GENERALIZED TRAPEZOID INEQUALITY FOR THE
COMPLEX INTEGRAL OF HOLOMORPHIC FUNCTIONS ON
CONVEX DOMAINS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we extend the generalized trapezoid inequality to
the complex integral, by providing upper bounds for the quantity

M@+ 1= N F ] @-2) - [ 1@
Y

under the assumptions that « is a smooth path parametrized by z (¢), ¢ € [a, b],
z = z(a) and y = z(b) while f is holomorphic in G, convex domain, v C G,
u, w € D and XA € C. Applications for some particular functions of interest are
also given.

1. INTRODUCTION

Inequalities providing upper bounds for the quantity

(1.1) . t€ab]

b
(t—a)f(a)+(b—t)f(b)—/ £ (s)ds

are known in the literature as generalized trapezoid inequalities and it has been
shown in [2] that

(1.2)

(t—a)f(a)+(b—t)f(b)—/ f(s)ds

1 b
< [2+ ](ba)\/(f)

for any t € [a,b], provided that f is of bounded variation on [a,b]. The constant %
is the best possible.
If f is absolutely continuous on [a,b], then (see [1, p. 93])

a+b

2
b—a

b
(1.3) (t—a)f(a)+(b—t)f(b)—/ f(s)ds
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atb \ 2
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e [(2—2) + (&) } (b—a) N, i f e Lyab],
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p > 1, 5 + E = 1,

Jo=a) s,

1 [t
|:2 +‘ b—a
1

for any ¢ € [a,b]. The constants 3, ; and are the best possible.

For other recent results on the trapezoid inequality, see [3], [4], [8], [9], [10] and
[12].

In order to extend this result for the complex integral, we need some preparations
as follows.

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =7 as

b
/f(z)dz: f(z)dz ::/ F(z(t) 2 () dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
v is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on  we define

(2)dz := f(z)dz+ f(z)dz

Yu,w Yu,v Yo, w

where v := z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
/ £ (2)|dz] == / £z (017 (1) di

and the length of the curve v is then

e(v)L |dz|/ab|z'<t>|dt.

Let f and g be holomorphic in G, an open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.4) f(z)g (Z)dz:f(W)g(W)*f(U)g(U)*/ f(2)g(2)d.

Yu,w

Yu,w

We recall also the triangle inequality for the complex integral, namely
[1@de| < [1r @I 181, o)
2l 2l

where [|f]l, o = sup.e, [f (2)].
We also define the p-norm with p > 1 by

71 = ([ 170 |dz|)1/p.

(1.5)
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For p =1 we have
Hm%pzjiﬂauww
Yy

If p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

I£1l,0 < AL, -

We have the following recent result for functions of complex variable [6]:
Theorem 1. Let f be holomorphic in G, an open domain and suppose v C G
is a smooth path from z(a) = u to z(b) = w. If v = z (z) with z € (a,b), then
7u,w = ’Vu,'u U ’Yv,wv

(16) (v—wa%Hw—wf@O—/f@Mz

Y

Uy oe [ o= olldal 417 [ T2 el
' Y ’ gl

u,v v,w

Uy e [ 2= 0lldl,
Y

u,w

and

(L.7) (v—wa%Hw—Wf@O—/f@Mz

Y
! !
S0 a2 = el IS0 a max |2 =
< || — .
<UFls, 0 max |z =l

Yu,ws
w,w

pr,q>1with%+%:1, then

(1.8)

(0= f @)+ (w=0)f () - [ f()ds

Y
<y ( /
' Y

1/q 1/4q
v—mqwo +Lmuwm</’|z—MHwQ
Yo, w
1/q
gnfmww(/i|z—wqw0 .
Y

In this paper we extend the generalized trapezoid inequality to the complex
integral, by providing upper bounds for the quantity

u,v

u,w

Mf@%wlfowM@fxwi/fwwz

Y

under the assumptions that + is a smooth path parametrized by z (t), t € [a, ],
x = z(a) and y = z(b) while f is holomorphic in G, convex domain, v C G, and
u, w € D and A € C. Applications for some particular functions of interest are also
given.
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2. GENERALIZED TRAPEZOID INEQUALITIES
We have:

Theorem 2. Let f: D C C — C be a holomorphic function on the convexr domain
D and suppose v C D is a piecewise smooth path parametrized by z (t), t € [a,b],
x=z(a) andy=2z(b). If \ € C and u, w € D then

21 | @)+ =N @] -o) - [ e

1
g\A|/|u—z| /0 f’((l—t)z—i—tu)dt‘ d2|
Y

+|1—)\|/|w—z\
vy

22) |+ =Nl -2) - [ e

Yy
1
sw/
0

/(u—z)f’((l—t)z+tu)dz

1
+|1—/\|/
0

Proof. Due to the convexity of D, for any z, v € D we can define the function
¢, 10,1 =R by @, , (t) :== f((1 —t) 2+ tv). The function ¢, , is differentiable
on (0,1) and

/0 f’((l—t)z+tw)dt‘|dz = A(\)

and

dt

dt =B ()\).

/(w—z)f’((l—t)z+tw)dz

d(pi’;t) ®) =(w—2)f((1—t)z+tv) for t € (0,1).

We have
Yde,, (t)
FO)=F&) = 0o )= 0.0 (0 = [ Py
- (U—z)/o F(1=t) 2 +to) dt
namely
(2.3) f(v):f(z)+(v—z)/0 P =)z + to) dt
for any z, v € D.
Therefore, by (2.3) we get

(2.4) f(u):f(z)+(u—z)/0 F (=) 2+ tu) dt
and
(2.5) fw)=7(z)+ (w-—2) ; F1—t)z+tw)dt

for any z € D.
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If we multiply (2.4) and (2.5) by A and 1 — A and add, we get

(2.6) Af(u)+ (1 =) f(w) = f(2)
1 1
:)\(ufz)/o f’((l—t)z+tu)dt+(1—)\)(w—z)/0 F((1—t)z+tw)dt

for any z € D and A € C.
Now, if we integrate this equality over z in 7 and also use Fubini’s theorem, we

get the following equality of interest

@1 W@ +A-Nfw)-2)- [ 1)

:)\/y(u—z) (/Olf’((l—t)z+tu)dt)dz
+(1—A)A(w—z) </01f’((1—t)z+tw)dt>dz
= /01 (/W(u—z)f'((l—t)z—ktu)dz)dt

+(1—>\)/01 ([y(w—z)f’((l—t)z—i—tw)dz)dt

for any A € C.
Taking the modulus in the first equality in (2.7) we get

(2.8) '[mu) (LX) f ()] (y— ) — /f<z>dz

Luz (/ 7 1t)z+tu)dt>dz
/v w— (/f 1—t)z+tw)dt)dz

§\)\|/|u—z| /0 f’((l—t)z—l—tu)dt‘ d2|
Y

+\1—)\|/\w—z|
Y

which, by (2.8) proves the inequality (2.1).

<Al

+]1 =)

/0 £ —t)z+tw)dt’ 2] = A(\),




6 S.S. DRAGOMIR

Taking the modulus in the second equality in (2.7), we get

[Af(UH(lfA)f(w)](yfx)f/f(Z)dz

Y

1 <[{(uz)f ((1t)z+tu)dz>dt‘

<L lt)ertw)dz)dt‘

/(ufz (1—t)z+tu)dz

+h-

<|)\|/

+1-

dt

(1 =t)z+tw)dz|dt = B(N),

which proves the inequality (2.2)

Remark 1. Using Hoélder’s inequality we also have

JIEE
i

max.e fu— 2| [, | fo /(0= 1) 2 + tu) de| |dz]

/Olf’((l e dt’ 1d2|

(f |u—z|p|dz|) (f ‘fo (L —t) 2+ tu) dt‘ |dz|)
p7q>1wzth _,_,_1

IN

Max,c~y ‘fol (1=t z+ tu) dt’ f’y |lu — z||dz],

and

/Olf’((l — )2+ tw) dt' 1d2]

/|w—z\
;

max,e, |w — 2| f7 ’fol (1 =1t)z +tw) dt‘ |dz];

(I, |w—z|p|dz|> RO ACEEENTOr |dz\) /e

p,q>1wzth +7_1

IN

max.e. \fol F A=tz + tw) dt’ S, lw — 2| |dz],
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which give the following upper bounds for A ()

maxe. [u — 2| f,y ‘fol (1 —1t)z+tu) dt‘ |dz];

1/ y
oo aem) (e s (L 7 s mya as)
- p, ¢> 1 with 5 + 1 =1;

max.c | fo £/ (1= )+ tw)dt| [, lu 2| |dz]

maxsey [0 = 2| [, | [ £ (1= 1)+ tw) de| dz]

1/p q 1/q
o d (e =aPias) (L £ (=t s+ tw)de|Jax])
P, q>1with%+é:1;

max, e~ ‘fol (1 —1t) 2 + tw) dt‘ [, lw = z[|dz],

for any A € C.
Using Hélder’s inequality we also have

/(u—z)f’((l—t)z+tu)dz

maxzeq [u— 2| [ [f (1 —1)z + tu)| |dz]

1/p 1/q
(J Ju= 2P 1d=l) ™ (177 (1= 62+ tw) =]
p, q> 1 with L+ 1 =1;

IN

maxzey [f' (1 =)z + tu)| [ [u— 2 |dz]

and

/(w—z)f’((l—t)z+tw)dz

max,e, |w — 2| [, |f (1= 1) 2+ tw)| |dz]

1/q

1/p
(1w = 2P 1d=l) ™ (177 (1= 8) 2+ tw)] ||
p, q> 1 with L +1=1;

IN

maxzey [f' (1 =) 2+ tw)| [ |w — 2| |dz|
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which by integration over t € [0, 1] produce

/

dt

/(u—z)f’((l—t)z—i—tu)dz

:
max.ey [u— 2| fy ([, 1f((1 =)+ tw)] dz]) dt

1/p 1/q
(fyt =2l 1d=l) " g (17 (1 = 1) 2+ )] del)
p, g > 1 with 1+ 1 =1;

IN

Jolu=z|ldz| fy (max.eq |f/ (1= t) 2 + tu)]) dt
and

dt

/(wfz)f’((lft)z+tw)dz

maeey fw = 2| fo (17 (U= 0) 2+ tw)] e} ) de

1/p 1/q
(fyteo =2 1d=l) " i (17 (1= 1) 2 + )| def) " d
p, > 1 with L +1=1;

IN

Sy lw = 2l dz] f (maxaey |f7 (1= ) 2+ tw)]) dt.
Therefore, we also have the upper bounds for B ()

1 ’
maxzey |u— 2| fy (1 (L= 1)+ tw)]|dz] ) dt

1/p 1/q
(2.10) B(\) < |A| (f7 u— z[? Idzl) Iy (f,ylf’((l—t)z+tu)|q|dz|) dt
p, ¢ > 1 with 5+ ¢ =1;

S lu = 2| [dz] [y (maxaeq | £ ((1 = t) 2+ tu)]) dt
maaey fw = 2| fo (177 (U= 0) 2 + tw)] 2] ) de

1/17 1 1/q
cproad (o ==Pidel) L (17 (=12 + tw)|?d=l)  de
p, g>1 with}%Jr%:l;

S lw = 2 ldz] g (maxseq [ (1= £) 2+ tw)]) dt,

for any A € C.
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Corollary 1. With the assumptions of Theorem 2 and if || f'|| p o, = sup.cp ' (2)| <
oo, then we also have

(2.11) \w W)+ (=N F @) -2~ [ )

~

<15 e [V [ = sl 11 = A [ = 5l
Y Y

Proof. Tt follows by (2.1) observing that

1 1
g/o If’((l—t)z+tU)ldt§suplf’(Z)I/O i

zeD
=1f'llp,eo

for any A € C.

1f’((l—t)z+tu)dt
0

and, similarly

1
[ -0z dt\ <N

O

In the case of some convexity properties for the modulus of the derivative, other
upper bounds can be derived as follows.

Corollary 2. With the assumptions of Theorem 2 and if |f'| is convex on D, then

(2.12) \w W)+ (=N F @2~ [ e

< 3 (f 11 @+ 157 ] 1u— =110
w5 ([ jw=slls @l 15 )] =)

<11 |V [ = sl 11 =M [ = 5l a1
v v

1l p,o = sup [ £ (2)] < oo.
zeD

provided

Proof. If g : [0,1] — R is convex, then the following inequality is well known in the
literature as Hermite-Hadamard inequality

1
/0 g(t)dtﬁ M

Let v € D and z € 7. By Hermite-Hadamard inequality for the convex function
[0,1] 5t — |f' ((1 —t) z + tv)| we have

1
[ if =z s wia <308 @17 @1,

which implies that

[ =z mia< 517 @17 @,
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and
[ 7=z s ma< 517 @1+ 1 @)

Therefore

JEE
2l

/01 F (L= 1) 2+ tu) dt‘ 1d2|

< [u- ([ 1oz njar) e

< [lu=AA (G0 @11 @) b

-2 (/ fu— 2|1 (2)] |z + | <u>|Luz| |dz|)

and, similarly

JACEE
2l

/Olf’((l e dt’ 1d2|

<5 ([ o=s1r @it 15w [ =sl1asl).

which, by (2.1), produces the first inequality in (2.12).
The last part is obvious. ([l

We also have:

Corollary 3. With the assumptions of Theorem 2 and if | f'|? with ¢ > 1 is convex
on D, then

(2.13) ‘[/\f (u) + (1 =) f(w)] (y — ) - / f(z)dz

VA i) ([ @i wrew)
bt ([l ([1r o wre)

1/p
< max{|A|,|1—Al} (/ (Ju —2|" + Jw — 2|") |dz>
¥

” ([y'f/ (2)|* |dz| + ! (“)|q42-|f’ (w)|qE(7))1/q,

wherep>1with%+%:1.
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Proof. Using power inequality for integral and the convexity of |f/|?, with ¢ > 1,

we have
/01|f/((1—t)z+tv)|dt< (/01|f/((1_t)z+tv)|th>1/q

- (o)’

for ve D and z € 7.
This implies that

/}u—zllfﬂl—ﬂz+¢Md4wd
< [u- ([ 1oz njar) e
< flu=+ (/01|f’<<1—t>z+tv>|qczt)l/q 22
<(/ uZP|dz>1/p (/ l(u' Gkl <u>|q>“qr |d2|>1/q
(/u_z|p|dz|>”” (/ SO W |>

= (fu-eri) (3 [ i ree)

and, in a similar way

JACEE
2l

/dfﬂl—ﬂz+w0ﬁ

< | [ lw—=2["|dz] e 1 @ ldzl + 5 1 ()" () Uq-
(flo=red) (2 ;

By using (2.1) we get the first part (2.13).
The last part follows by Holder’s discrete inequality. O

Let us give now an example for the complex exponential function.
For z € C we have

lexp (2)| = |exp (Rez +iIm z)| = |exp (Re z) exp (i Im z)|
= |exp (Re 2)| |exp (i Im 2)| = exp (Re 2) |cos (Im z) + i sin (Im )|
=exp (Re z2).
Then for any ¢ € [0,1] and for any z, w € C we have
lexp (1 —t) z + tw)|” = exp [ (Re ((1 — t) z + tw))]

=exp[(1 —t)aRez+ taRew)
<(1—t)exp(aRez)+texp (aRew)
= (1= 1) [exp (2)|° + ¢ exp (w)]®
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which shows that the function g (2) = |exp (2)|” is convex for any a € R~ {0}.

Suppose v C D is a piecewise smooth path parametrized by z(t), t € [a,b],
r = z(a) and y = 2 (b). We also have for v =+, ,, that

[/exp (2)dz = [/ exp (z)dz = exp (y) — exp (z) .

u,w

Using the inequality (2.12) for the function f (z) = exp z, we have for u, w, A € C
that

(2.14)  [[Aexpu+ (1= A)expw](y — z) — exp (y) + exp (z)|
1
< 3 |A] (/ |u — z| exp (Re z) |dz| + exp (Reu)/ lu — 2| dz|)
g g
1
+ 3 [1— A (/ |w — z] exp (Re z) |dz| + exp (Rew)/ |lw — | dz|)
gl 8!
< el [ I [ = 2l 1= 0 [ o = o110
gl gl

From the inequality (2.13) for the function f (z) = exp z, we have for u, w, A € C
that

(2.15) ||[Aexpu+ (1 — A)expw] (y — ) — exp (y) + exp (z)]|

1 1/p 1/q
< g W ([ 1= atiast) ([ exw(anes)lad + exp (aen) ()
v v

1 1/p 1/q
b= ([l apiaet) ([ e (aRes) ds] + exp qRew ()
Y ol

1/p
<max{|A],|1 = A} (/ (Ju —2|" + Jw — 2|") |dz>
¥

1/q
x ( / exp (gRez) |dz|  “PLIRCW L (qRe“’)ém) ,
y

Wherep>lwith%+%:1.

3. RELATED RESULTS

Now, by the help of power series f(z) = Y.~ janz" we can naturally construct
another power series which will have as coefficients the absolute values of the coef-
ficients of the original series, namely, f,(z) = > oo |an|2z". It is obvious that this
new power series will have the same radius of convergence as the original series.
We also notice that if all coefficients a,, > 0 then f, = f.
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‘We notice that if

= (1" I
.1 = ":1 1 .
(3.) 1@ =3 Ehr—n s sep0;
- (_1)" 2n
g(z):Z 2" =cosz, z € C;
— (2n)!
h(z)= i %zznﬂ =sinz, z € C;
n:O(n+ )
> 1
l = )= —— D(0,1);
(=2 () = i 2 DO

then the corresponding functions constructed by the use of the absolute values of
the coefficients are

(3.2) fa(z):Z z":ln%, z€ D(0,1);

o0
1
9a (2) = Z 2?" = cosh z, z € C;

— 1
ha (2) = Z —— 2"t —ginhz, z € C;

— (2n+1)!

> 1
la(z):Zz"::, ze D(0,1).

n=0

Theorem 3. Consider the power series f(z) = > oo, anz™ that is convergent on
the open disk D (0, R) and suppose v C D (0, R) is a piecewise smooth path para-
metrized by z(t), t € [a,b], x = z(a) and y = z(b). Ifu, w € D(0,R), then we
have the inequalities

(3:3) | (w) + (=X f(w)](y — =) - / f(z)dz

Y

SIS IACITEEIARITG)

IR ST AC TSI

and

B4) A (W) + (1 =A) f(w)](y —z) - / f(z)dz

ST AT A e

SRR F VA RN ACTRC]

for X e C.
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Proof. We have f'(z) = > 07 na,z" ' and f,(z) =Y o2 nla,| 2"t For m > 1,
by using the generalized triangle inequality we have

m m
Znanznfl < Zn|an|z"*1.
n=1

n=1
Since the series 7, na,z" ! and > 7 nla,| 2" ! are convergent, then by letting
m — oo in (3.5) we get

[f'(2)] < fa(lz]) for any z € D (0, R).

(3.5)

We observe that, since f! has nonnegative coefficients, then this functions is
convex as a real variable functions on the interval (—R, R) and increasing on [0, R).
For z, v € D, consider the function h, , : [0,1] — [0,00), h; o () :== fi, (|(1 — ) z + tv]).
For «, 8 € [0,1] with o+ 8 =1 and ¢4, t2 € [0, 1] we have
hz,v (O[tl =+ ﬁtg) = lez (|(1 — Oétl — ﬂtz) z + Oltl + ﬁtg'v‘)
= fallo (1 =t1) 2+ t10) + B (1 — t2) 2 + t2v)]]
< fola|(—t1) z + tiv| 4+ B(1 — t2) z + tav]]
<afy (|(1—=t1)z+tw]) + Bf (|(1 —t2) 2 + tav])

which shows that h, , is convex on [0, 1].
If we write the Hermite-Hadamard inequality for h,, on [0, 1] then we get

[fa () + 12 (v)]
2

/Olf;((1_t)z+tv|)dtg

for any z, v € D, which implies that

[Y|u—z| (/01|f’((1—t)z+tu)|dt> 1d2|
< [rat(f 0a-05mpa) i

S / MEACTE AGI

= [/ fu— 2| £ ()] |d=] + £, <u>|u~y>}

[+ ([ 170z ) as
< [o-= ([ s -nz+mpar)e

|fa ()] + | fa (w)]
< L lw — z| 5 |dz|

-1 [/ jw— 2/ 1£4 (2)] ld=] + £, <w>|m>} |

and

the inequality (3.3) is proved.
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We also have
fo (A=) z+tv]) < fo (L =8) [2] + ¢ |v])

for any z, v € D and t € [0, 1] and since the function p, , () := f;, (1 —t) |2| + ¢ |v])
is convex, then by Hermite-Hadamard inequality we have

[ rn-nevupas [ @i+ epas EEEED
0 0 2

This implies that

/\u—z| (/1f;(|(1—t)z+tu|)dt> dz|
/|u—z|(/ £ 1—t)|z|+t|u|)dt)|dz|

s e | I ACIE AT O

/|w—z\ </ fa -t z+tw|)dt> |dz|
§/|H| (/ Fo( =0l + tful) dt )

< [ o Ll g = 5 oo 2 2 b bt 4 12 ) )

which proves (3.4). O

Remark 2. If we consider, for instance f(z) = sinz, then f, (z) =sinhz, z € C
and by (3.3) and (3.4) we get
(3.6) |[Asin (u) + A) sin (w)] (y — x) + cosy — cos x|

(1-
<% {/u—zHcosh( )| |dz| + |cosh (u)| £ (y )}
+ 3 \1 — Al [[y |w — z||cosh (2)| |dz| + |cosh (w)|f(7)}

and
(3.7) |[Asin(u) + (1 — A)sin (w)] (y — x) + cosy — cos x|
<3 M ju — 2| cosh (|]) [dz] + cosh(|u)€(’y)}
+ % |1 — A [[y |w — z| cosh (]z]) |dz| + cosh(|w|)€('y)}

for any u, w, A € C and v, , C C a piecewise smooth path.
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Corollary 4. If the power series f(z) = Y .o anz™ has nonnegative coefficients

and is convergent on the open disk D (0, R), then with the other assumptions in
Theorem 8 we have

(38) | () + (1A f ()] (y —2) / f(2) d

<M [ w1

+;|1—)\|[/|w—z|f Nldel +11 )06

d=] + 1f ()] £y )}

and

(39) | @) + (1= N f(w)] (y — ) — / f(2) d

<50 I + 1))
N [/ =1 D =l + ()]

Important examples of functions as power series representations with nonnega-
tive coefficients in addition to the ones from (3.2), are:

oo

1
(3.10) exp (z) = Z Ez", z € C;
n=0
1 1+2 N
-1 = " D(0,1);
2n<1z) ;271*12 € D0,1);
Zf%ﬂ) 2 2 e D(0,1);
1
tanh ™~ ():Z 271 2 e D(0,1);
n:12n—1

oo

N T+ Pn+HT () .
2F1(avﬁa’7az)*n§0 n'F(a)F(,@)F(n—i—fy) z ,Oé,ﬂ,"}/>0,

2€ D(0,1);

where I' is Gamma function.
If we write the inequalities (3.8) and (3.9) for the function f(z) =In (1 —2) ",
z€ D(0,1), then we get

(3.11) ‘ [)\ln(l —w) P (1= N)In(1 - w)*l] (y —z) — Lln(l — )Y dz

§%|)\| Mm_z‘(1—,2)—1)|dz|+](1—u)‘1]€(v)}
+%|1_>\\ {/Y|w—z|‘(l—z)_l‘|dz|+‘(1—w)_1‘€(7)}
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and

(3.

wh

(1]

MEg

12) “)\ln(l—u)_l+(1—)\)ln(1—w)_1} (y—x)—/ln(l—z)_ldz

v

< 5[ el = el + = )

1 _ _
#3101 [l el )7l a1 = o) )]
il
ere u, w € D(0,1) and v, , C D(0,1).
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