_0^1 \frac{d\varphi_{z,v}(t)}{dt} dt$$
$$= (v - z) \int_0^1 f'(1 - t) z + tv dt$$

namely

(2.3)
$$f(v) = f(z) + (v - z) \int_0^1 f'((1 - t)z + tv) dt$$

for any $z, v \in D$.

Therefore, by (2.3) we get

(2.4)
$$f(u) = f(z) + (u - z) \int_{0}^{1} f'((1 - t)z + tu) dt$$

and

(2.5)
$$f(w) = f(z) + (w - z) \int_0^1 f'((1 - t)z + tw) dt$$

for any $z \in D$.

If we multiply (2.4) and (2.5) by λ and $1 - \lambda$ and add, we get

$$(2.6) \quad \lambda f(u) + (1 - \lambda) f(w) - f(z)$$

$$= \lambda (u - z) \int_0^1 f'((1 - t) z + tu) dt + (1 - \lambda) (w - z) \int_0^1 f'((1 - t) z + tw) dt$$

for any $z \in D$ and $\lambda \in \mathbb{C}$.

Now, if we integrate this equality over z in γ and also use Fubini's theorem, we get the following equality of interest

$$(2.7) \quad [\lambda f(u) + (1 - \lambda) f(w)] (y - x) - \int_{\gamma} f(z) dz$$

$$= \lambda \int_{\gamma} (u - z) \left(\int_{0}^{1} f'((1 - t) z + tu) dt \right) dz$$

$$+ (1 - \lambda) \int_{\gamma} (w - z) \left(\int_{0}^{1} f'((1 - t) z + tw) dt \right) dz$$

$$= \lambda \int_{0}^{1} \left(\int_{\gamma} (u - z) f'((1 - t) z + tu) dz \right) dt$$

$$+ (1 - \lambda) \int_{0}^{1} \left(\int_{\gamma} (w - z) f'((1 - t) z + tw) dz \right) dt$$

for any $\lambda \in \mathbb{C}$.

Taking the modulus in the first equality in (2.7) we get

$$(2.8) \quad \left| \left[\lambda f\left(u\right) + \left(1 - \lambda\right) f\left(w\right) \right] \left(y - x\right) - \int_{\gamma} f\left(z\right) dz \right|$$

$$\leq \left| \lambda \right| \left| \int_{\gamma} \left(u - z\right) \left(\int_{0}^{1} f'\left(\left(1 - t\right) z + tu\right) dt \right) dz \right|$$

$$+ \left| 1 - \lambda \right| \left| \int_{\gamma} \left(w - z\right) \left(\int_{0}^{1} f'\left(\left(1 - t\right) z + tw\right) dt \right) dz \right|$$

$$\leq \left| \lambda \right| \int_{\gamma} \left| u - z \right| \left| \int_{0}^{1} f'\left(\left(1 - t\right) z + tu\right) dt \right| \left| dz \right|$$

$$+ \left| 1 - \lambda \right| \int_{\gamma} \left| w - z \right| \left| \int_{0}^{1} f'\left(\left(1 - t\right) z + tw\right) dt \right| \left| dz \right| = A\left(\lambda\right),$$

which, by (2.8) proves the inequality (2.1).

Taking the modulus in the second equality in (2.7), we get

$$\begin{split} \left| \left[\lambda f\left(u \right) + \left(1 - \lambda \right) f\left(w \right) \right] \left(y - x \right) - \int_{\gamma} f\left(z \right) dz \right| \\ & \leq \left| \lambda \right| \left| \int_{0}^{1} \left(\int_{\gamma} \left(u - z \right) f'\left(\left(1 - t \right) z + t u \right) dz \right) dt \right| \\ & + \left| 1 - \lambda \right| \left| \int_{0}^{1} \left(\int_{\gamma} \left(w - z \right) f'\left(\left(1 - t \right) z + t w \right) dz \right) dt \right| \\ & \leq \left| \lambda \right| \int_{0}^{1} \left| \int_{\gamma} \left(u - z \right) f'\left(\left(1 - t \right) z + t u \right) dz \right| dt \\ & + \left| 1 - \lambda \right| \int_{0}^{1} \left| \int_{\gamma} \left(w - z \right) f'\left(\left(1 - t \right) z + t w \right) dz \right| dt = B\left(\lambda \right), \end{split}$$

which proves the inequality (2.2)

Remark 1. Using Hölder's inequality we also have

$$\int_{\gamma} |u - z| \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right| |dz|
= \begin{cases}
\max_{z \in \gamma} |u - z| \int_{\gamma} \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right| |dz|; \\
\left(\int_{\gamma} |u - z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right|^{q} |dz| \right)^{1/q} \\
p, q > 1 \text{ with } \frac{1}{p} + \frac{1}{q} = 1; \\
\max_{z \in \gamma} \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right| \int_{\gamma} |u - z| |dz|,
\end{cases}$$

and

which give the following upper bounds for $A(\lambda)$

$$(2.9) \quad A(\lambda) \leq |\lambda| \begin{cases} \max_{z \in \gamma} |u - z| \int_{\gamma} \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right| |dz|; \\ \left(\int_{\gamma} |u - z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right|^{q} |dz| \right)^{1/q} \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \max_{z \in \gamma} \left| \int_{0}^{1} f'((1 - t) z + tu) dt \right| \int_{\gamma} |u - z| |dz|, \end{cases}$$

$$+ |1 - \lambda| \begin{cases} \max_{z \in \gamma} |w - z| \int_{\gamma} \left| \int_{0}^{1} f'((1 - t) z + tw) dt \right| |dz|; \\ \left(\int_{\gamma} |w - z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} \left| \int_{0}^{1} f'((1 - t) z + tw) dt \right|^{q} |dz| \right)^{1/q} \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \max_{z \in \gamma} \left| \int_{0}^{1} f'((1 - t) z + tw) dt \right| \int_{\gamma} |w - z| |dz|, \end{cases}$$

for any $\lambda \in \mathbb{C}$.

Using Hölder's inequality we also have

$$\left| \int_{\gamma} (u-z) f'((1-t)z + tu) dz \right|$$

$$\leq \begin{cases} \max_{z \in \gamma} |u-z| \int_{\gamma} |f'((1-t)z + tu)| |dz| \\ \left(\int_{\gamma} |u-z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} |f'((1-t)z + tu)|^{q} |dz| \right)^{1/q} \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \max_{z \in \gamma} |f'((1-t)z + tu)| \int_{\gamma} |u-z| |dz| \end{cases}$$

and

$$\left| \int_{\gamma} (w - z) f'((1 - t) z + tw) dz \right|$$

$$\leq \begin{cases} \max_{z \in \gamma} |w - z| \int_{\gamma} |f'((1 - t) z + tw)| |dz| \\ \left(\int_{\gamma} |w - z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} |f'((1 - t) z + tw)|^{q} |dz| \right)^{1/q} \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \max_{z \in \gamma} |f'((1 - t) z + tw)| \int_{\gamma} |w - z| |dz| \end{cases}$$

which by integration over $t \in [0,1]$ produce

$$\int_{0}^{1} \left| \int_{\gamma} (u-z) f'((1-t)z + tu) dz \right| dt$$

$$\leq \begin{cases}
\max_{z \in \gamma} |u-z| \int_{0}^{1} \left(\int_{\gamma} |f'((1-t)z + tu)| |dz| \right) dt \\
\left(\int_{\gamma} |u-z|^{p} |dz| \right)^{1/p} \int_{0}^{1} \left(\int_{\gamma} |f'((1-t)z + tu)|^{q} |dz| \right)^{1/q} dt \\
p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\
\int_{\gamma} |u-z| |dz| \int_{0}^{1} (\max_{z \in \gamma} |f'((1-t)z + tu)|) dt
\end{cases}$$

and

$$\int_{0}^{1} \left| \int_{\gamma} (w - z) f'((1 - t) z + tw) dz \right| dt$$

$$\leq \begin{cases} \max_{z \in \gamma} |w - z| \int_{0}^{1} \left(\int_{\gamma} |f'((1 - t) z + tw)| |dz| \right) dt \\ \left(\int_{\gamma} |w - z|^{p} |dz| \right)^{1/p} \int_{0}^{1} \left(\int_{\gamma} |f'((1 - t) z + tw)|^{q} |dz| \right)^{1/q} dt \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \int_{\gamma} |w - z| |dz| \int_{0}^{1} (\max_{z \in \gamma} |f'((1 - t) z + tw)|) dt. \end{cases}$$

Therefore, we also have the upper bounds for $B(\lambda)$

$$(2.10) \quad B(\lambda) \leq |\lambda| \begin{cases} \max_{z \in \gamma} |u - z| \int_{0}^{1} \left(\int_{\gamma} |f'|(1-t) z + tu| |dz| \right) dt \\ \left(\int_{\gamma} |u - z|^{p} |dz| \right)^{1/p} \int_{0}^{1} \left(\int_{\gamma} |f'|(1-t) z + tu| |q| |dz| \right)^{1/q} dt \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \int_{\gamma} |u - z| |dz| \int_{0}^{1} \left(\max_{z \in \gamma} |f'|(1-t) z + tu| |dz| \right) dt \end{cases} \\ + |1 - \lambda| \begin{cases} \max_{z \in \gamma} |w - z| \int_{0}^{1} \left(\int_{\gamma} |f'|(1-t) z + tw| |dz| \right) dt \\ \left(\int_{\gamma} |w - z|^{p} |dz| \right)^{1/p} \int_{0}^{1} \left(\int_{\gamma} |f'|(1-t) z + tw| |q| |dz| \right)^{1/q} dt \\ p, \ q > 1 \ with \ \frac{1}{p} + \frac{1}{q} = 1; \\ \int_{\gamma} |w - z| |dz| \int_{0}^{1} \left(\max_{z \in \gamma} |f'|(1-t) z + tw| |dz| \right) dt, \end{cases}$$

for any $\lambda \in \mathbb{C}$.

Corollary 1. With the assumptions of Theorem 2 and if $\|f'\|_{D,\infty} := \sup_{z \in D} |f'(z)| < \infty$, then we also have

$$(2.11) \quad \left| \left[\lambda f(u) + (1 - \lambda) f(w) \right] (y - x) - \int_{\gamma} f(z) dz \right|$$

$$\leq \|f'\|_{D,\infty} \left[|\lambda| \int_{\gamma} |u - z| |dz| + |1 - \lambda| \int_{\gamma} |w - z| |dz| \right]$$

for any $\lambda \in \mathbb{C}$.

Proof. It follows by (2.1) observing that

$$\left| \int_{0}^{1} f'((1-t)z + tu) dt \right| \leq \int_{0}^{1} |f'((1-t)z + tu)| dt \leq \sup_{z \in D} |f'(z)| \int_{0}^{1} dt$$
$$= ||f'||_{D,\infty}$$

and, similarly

$$\left| \int_0^1 f'((1-t)z + tw) dt \right| \le ||f'||_{D,\infty}.$$

In the case of some convexity properties for the modulus of the derivative, other upper bounds can be derived as follows.

Corollary 2. With the assumptions of Theorem 2 and if |f'| is convex on D, then

$$\begin{split} (2.12) \quad \left| \left[\lambda f\left(u\right) + \left(1 - \lambda\right) f\left(w\right) \right] \left(y - x\right) - \int_{\gamma} f\left(z\right) dz \right| \\ & \leq \frac{1}{2} \left| \lambda \right| \left(\int_{\gamma} \left| u - z \right| \left| f'\left(z\right) \right| \left| dz \right| + \left| f'\left(u\right) \right| \int_{\gamma} \left| u - z \right| \left| dz \right| \right) \\ & + \frac{1}{2} \left| 1 - \lambda \right| \left(\int_{\gamma} \left| w - z \right| \left| f'\left(z\right) \right| \left| dz \right| + \left| f'\left(w\right) \right| \int_{\gamma} \left| w - z \right| \left| dz \right| \right) \\ & \leq \left\| f' \right\|_{D, \infty} \left[\left| \lambda \right| \int_{\gamma} \left| u - z \right| \left| dz \right| + \left| 1 - \lambda \right| \int_{\gamma} \left| w - z \right| \left| dz \right| \right] \end{split}$$

provided

$$||f'||_{D,\infty} := \sup_{z \in D} |f'(z)| < \infty.$$

Proof. If $g:[0,1]\to\mathbb{R}$ is convex, then the following inequality is well known in the literature as Hermite-Hadamard inequality

$$\int_{0}^{1} g(t) dt \le \frac{g(0) + g(1)}{2}.$$

Let $v \in D$ and $z \in \gamma$. By Hermite-Hadamard inequality for the convex function $[0,1] \ni t \to |f'((1-t)z+tv)|$ we have

$$\int_{0}^{1} |f'((1-t)z+tv)| dt \le \frac{1}{2} [|f'(z)|+|f'(v)|],$$

which implies that

$$\int_{0}^{1} |f'((1-t)z + tu)| dt \le \frac{1}{2} [|f'(z)| + |f'(u)|],$$

and

$$\int_{0}^{1} |f'((1-t)z + tw)| dt \le \frac{1}{2} [|f'(z)| + |f'(w)|].$$

Therefore

$$\begin{split} \int_{\gamma} |u-z| \left| \int_{0}^{1} f'\left(\left(1-t\right)z+tu\right)dt \right| |dz| \\ & \leq \int_{\gamma} |u-z| \left(\int_{0}^{1} |f'\left(\left(1-t\right)z+tu\right)|dt \right) |dz| \\ & \leq \int_{\gamma} |u-z| \left(\frac{1}{2} \left[|f'\left(z\right)|+|f'\left(u\right)| \right] \right) |dz| \\ & = \frac{1}{2} \left(\int_{\gamma} |u-z| \left| f'\left(z\right)| \left| dz \right| + |f'\left(u\right)| \int_{\gamma} |u-z| \left| dz \right| \right) \end{split}$$

and, similarly

$$\begin{split} \int_{\gamma} \left| w - z \right| \left| \int_{0}^{1} f'\left(\left(1 - t \right) z + tw \right) dt \right| \left| dz \right| \\ & \leq \frac{1}{2} \left(\int_{\gamma} \left| w - z \right| \left| f'\left(z \right) \right| \left| dz \right| + \left| f'\left(w \right) \right| \int_{\gamma} \left| w - z \right| \left| dz \right| \right), \end{split}$$

which, by (2.1), produces the first inequality in (2.12). The last part is obvious.

We also have:

Corollary 3. With the assumptions of Theorem 2 and if $|f'|^q$ with q > 1 is convex on D, then

$$\begin{split} \left(2.13\right) & \left|\left[\lambda f\left(u\right) + \left(1-\lambda\right) f\left(w\right)\right] \left(y-x\right) - \int_{\gamma} f\left(z\right) dz \right| \\ & \leq \frac{1}{2^{1/q}} \left|\lambda\right| \left(\int_{\gamma} \left|u-z\right|^{p} \left|dz\right|\right)^{1/p} \left(\int_{\gamma} \left|f'\left(z\right)\right|^{q} \left|dz\right| + \left|f'\left(u\right)\right|^{q} \ell\left(\gamma\right)\right)^{1/q} \\ & + \frac{1}{2^{1/q}} \left|1-\lambda\right| \left(\int_{\gamma} \left|w-z\right|^{p} \left|dz\right|\right)^{1/p} \left(\int_{\gamma} \left|f'\left(z\right)\right|^{q} \left|dz\right| + \left|f'\left(w\right)\right|^{q} \ell\left(\gamma\right)\right)^{1/q} \\ & \leq \max\left\{\left|\lambda\right|, \left|1-\lambda\right|\right\} \left(\int_{\gamma} \left(\left|u-z\right|^{p} + \left|w-z\right|^{p}\right) \left|dz\right|\right)^{1/p} \\ & \times \left(\int_{\gamma} \left|f'\left(z\right)\right|^{q} \left|dz\right| + \frac{\left|f'\left(u\right)\right|^{q} + \left|f'\left(w\right)\right|^{q}}{2} \ell\left(\gamma\right)\right)^{1/q}, \end{split}$$

where p > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. Using power inequality for integral and the convexity of $|f'|^q$, with q > 1, we have

$$\int_{0}^{1} |f'((1-t)z+tv)| dt \le \left(\int_{0}^{1} |f'((1-t)z+tv)|^{q} dt\right)^{1/q}$$
$$\le \left(\frac{|f'(z)|^{q} + |f'(v)|^{q}}{2}\right)^{1/q}$$

for $v \in D$ and $z \in \gamma$.

This implies that

$$\begin{split} \int_{\gamma} |u-z| \left| \int_{0}^{1} f'\left((1-t)z + tu\right) dt \right| |dz| \\ & \leq \int_{\gamma} |u-z| \left(\int_{0}^{1} |f'\left((1-t)z + tu\right)| dt \right) |dz| \\ & \leq \int_{\gamma} |u-z| \left(\int_{0}^{1} |f'\left((1-t)z + tv\right)|^{q} dt \right)^{1/q} |dz| \\ & \leq \left(\int_{\gamma} |u-z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} \left[\left(\frac{|f'(z)|^{q} + |f'(u)|^{q}}{2} \right)^{1/q} \right]^{q} |dz| \right)^{1/q} \\ & = \left(\int_{\gamma} |u-z|^{p} |dz| \right)^{1/p} \left(\int_{\gamma} \frac{|f'(z)|^{q} + |f'(u)|^{q}}{2} |dz| \right)^{1/q} \\ & = \left(\int_{\gamma} |u-z|^{p} |dz| \right)^{1/p} \left(\frac{1}{2} \int_{\gamma} |f'(z)|^{q} |dz| + \frac{1}{2} |f'(u)|^{q} \ell(\gamma) \right)^{1/q} \end{split}$$

and, in a similar way

$$\int_{\gamma} |w - z| \left| \int_{0}^{1} f'((1 - t) z + tw) dt \right| |dz|
\leq \left(\int_{\gamma} |w - z|^{p} |dz| \right)^{1/p} \left(\frac{1}{2} \int_{\gamma} |f'(z)|^{q} |dz| + \frac{1}{2} |f'(w)|^{q} \ell(\gamma) \right)^{1/q}.$$

By using (2.1) we get the first part (2.13).

The last part follows by Hölder's discrete inequality.

Let us give now an example for the complex exponential function.

For $z \in \mathbb{C}$ we have

$$\begin{aligned} |\exp(z)| &= |\exp(\operatorname{Re} z + i\operatorname{Im} z)| = |\exp(\operatorname{Re} z)\exp(i\operatorname{Im} z)| \\ &= |\exp(\operatorname{Re} z)| |\exp(i\operatorname{Im} z)| = \exp(\operatorname{Re} z) |\cos(\operatorname{Im} z) + i\sin(\operatorname{Im} z)| \\ &= \exp(\operatorname{Re} z). \end{aligned}$$

Then for any $t \in [0,1]$ and for any $z, w \in \mathbb{C}$ we have

$$\begin{aligned} |\exp((1-t)z + tw)|^{\alpha} &= \exp\left[\alpha \left(\operatorname{Re}\left((1-t)z + tw\right)\right)\right] \\ &= \exp\left[(1-t)\alpha\operatorname{Re}z + t\alpha\operatorname{Re}w\right] \\ &\leq (1-t)\exp\left(\alpha\operatorname{Re}z\right) + t\exp\left(\alpha\operatorname{Re}w\right) \\ &= (1-t)\left|\exp\left(z\right)\right|^{\alpha} + t\left|\exp\left(w\right)\right|^{\alpha} \end{aligned}$$

which shows that the function $g\left(z\right)=\left|\exp\left(z\right)\right|^{\alpha}$ is convex for any $\alpha\in\mathbb{R}\smallsetminus\left\{ 0\right\}$. Suppose $\gamma\subset D$ is a piecewise smooth path parametrized by $z\left(t\right),\ t\in\left[a,b\right],$ $x=z\left(a\right)$ and $y=z\left(b\right)$. We also have for $\gamma=\gamma_{u,w}$ that

$$\int_{\gamma} \exp(z) dz = \int_{\gamma_{u,w}} \exp(z) dz = \exp(y) - \exp(x).$$

Using the inequality (2.12) for the function $f(z) = \exp z$, we have for $u, w, \lambda \in \mathbb{C}$ that

$$(2.14) \quad \left| \left[\lambda \exp u + (1 - \lambda) \exp w \right] (y - x) - \exp (y) + \exp (x) \right|$$

$$\leq \frac{1}{2} \left| \lambda \right| \left(\int_{\gamma} \left| u - z \right| \exp \left(\operatorname{Re} z \right) \left| dz \right| + \exp \left(\operatorname{Re} u \right) \int_{\gamma} \left| u - z \right| \left| dz \right| \right)$$

$$+ \frac{1}{2} \left| 1 - \lambda \right| \left(\int_{\gamma} \left| w - z \right| \exp \left(\operatorname{Re} z \right) \left| dz \right| + \exp \left(\operatorname{Re} w \right) \int_{\gamma} \left| w - z \right| \left| dz \right| \right)$$

$$\leq \left\| \exp \right\|_{D, \infty} \left[\left| \lambda \right| \int_{\gamma} \left| u - z \right| \left| dz \right| + \left| 1 - \lambda \right| \int_{\gamma} \left| w - z \right| \left| dz \right| \right].$$

From the inequality (2.13) for the function $f\left(z\right)=\exp z$, we have for $u,\,w,\,\lambda\in\mathbb{C}$ that

$$(2.15) \quad ||[\lambda \exp u + (1 - \lambda) \exp w] (y - x) - \exp (y) + \exp (x)||$$

$$\leq \frac{1}{2^{1/q}} |\lambda| \left(\int_{\gamma} |u - z|^p |dz| \right)^{1/p} \left(\int_{\gamma} \exp (q \operatorname{Re} z) |dz| + \exp (q \operatorname{Re} u) \ell (\gamma) \right)^{1/q}$$

$$+ \frac{1}{2^{1/q}} |1 - \lambda| \left(\int_{\gamma} |w - z|^p |dz| \right)^{1/p} \left(\int_{\gamma} \exp (q \operatorname{Re} z) |dz| + \exp (q \operatorname{Re} w) \ell (\gamma) \right)^{1/q}$$

$$\leq \max \{|\lambda|, |1 - \lambda|\} \left(\int_{\gamma} (|u - z|^p + |w - z|^p) |dz| \right)^{1/p}$$

$$\times \left(\int_{\gamma} \exp (q \operatorname{Re} z) |dz| + \frac{\exp (q \operatorname{Re} u) + \exp (q \operatorname{Re} w)}{2} \ell (\gamma) \right)^{1/q},$$

where p > 1 with $\frac{1}{p} + \frac{1}{q} = 1$.

3. Related Results

Now, by the help of power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ we can naturally construct another power series which will have as coefficients the absolute values of the coefficients of the original series, namely, $f_a(z) = \sum_{n=0}^{\infty} |a_n| z^n$. It is obvious that this new power series will have the same radius of convergence as the original series. We also notice that if all coefficients $a_n \geq 0$ then $f_a = f$.

We notice that if

(3.1)
$$f(z) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} z^n = \ln \frac{1}{1+z}, \ z \in D(0,1);$$
$$g(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} z^{2n} = \cos z, \ z \in \mathbb{C};$$
$$h(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} z^{2n+1} = \sin z, \ z \in \mathbb{C};$$
$$l(z) = \sum_{n=0}^{\infty} (-1)^n z^n = \frac{1}{1+z}, \ z \in D(0,1);$$

then the corresponding functions constructed by the use of the absolute values of the coefficients are

(3.2)
$$f_{a}(z) = \sum_{n=1}^{\infty} \frac{1}{n!} z^{n} = \ln \frac{1}{1-z}, \ z \in D(0,1);$$

$$g_{a}(z) = \sum_{n=0}^{\infty} \frac{1}{(2n)!} z^{2n} = \cosh z, \ z \in \mathbb{C};$$

$$h_{a}(z) = \sum_{n=0}^{\infty} \frac{1}{(2n+1)!} z^{2n+1} = \sinh z, \ z \in \mathbb{C};$$

$$l_{a}(z) = \sum_{n=0}^{\infty} z^{n} = \frac{1}{1-z}, \ z \in D(0,1).$$

Theorem 3. Consider the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ that is convergent on the open disk D(0,R) and suppose $\gamma \subset D(0,R)$ is a piecewise smooth path parametrized by z(t), $t \in [a,b]$, x = z(a) and y = z(b). If $u, w \in D(0,R)$, then we have the inequalities

$$(3.3) \quad \left| \left[\lambda f\left(u\right) + \left(1 - \lambda\right) f\left(w\right) \right] \left(y - x\right) - \int_{\gamma} f\left(z\right) dz \right|$$

$$\leq \frac{1}{2} \left| \lambda \right| \left[\int_{\gamma} \left| u - z \right| \left| f_{a}'\left(z\right) \right| \left| dz \right| + \left| f_{a}'\left(u\right) \right| \ell\left(\gamma\right) \right]$$

$$+ \frac{1}{2} \left| 1 - \lambda \right| \left[\int_{\gamma} \left| w - z \right| \left| f_{a}'\left(z\right) \right| \left| dz \right| + \left| f_{a}'\left(w\right) \right| \ell\left(\gamma\right) \right]$$

and

$$(3.4) \quad \left| [\lambda f(u) + (1 - \lambda) f(w)] (y - x) - \int_{\gamma} f(z) dz \right|$$

$$\leq \frac{1}{2} |\lambda| \left[\int_{\gamma} |u - z| f'_{a}(|z|) |dz| + f'_{a}(|u|) \ell(\gamma) \right]$$

$$+ \frac{1}{2} |1 - \lambda| \left[\int_{\gamma} |w - z| f'_{a}(|z|) |dz| + f'_{a}(|w|) \ell(\gamma) \right]$$

for $\lambda \in \mathbb{C}$.

Proof. We have $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}$ and $f'_a(z) = \sum_{n=1}^{\infty} n |a_n| z^{n-1}$. For $m \ge 1$, by using the generalized triangle inequality we have

(3.5)
$$\left| \sum_{n=1}^{m} n a_n z^{n-1} \right| \le \sum_{n=1}^{m} n |a_n| z^{n-1}.$$

Since the series $\sum_{n=1}^{\infty} n a_n z^{n-1}$ and $\sum_{n=1}^{\infty} n |a_n| z^{n-1}$ are convergent, then by letting $m \to \infty$ in (3.5) we get

$$|f'(z)| \le f'_a(|z|)$$
 for any $z \in D(0,R)$.

We observe that, since f'_a has nonnegative coefficients, then this functions is convex as a real variable functions on the interval (-R, R) and increasing on [0, R).

For $z, v \in D$, consider the function $h_{z,v}: [0,1] \to [0,\infty)$, $h_{z,v}(t):=f_a'(|(1-t)z+tv|)$. For $\alpha, \beta \in [0,1]$ with $\alpha+\beta=1$ and $t_1, t_2 \in [0,1]$ we have

$$h_{z,v}(\alpha t_1 + \beta t_2) = f_a'(|(1 - \alpha t_1 - \beta t_2) z + \alpha t_1 + \beta t_2 v|)$$

$$= f_a'[|\alpha((1 - t_1) z + t_1 v) + \beta((1 - t_2) z + t_2 v)|]$$

$$\leq f_a'[\alpha|(1 - t_1) z + t_1 v| + \beta|(1 - t_2) z + t_2 v|]$$

$$\leq \alpha f_a'(|(1 - t_1) z + t_1 v|) + \beta f_a'(|(1 - t_2) z + t_2 v|),$$

which shows that $h_{z,v}$ is convex on [0,1].

If we write the Hermite-Hadamard inequality for $h_{z,v}$ on [0,1] then we get

$$\int_{0}^{1} f_a'(|(1-t)z + tv|) dt \le \frac{|f_a'(z)| + |f_a'(v)|}{2}$$

for any $z, v \in D$, which implies that

$$\int_{\gamma} |u - z| \left(\int_{0}^{1} |f'((1 - t)z + tu)| dt \right) |dz|
\leq \int_{\gamma} |u - z| \left(\int_{0}^{1} f'_{a}(|(1 - t)z + tu|) dt \right) |dz|
\leq \int_{\gamma} |u - z| \frac{|f'_{a}(z)| + |f'_{a}(u)|}{2} |dz|
= \frac{1}{2} \left[\int_{\gamma} |u - z| |f'_{a}(z)| |dz| + |f'_{a}(u)| \ell(\gamma) \right]$$

and

$$\begin{split} &\int_{\gamma} |w-z| \left(\int_{0}^{1} |f'\left(\left(1-t\right)z+tw\right)| \, dt \right) |dz| \\ &\leq \int_{\gamma} |w-z| \left(\int_{0}^{1} f_{a}'\left(\left|\left(1-t\right)z+tw\right|\right) \, dt \right) |dz| \\ &\leq \int_{\gamma} |w-z| \, \frac{|f_{a}'\left(z\right)|+|f_{a}'\left(w\right)|}{2} \, |dz| \\ &= \frac{1}{2} \left[\int_{\gamma} |w-z| \, |f_{a}'\left(z\right)| \, |dz|+|f_{a}'\left(w\right)| \, \ell\left(\gamma\right) \right], \end{split}$$

the inequality (3.3) is proved.

We also have

$$f_a'(|(1-t)z+tv|) \le f_a'((1-t)|z|+t|v|)$$

for any $z, v \in D$ and $t \in [0,1]$ and since the function $p_{z,v}\left(t\right) := f_a'\left(\left(1-t\right)|z| + t|v|\right)$ is convex, then by Hermite-Hadamard inequality we have

$$\int_{0}^{1} f_{a}'\left(\left|(1-t)\,z+tv\right|\right)dt \leq \int_{0}^{1} f_{a}'\left(\left(1-t\right)\left|z\right|+t\left|v\right|\right)dt \leq \frac{f_{a}'\left(\left|z\right|\right)+f_{a}'\left(\left|v\right|\right)}{2}.$$

This implies that

which proves (3.4).

$$\begin{split} &\int_{\gamma}\left|u-z\right|\left(\int_{0}^{1}f_{a}^{\prime}\left(\left|(1-t\right)z+tu\right|\right)dt\right)\left|dz\right|\\ &\leq\int_{\gamma}\left|u-z\right|\left(\int_{0}^{1}f_{a}^{\prime}\left(\left(1-t\right)\left|z\right|+t\left|u\right|\right)dt\right)\left|dz\right|\\ &\leq\int_{\gamma}\left|u-z\right|\frac{f_{a}^{\prime}\left(\left|z\right|\right)+f_{a}^{\prime}\left(\left|u\right|\right)}{2}\left|dz\right|=\frac{1}{2}\left[\int_{\gamma}\left|u-z\right|f_{a}^{\prime}\left(\left|z\right|\right)\left|dz\right|+f_{a}^{\prime}\left(\left|u\right|\right)\ell\left(\gamma\right)\right], \end{split}$$

and

$$\begin{split} & \int_{\gamma} |w-z| \left(\int_{0}^{1} f_{a}' \left(|(1-t)z+tw| \right) dt \right) |dz| \\ & \leq \int_{\gamma} |w-z| \left(\int_{0}^{1} f_{a}' \left((1-t)|z|+t|w| \right) dt \right) |dz| \\ & \leq \int_{\gamma} |w-z| \frac{f_{a}' \left(|z| \right) + f_{a}' \left(|w| \right)}{2} |dz| = \frac{1}{2} \left[\int_{\gamma} |w-z| f_{a}' \left(|z| \right) |dz| + f_{a}' \left(|w| \right) \ell \left(\gamma \right) \right], \end{split}$$

Remark 2. If we consider, for instance $f(z) = \sin z$, then $f_a(z) = \sinh z$, $z \in \mathbb{C}$ and by (3.3) and (3.4) we get

$$\begin{aligned} (3.6) \quad & \left| \left[\lambda \sin \left(u \right) + \left(1 - \lambda \right) \sin \left(w \right) \right] \left(y - x \right) + \cos y - \cos x \right| \\ & \leq \frac{1}{2} \left| \lambda \right| \left[\int_{\gamma} \left| u - z \right| \left| \cosh \left(z \right) \right| \left| dz \right| + \left| \cosh \left(u \right) \right| \ell \left(\gamma \right) \right] \\ & + \frac{1}{2} \left| 1 - \lambda \right| \left[\int_{\gamma} \left| w - z \right| \left| \cosh \left(z \right) \right| \left| dz \right| + \left| \cosh \left(w \right) \right| \ell \left(\gamma \right) \right] \end{aligned}$$

and

$$(3.7) \quad \left| \left[\lambda \sin\left(u\right) + \left(1 - \lambda\right) \sin\left(w\right) \right] (y - x) + \cos y - \cos x \right|$$

$$\leq \frac{1}{2} \left| \lambda \right| \left[\int_{\gamma} \left| u - z \right| \cosh\left(\left|z\right|\right) \left| dz \right| + \cosh\left(\left|u\right|\right) \ell\left(\gamma\right) \right]$$

$$+ \frac{1}{2} \left| 1 - \lambda \right| \left[\int_{\gamma} \left| w - z \right| \cosh\left(\left|z\right|\right) \left| dz \right| + \cosh\left(\left|w\right|\right) \ell\left(\gamma\right) \right]$$

for any $u, w, \lambda \in \mathbb{C}$ and $\gamma_{x,y} \subset \mathbb{C}$ a piecewise smooth path.

Corollary 4. If the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ has nonnegative coefficients and is convergent on the open disk D(0,R), then with the other assumptions in Theorem 3 we have

$$(3.8) \quad \left| [\lambda f(u) + (1 - \lambda) f(w)] (y - x) - \int_{\gamma} f(z) dz \right|$$

$$\leq \frac{1}{2} |\lambda| \left[\int_{\gamma} |u - z| |f'(z)| |dz| + |f'(u)| \ell(\gamma) \right]$$

$$+ \frac{1}{2} |1 - \lambda| \left[\int_{\gamma} |w - z| |f'(z)| |dz| + |f'(w)| \ell(\gamma) \right]$$

and

$$(3.9) \quad \left| \left[\lambda f\left(u\right) + \left(1 - \lambda\right) f\left(w\right) \right] \left(y - x\right) - \int_{\gamma} f\left(z\right) dz \right|$$

$$\leq \frac{1}{2} \left| \lambda \right| \left[\int_{\gamma} \left| u - z \right| f'\left(\left|z\right|\right) \left| dz \right| + f'\left(\left|u\right|\right) \ell\left(\gamma\right) \right]$$

$$+ \frac{1}{2} \left| 1 - \lambda \right| \left[\int_{\gamma} \left| w - z \right| f'\left(\left|z\right|\right) \left| dz \right| + f'\left(\left|w\right|\right) \ell\left(\gamma\right) \right].$$

Important examples of functions as power series representations with nonnegative coefficients in addition to the ones from (3.2), are:

(3.10)
$$\exp(z) = \sum_{n=0}^{\infty} \frac{1}{n!} z^{n}, \ z \in \mathbb{C};$$

$$\frac{1}{2} \ln\left(\frac{1+z}{1-z}\right) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1}, \ z \in D(0,1);$$

$$\sin^{-1}(z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+\frac{1}{2})}{\sqrt{\pi}(2n+1)n!} z^{2n+1}, \ z \in D(0,1);$$

$$\tanh^{-1}(z) = \sum_{n=1}^{\infty} \frac{1}{2n-1} z^{2n-1}, \ z \in D(0,1);$$

$${}_{2}F_{1}(\alpha,\beta,\gamma,z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+\alpha)\Gamma(n+\beta)\Gamma(\gamma)}{n!\Gamma(\alpha)\Gamma(\beta)\Gamma(n+\gamma)} z^{n}, \alpha,\beta,\gamma > 0,$$

$$z \in D(0,1);$$

where Γ is Gamma function.

If we write the inequalities (3.8) and (3.9) for the function $f(z) = \ln(1-z)^{-1}$, $z \in D(0,1)$, then we get

$$(3.11) \quad \left| \left[\lambda \ln (1-u)^{-1} + (1-\lambda) \ln (1-w)^{-1} \right] (y-x) - \int_{\gamma} \ln (1-z)^{-1} dz \right|$$

$$\leq \frac{1}{2} |\lambda| \left[\int_{\gamma} |u-z| \left| (1-z)^{-1} \right| |dz| + \left| (1-u)^{-1} \right| \ell(\gamma) \right]$$

$$+ \frac{1}{2} |1-\lambda| \left[\int_{\gamma} |w-z| \left| (1-z)^{-1} \right| |dz| + \left| (1-w)^{-1} \right| \ell(\gamma) \right]$$

and

$$(3.12) \quad \left| \left[\lambda \ln (1-u)^{-1} + (1-\lambda) \ln (1-w)^{-1} \right] (y-x) - \int_{\gamma} \ln (1-z)^{-1} dz \right|$$

$$\leq \frac{1}{2} |\lambda| \left[\int_{\gamma} |u-z| \left| (1-|z|)^{-1} \right| |dz| + \left| (1-|u|)^{-1} \right| \ell(\gamma) \right]$$

$$+ \frac{1}{2} |1-\lambda| \left[\int_{\gamma} |w-z| \left| (1-|z|)^{-1} \right| |dz| + \left| (1-|w|)^{-1} \right| \ell(\gamma) \right]$$

where $u, w \in D(0,1)$ and $\gamma_{x,y} \subset D(0,1)$.

References

- P. CERONE and S. S. DRAGOMIR, Trapezoidal-type rules from an inequalities point of view, in Handbook of Analytic-Computational Methods in Applied Mathematics, G. Anastassiou (Ed.), CRC Press, NY, 2000, 65-134.
- [2] P. CERONE, S. S. DRAGOMIR and C. E. M. PEARCE, A generalised trapezoid inequality for functions of bounded variation, *Turkish J. Math.*, 24(2) (2000), 147-163.
- [3] S. S. DRAGOMIR, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Ineq. Pure & Appl. Math., 3(2) (2002), Art. 31. [ONLINE: http://jipam.vu.edu.au/article.php?sid=183].
- [4] S. S. DRAGOMIR, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Ineq. Pure & Appl. Math., 3(3) (2002), Art. 35. [ONLINE: http://jipam.vu.edu.au/article.php?sid=187].
- [5] S. S. DRAGOMIR, The Ostrowski integral inequality for mappings of bounded variation, Bull. Austral. Math. Soc., 60 (1999), 495–508.
- [6] S. S. DRAGOMIR, An extension of trapezoid inequality to the complex integral, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art. 113, 16 pp., [Online https://rgmia.org/papers/v21/v21a113.pdf].
- [7] S. S. DRAGOMIR and Th. M. RASSIAS (Eds.), Ostrowski Type Inequalities and Applications in Numerical Integration, Kluwer Academic Publishers, Dordrecht, 2002.
- [8] A. I. KECHRINIOTIS and N. D. ASSIMAKIS, Generalizations of the trapezoid inequalities based on a new mean value theorem for the remainder in Taylor's formula. J. Inequal. Pure Appl. Math. 7 (2006), no. 3, Article 90, 13 pp. (electronic).
- [9] Z. LIU, Some inequalities of perturbed trapezoid type. J. Inequal. Pure Appl. Math. 7 (2006), no. 2, Article 47, 9 pp. (electronic).
- [10] McD. A. MERCER, On perturbed trapezoid inequalities. J. Inequal. Pure Appl. Math. 7 (2006), no. 4, Article 118, 7 pp. (electronic).
- [11] A. OSTROWSKI, Über die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1938), 226–227.
- [12] N. UJEVIĆ, Error inequalities for a generalized trapezoid rule. Appl. Math. Lett. 19 (2006), no. 1, 32–37.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb"sever.dragomir@vu.edu.au"$

 URL : http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA