GRÜSS' TYPE INEQUALITIES FOR THE COMPLEX INTEGRAL ON PATHS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. Assume that f and g are continuous on $\gamma, \gamma \subset \mathbb{C}$ is a piecewise smooth path and the $\check{C}eby\check{s}ev$ functional on paths is defined by

$$\mathcal{P}_{\gamma}\left(f,g\right):=\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)g\left(z\right)\left|dz\right|-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)\left|dz\right|\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}g\left(z\right)\left|dz\right|.$$

In this paper we establish some bounds for the magnitude of the functional $\mathcal{P}_{\gamma}(f,g)$ under various assumptions for the functions f and g and provide a complex version of the Grüss inequality.

1. Introduction

For two Lebesgue integrable functions $f, g : [a, b] \to \mathbb{C}$, in order to compare the integral mean of the product with the product of the integral means, we consider the $\check{C}eby\check{s}ev$ functional defined by

$$C\left(f,g\right):=\frac{1}{b-a}\int_{a}^{b}f\left(t\right)g\left(t\right)dt-\frac{1}{b-a}\int_{a}^{b}f\left(t\right)dt\frac{1}{b-a}\int_{a}^{b}g\left(t\right)dt.$$

In 1934, G. Grüss [17] showed that

(1.1)
$$|C(f,g)| \le \frac{1}{4} (M-m) (N-n),$$

provided m, M, n, N are real numbers with the property that

$$(1.2) -\infty < m \le f \le M < \infty, -\infty < n \le g \le N < \infty a.e. on [a, b].$$

The constant $\frac{1}{4}$ is best possible in (1.6) in the sense that it cannot be replaced by a smaller one.

In [6], P. Cerone and S.S. Dragomir proved the following inequalities:

$$(1.3) \qquad |C\left(f,g\right)| \leq \begin{cases} &\inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_{\infty} \frac{1}{b-a} \int_{a}^{b} \left| f\left(t\right) - \frac{1}{b-a} \int_{a}^{b} f\left(s\right) ds \right| dt, \\ &\inf_{\gamma \in \mathbb{R}} \|g - \gamma\|_{q} \frac{1}{b-a} \left(\int_{a}^{b} \left| f\left(t\right) - \frac{1}{b-a} \int_{a}^{b} f\left(s\right) ds \right|^{p} dt \right)^{\frac{1}{p}} \\ &\text{where } p > 1, \ 1/p + 1/q = 1. \end{cases}$$

For $\gamma = 0$, we get from the first inequality in (1.3)

$$(1.4) |C(f,g)| \le ||g||_{\infty} \frac{1}{b-a} \int_a^b \left| f(t) - \frac{1}{b-a} \int_a^b f(s) \, ds \right| dt$$

for which the constant 1 cannot be replaced by a smaller constant.

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 26D10, 30A10, 30A86.

Key words and phrases. Complex integral, Continuous functions, Holomorphic functions, Ostrowski inequality.

If $m \leq g \leq M$ for a.e. $x \in [a, b]$, then $\|g - \frac{m+M}{2}\|_{\infty} \leq \frac{1}{2}(M - m)$ and by the first inequality in (1.3) we can deduce the following result obtained by Cheng and Sun [9]

$$(1.5) \qquad \left|C\left(f,g\right)\right| \leq \frac{1}{2}\left(M-m\right)\frac{1}{b-a}\int_{a}^{b}\left|f\left(t\right) - \frac{1}{b-a}\int_{a}^{b}f\left(s\right)ds\right|dt.$$

The constant $\frac{1}{2}$ is best in (1.5) as shown by Cerone and Dragomir in [7].

For other inequality of Grüss' type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].

In order to extend Grüss' inequality to complex integral with respect to arclength we need the following preparations.

Suppose γ is a smooth path parametrized by $z\left(t\right)$, $t\in\left[a,b\right]$ and f is a complex function which is continuous on γ . Put $z\left(a\right)=u$ and $z\left(b\right)=w$ with $u,\,w\in\mathbb{C}$. We define the integral of f on $\gamma_{u,w}=\gamma$ as

$$\int_{\gamma} f(z) dz = \int_{\gamma_{u,w}} f(z) dz := \int_{a}^{b} f(z(t)) z'(t) dt.$$

We observe that that the actual choice of parametrization of γ does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose γ is parametrized by $z(t), t \in [a, b]$, which is differentiable on the intervals [a, c] and [c, b], then assuming that f is continuous on γ we define

$$\int_{\gamma_{u,w}} f(z) dz := \int_{\gamma_{u,v}} f(z) dz + \int_{\gamma_{v,w}} f(z) dz$$

where v := z(c). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

$$\int_{\gamma_{u,w}} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt$$

and the length of the curve γ is then

$$\ell\left(\gamma\right) = \int_{\gamma_{a}} \left|dz\right| = \int_{a}^{b} \left|z'\left(t\right)\right| dt.$$

Let f and g be holomorphic in G, and open domain and suppose $\gamma \subset G$ is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the *integration by parts formula*

$$(1.6) \qquad \int_{\gamma_{u,w}} f(z) g'(z) dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{u,w}} f'(z) g(z) dz.$$

We recall also the triangle inequality for the complex integral, namely

(1.7)
$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz| \leq ||f||_{\gamma,\infty} \ell(\gamma)$$

where $\|f\|_{\gamma,\infty} := \sup_{z \in \gamma} |f(z)|$.

We also define the p-norm with $p \ge 1$ by

$$||f||_{\gamma,p} := \left(\int_{\gamma} |f(z)|^p |dz| \right)^{1/p}.$$

For p = 1 we have

$$\left\|f\right\|_{\gamma,1} := \int_{\gamma} \left|f\left(z\right)\right| \left|dz\right|.$$

If p, q > 1 with $\frac{1}{p} + \frac{1}{q} = 1$, then by Hölder's inequality we have

$$\left\|f\right\|_{\gamma,1} \leq \left[\ell\left(\gamma\right)\right]^{1/q} \left\|f\right\|_{\gamma,p}.$$

Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f and g are continuous on γ , we consider the *Čebyšev functional on paths* defined by

$$\mathcal{P}_{\gamma}\left(f,g
ight):=rac{1}{\ell\left(\gamma
ight)}\int_{\gamma}f\left(z
ight)g\left(z
ight)\left|dz
ight|-rac{1}{\ell\left(\gamma
ight)}\int_{\gamma}f\left(z
ight)\left|dz
ight|rac{1}{\ell\left(\gamma
ight)}\int_{\gamma}g\left(z
ight)\left|dz
ight|.$$

In this paper we establish some bounds for the magnitude of the functional $\mathcal{P}_{\gamma}(f,g)$ under various assumptions for the functions f and g and provide a complex version of the Grüss inequality (1.1).

2. Grüss' Type Inequalities

Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. Now, for ϕ , $\Phi \in \mathbb{C}$, define the sets of complex-valued functions

$$\bar{U}_{\gamma}\left(\phi,\Phi\right):=\left\{ f:\gamma\to\mathbb{C}|\operatorname{Re}\left[\left(\Phi-f\left(z\right)\right)\left(\overline{f\left(z\right)}-\overline{\phi}\right)\right]\geq0\ \text{ for each }\ z\in\gamma\right\}$$

and

$$\bar{\Delta}_{\gamma}\left(\phi,\Phi\right):=\left\{ f:\gamma\to\mathbb{C}|\ \left|f\left(z\right)-\frac{\phi+\Phi}{2}\right|\leq\frac{1}{2}\left|\Phi-\phi\right|\ \text{for each}\ \ z\in\gamma\right\} .$$

The following representation result may be stated.

Proposition 1. For any ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$, we have that $\bar{U}_{\gamma}(\phi, \Phi)$ and $\bar{\Delta}_{\gamma}(\phi, \Phi)$ are nonempty, convex and closed sets and

(2.1)
$$\bar{U}_{\gamma}(\phi, \Phi) = \bar{\Delta}_{\gamma}(\phi, \Phi).$$

Proof. We observe that for any $w \in \mathbb{C}$ we have the equivalence

$$\left| w - \frac{\phi + \Phi}{2} \right| \le \frac{1}{2} \left| \Phi - \phi \right|$$

if and only if

$$\operatorname{Re}\left[\left(\Phi - w\right)\left(\overline{w} - \overline{\phi}\right)\right] \ge 0.$$

This follows by the equality

$$\frac{1}{4} |\Phi - \phi|^2 - \left| w - \frac{\phi + \Phi}{2} \right|^2 = \operatorname{Re} \left[(\Phi - w) \left(\overline{w} - \overline{\phi} \right) \right]$$

that holds for any $w \in \mathbb{C}$.

The equality (2.1) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 1. For any ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$, we have that

$$(2.2) \quad \bar{U}_{\gamma}\left(\phi,\Phi\right) = \left\{f:\gamma \to \mathbb{C} \mid (\operatorname{Re}\Phi - \operatorname{Re}f\left(z\right))\left(\operatorname{Re}f\left(z\right) - \operatorname{Re}\phi\right) + \left(\operatorname{Im}\Phi - \operatorname{Im}f\left(z\right)\right)\left(\operatorname{Im}f\left(z\right) - \operatorname{Im}\phi\right) \ge 0 \text{ for each } z \in \gamma\right\}.$$

Now, if we assume that $\operatorname{Re}(\Phi) \geq \operatorname{Re}(\phi)$ and $\operatorname{Im}(\Phi) \geq \operatorname{Im}(\phi)$, then we can define the following set of functions as well:

(2.3)
$$\bar{S}_{\gamma}(\phi, \Phi) := \{ f : \gamma \to \mathbb{C} \mid \operatorname{Re}(\Phi) \ge \operatorname{Re}f(z) \ge \operatorname{Re}(\phi)$$

and $\operatorname{Im}(\Phi) \ge \operatorname{Im}f(z) \ge \operatorname{Im}(\phi) \text{ for each } z \in \gamma \}.$

One can easily observe that $\bar{S}_{\gamma}(\phi, \Phi)$ is closed, convex and

(2.4)
$$\emptyset \neq \bar{S}_{\gamma} (\phi, \Phi) \subseteq \bar{U}_{\gamma} (\phi, \Phi).$$

We have the following simple facts:

Lemma 1. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f is continuous on γ , then for all $\lambda \in \mathbb{C}$ we have

$$(2.5) \mathcal{P}_{\gamma}\left(f,\overline{f}\right) = \frac{1}{\ell(\gamma)} \int_{\gamma} |f(z)|^{2} |dz| - \left|\frac{1}{\ell(\gamma)} \int_{\gamma} f(z) |dz|\right|^{2}$$

$$= \frac{1}{\ell(\gamma)} \int_{\gamma} \left(f(v) - \frac{1}{\ell(\gamma)} \int_{\gamma} f(z) |dz|\right) \left(\overline{f(v)} - \lambda\right) |dv|$$

and, in particular,

$$(2.6) \mathcal{P}_{\gamma}\left(f,\overline{f}\right) = \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left| dz \right| \right|^{2} \left| dv \right| \ge 0.$$

Proof. We observe that

$$\begin{split} &\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left(f\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)\left|dz\right|\right)\left(\overline{f\left(v\right)}-\lambda\right)\left|dv\right| \\ &=\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)\right|^{2}\left|dv\right|-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)\left|dz\right|\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\overline{f\left(v\right)}\left|dv\right| \\ &-\lambda\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left(f\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)\left|dz\right|\right)\left|dv\right| \\ &=\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)\right|^{2}\left|dv\right|-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)\left|dz\right|\frac{1}{\ell\left(\gamma\right)}\overline{\left(\int_{\gamma}f\left(v\right)\left|dv\right|\right)} \\ &=\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)\right|^{2}\left|dv\right|-\left|\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}f\left(z\right)\left|dz\right|\right|^{2} \end{split}$$

for any $\lambda \in \mathbb{C}$, which proves (2.5).

The equality (2.6) follows by (2.5) by taking

$$\lambda = \frac{1}{\ell(\gamma)} \overline{\left(\int_{\gamma} f(v) |dv| \right)}.$$

We have:

Theorem 1. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f is continuous on γ and there exists $c \in \mathbb{C}$ and R > 0 such that

$$(2.7) f \in \overline{D}(c,R) := \{ z \in \mathbb{C} | |z-c| \le R \},$$

then

$$(2.8) 0 \le \mathcal{P}_{\gamma}\left(f,\overline{f}\right) \le R \frac{1}{\ell\left(\gamma\right)} \left| \int_{\gamma} f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right| |dv|$$

and

$$(2.9) 0 \le \mathcal{P}_{\gamma}\left(f, \overline{f}\right) \le R^2.$$

Proof. For the equality (2.5) for $\lambda = \overline{c}$ we have

$$\begin{split} \mathcal{P}_{\gamma}\left(f,\overline{f}\right) &= \left|\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left(f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left|dz\right|\right) \left(\overline{f\left(v\right)} - \overline{c}\right) \left|dv\right|\right| \\ &\leq \frac{1}{\ell\left(\gamma\right)} \left|\int_{\gamma} f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left|dz\right| \left|\left|\overline{f\left(v\right)} - \overline{c}\right| \left|dv\right| \\ &= \frac{1}{\ell\left(\gamma\right)} \left|\int_{\gamma} f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left|dz\right| \left|\left|f\left(v\right) - c\right| \left|dv\right| \\ &\leq R \frac{1}{\ell\left(\gamma\right)} \left|\int_{\gamma} f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left|dz\right| \left|\left|dv\right|, \end{split}$$

which proves (2.8).

Using Cauchy-Bunyakovsky-Schwarz integral inequality, we have

$$(2.10) \qquad \frac{1}{\ell\left(\gamma\right)} \left| \int_{\gamma} f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left| dz \right| \right| \left| dv \right|$$

$$\leq \left(\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left| dz \right| \right|^{2} \left| dv \right| \right)^{1/2}$$

$$= \left(\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(z\right) \right|^{2} \left| dz \right| - \left| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left| dz \right| \right|^{2} \right)^{1/2},$$

where for the last equality we used (2.6).

From (2.8) and (2.10) we have

$$0 \leq \mathcal{P}_{\gamma}\left(f, \overline{f}\right) \leq R \frac{1}{\ell\left(\gamma\right)} \left| \int_{\gamma} f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right| |dv| \leq R \left[\mathcal{P}_{\gamma}\left(f, \overline{f}\right)\right]^{1/2}$$

which implies that

$$0 \le \left[\mathcal{P}_{\gamma} \left(f, \overline{f} \right) \right]^{1/2} \le R$$

proving the desired result (2.9).

Corollary 2. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f is continuous on γ and there exists ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$ such that $f \in \overline{\Delta}_{\gamma}(\phi, \Phi)$, then

$$(2.11) 0 \le \mathcal{P}_{\gamma}\left(f,\overline{f}\right) \le \frac{1}{2} \left|\Phi - \phi\right| \frac{1}{\ell(\gamma)} \left| \int_{\gamma} f\left(v\right) - \frac{1}{\ell(\gamma)} \int_{\gamma} f\left(z\right) \left| dz \right| \left| dv \right|$$

and

(2.12)
$$0 \le \mathcal{P}_{\gamma}\left(f, \overline{f}\right) \le \frac{1}{4} \left|\Phi - \phi\right|^{2}.$$

The proof follows by Theorem 1 by choosing $c=\frac{\phi+\Phi}{2}$ and $R=\frac{1}{2}|\Phi-\phi|$. We have the following Grüss' type inequality:

Theorem 2. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f, g are continuous on γ and $\lambda \in \mathbb{C}$, then

$$(2.13) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda| \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| |dv|$$

$$\leq \begin{cases} \max_{v \in \gamma} |f\left(v\right) - \lambda| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| |dv|, \\ \left(\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda|^{p}\right)^{1/p} \left(\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right|^{q} |dv|\right)^{1/q} \\ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \\ \max_{v \in \gamma} \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda| |dv|. \end{cases}$$

In particular,

$$(2.14) \quad |\mathcal{P}_{\gamma}\left(f,f\right)| \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda| \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right| |dv|$$

$$\leq \begin{cases} \max_{v \in \gamma} |f\left(v\right) - \lambda| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right| |dv|, \\ \left(\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda|^{p} \right)^{1/p} \left(\frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right|^{q} |dv| \right)^{1/q} \\ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \\ \max_{v \in \gamma} \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda| |dv|, \end{cases}$$

where

$$\mathcal{P}_{\gamma}\left(f,f
ight):=rac{1}{\ell\left(\gamma
ight)}\int_{\gamma}f^{2}\left(z
ight)\left|dz
ight|-\left(rac{1}{\ell\left(\gamma
ight)}\int_{\gamma}f\left(z
ight)\left|dz
ight|
ight)^{2}.$$

Proof. We have the following Sonin type identity for the integral with respect to arc-length

$$(2.15) \qquad \frac{1}{\ell(\gamma)} \int_{\gamma} f(z) g(z) |dz| - \frac{1}{\ell(\gamma)} \int_{\gamma} f(z) |dz| \frac{1}{\ell(\gamma)} \int_{\gamma} g(z) |dz|$$
$$= \frac{1}{\ell(\gamma)} \int_{\gamma} (f(v) - \lambda) \left[g(v) - \frac{1}{\ell(\gamma)} \int_{\gamma} g(z) |dz| \right] |dv|$$

for any $\lambda \in \mathbb{C}$.

By taking the modulus in (2.15) we get

$$\begin{aligned} |\mathcal{P}_{\gamma}\left(f,g\right)| &= \left| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left(f\left(v\right) - \lambda\right) \left[g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right] |dv| \right| \\ &\leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda| \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| |dv| \,. \end{aligned}$$

The last inequality follows by Hölder's inequality

$$\begin{split} &\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|g\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}g\left(z\right)\left|dz\right|\left|\left|dv\right|\right| \\ &=\left\{\begin{array}{l} \max_{v\in\gamma}\left|f\left(v\right)-\lambda\right|\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|g\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}g\left(z\right)\left|dz\right|\right|\left|dv\right| \\ &\left(\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|^{p}\right)^{1/p}\left(\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|g\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}g\left(z\right)\left|dz\right|\right|^{q}\left|dv\right|\right)^{1/q} \\ p,\ q>1,\ \frac{1}{p}+\frac{1}{q}=1, \\ &\max_{v\in\gamma}\left|g\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}g\left(z\right)\left|dz\right|\right|\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|dv\right|. \end{split}$$

We have:

Corollary 3. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f is continuous on γ and there exists $c \in \mathbb{C}$ and R > 0 such that (2.7) is true, then

$$(2.16) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \leq R \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| |dv| \leq R \left[\mathcal{P}_{\gamma}\left(g,\overline{g}\right)\right]^{1/2}.$$

In particular,

$$(2.17) \quad \left|\mathcal{P}_{\gamma}\left(f,f\right)\right| \leq R \frac{1}{\ell\left(\gamma\right)} \int_{\mathcal{C}} \left|f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\mathcal{C}} f\left(z\right) \left|dz\right| \left|\left|dv\right| \leq R \left[\mathcal{P}_{\gamma}\left(f,\overline{f}\right)\right]^{1/2}.$$

If f is continuous on γ and there exists ϕ , $\Phi \in \mathbb{C}$, $\phi \neq \Phi$ such that $f \in \bar{\Delta}_{\gamma}(\phi, \Phi)$, then

$$(2.18) \quad |\mathcal{P}_{\gamma}(f,g)| \leq \frac{1}{2} |\Phi - \phi| \frac{1}{\ell(\gamma)} \int_{\gamma} \left| g(v) - \frac{1}{\ell(\gamma)} \int_{\gamma} g(z) |dz| \right| |dv|$$

$$\leq \frac{1}{2} |\Phi - \phi| \left[\mathcal{P}_{\gamma}(g,\overline{g}) \right]^{1/2}.$$

In particular,

$$(2.19) \quad |\mathcal{P}_{\gamma}(f,f)| \leq \frac{1}{2} |\Phi - \phi| \frac{1}{\ell(\gamma)} \int_{\gamma} \left| f(v) - \frac{1}{\ell(\gamma)} \int_{\gamma} f(z) |dz| \right| |dv|$$

$$\leq \frac{1}{2} |\Phi - \phi| \left[\mathcal{P}_{\gamma}(f,\overline{f}) \right]^{1/2}.$$

We have the following Grüss type inequality:

Corollary 4. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f and g are continuous on γ and there exists ϕ , Φ , ψ , $\Psi \in \mathbb{C}$, $\phi \neq \Phi$, $\psi \neq \Psi$ such that $f \in \bar{\Delta}_{\gamma}(\phi, \Phi)$ and $g \in \bar{\Delta}_{\gamma}(\psi, \Psi)$, then

$$(2.20) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \leq \frac{1}{2} \left|\Phi - \phi\right| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left|g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) \left|dz\right| \left| \left|dv\right| \right| \\ \leq \frac{1}{2} \left|\Phi - \phi\right| \left[\mathcal{P}_{\gamma}\left(g,\overline{g}\right)\right]^{1/2} \leq \frac{1}{4} \left|\Phi - \phi\right| \left|\Psi - \psi\right|$$

and, symmetrically

$$(2.21) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \leq \frac{1}{2} \left|\Psi - \psi\right| \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left|f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) \left|dz\right| \left|\left|dv\right| \right| \\ \leq \frac{1}{2} \left|\Psi - \psi\right| \left[\mathcal{P}_{\gamma}\left(f,\overline{f}\right)\right]^{1/2} \leq \frac{1}{4} \left|\Phi - \phi\right| \left|\Psi - \psi\right|.$$

Remark 1. By taking $\lambda = \frac{1}{\ell(\gamma)} \int_{\gamma} f(z) |dz|$ in (2.13) we also get

$$(2.22) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \\ \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} f\left(z\right) |dz| \right| \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| |dv| \\ \leq \left(\mathcal{P}_{\gamma}\left(f,\overline{f}\right)\right)^{1/2} \left(\mathcal{P}_{\gamma}\left(g,\overline{g}\right)\right)^{1/2}.$$

If we take in (2.13) $\lambda = \frac{f(u)+f(w)}{2}$, then we get

$$(2.23) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \\ \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \frac{f\left(u\right) + f\left(w\right)}{2} \right| \left| g\left(w\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) \left| dz \right| \left| dv \right|.$$

If $m = z\left(\frac{a+b}{2}\right)$, then by taking $\lambda = f(m)$ in (2.13), we obtain

$$(2.24) \qquad \left| \mathcal{P}_{\gamma}\left(f,g\right) \right| \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - f\left(m\right) \right| \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) \left| dz \right| \left| \left| dv \right|.$$

Further, observe that

$$\begin{split} &\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|g\left(v\right)-\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}g\left(z\right)\left|dz\right|\left|\left|dv\right|\right| \\ &=\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|g\left(v\right)\ell\left(\gamma\right)-\int_{\gamma}g\left(z\right)\left|dz\right|\left|\left|dv\right|\right| \\ &=\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|\int_{\gamma}\left[g\left(v\right)-g\left(z\right)\right]\left|dz\right|\left|\left|dv\right|\right| \\ &\leq\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|g\left(v\right)-g\left(z\right)\right|\left|dz\right|\left|dv\right|, \end{split}$$

therefore by (2.13) we get

$$(2.25) \quad \left| \mathcal{P}_{\gamma}\left(f,g\right) \right| \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} \left| f\left(v\right) - \lambda \right| \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) \left| dz \right| \left| \left| dv \right| \right|$$

$$\leq \frac{1}{\ell^{2}\left(\gamma\right)} \int_{\gamma} \int_{\gamma} \left| f\left(v\right) - \lambda \right| \left| g\left(v\right) - g\left(z\right) \right| \left| dz \right| \left| dv \right|$$

for $\lambda \in \mathbb{C}$.

If we use Hölder's inequality for double integrals, we have

$$\begin{split} &\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|g\left(v\right)-g\left(z\right)\right|\left|dz\right|\left|dv\right| \\ &= \left\{ \begin{array}{l} \max_{v\in\gamma}\left|f\left(v\right)-\lambda\right|\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|g\left(v\right)-g\left(z\right)\right|\left|dz\right|\left|dv\right|, \\ &\left(\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|f\left(v\right)-\lambda\right|^{p}\left|dz\right|\left|dv\right|\right)^{1/p}\left(\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|g\left(v\right)-g\left(z\right)\right|^{q}\left|dz\right|\left|dv\right|\right)^{1/q} \\ &p,\ q>1,\ \frac{1}{p}+\frac{1}{q}=1, \\ &\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|dv\right|\left|dv\right|\max_{v,z\in\gamma}\left|g\left(v\right)-g\left(z\right)\right|, \\ &= \left\{ \begin{array}{l} \max_{v\in\gamma}\left|f\left(v\right)-\lambda\right|\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|g\left(v\right)-g\left(z\right)\right|\left|dz\right|\left|dv\right|, \\ &\left(\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|^{p}\left|dv\right|\right)^{1/p}\left(\frac{1}{\ell^{2}\left(\gamma\right)}\int_{\gamma}\int_{\gamma}\left|g\left(v\right)-g\left(z\right)\right|^{q}\left|dz\right|\left|dv\right|\right)^{1/q} \\ &p,\ q>1,\ \frac{1}{p}+\frac{1}{q}=1, \\ &\max_{v,z\in\gamma}\left|g\left(v\right)-g\left(z\right)\right|\frac{1}{\ell\left(\gamma\right)}\int_{\gamma}\left|f\left(v\right)-\lambda\right|\left|dv\right|. \end{array} \right. \end{split}$$

Therefore we can state the following result concerning double integrals as well:

Corollary 5. Suppose $\gamma \subset \mathbb{C}$ is a piecewise smooth path parametrized by z(t), $t \in \gamma$ from z(a) = u to z(b) = w. If f, g are continuous on γ and $\lambda \in \mathbb{C}$, then

$$(2.26) \quad |\mathcal{P}_{\gamma}\left(f,g\right)| \leq \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} |f\left(v\right) - \lambda| \left| g\left(v\right) - \frac{1}{\ell\left(\gamma\right)} \int_{\gamma} g\left(z\right) |dz| \right| |dv|$$

$$\leq \begin{cases} \max_{v \in \gamma} |f\left(v\right) - \lambda| \frac{1}{\ell^{2}(\gamma)} \int_{\gamma} \int_{\gamma} |g\left(v\right) - g\left(z\right)| |dz| |dv|, \\ \left(\frac{1}{\ell(\gamma)} \int_{\gamma} |f\left(v\right) - \lambda|^{p} |dv|\right)^{1/p} \left(\frac{1}{\ell^{2}(\gamma)} \int_{\gamma} \int_{\gamma} |g\left(v\right) - g\left(z\right)|^{q} |dz| |dv|\right)^{1/q} \\ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \\ \max_{v,z \in \gamma} |g\left(v\right) - g\left(z\right)| \frac{1}{\ell(\gamma)} \int_{\gamma} |f\left(v\right) - \lambda| |dv|. \end{cases}$$

If the path γ is a segment [u,w] connecting two distinct points u and w in $\mathbb C$ then we write $\int_{\gamma} f(z) dz$ as $\int_{u}^{w} f(z) dz$.

If f, g are continuous on [u, w] and $\lambda \in \mathbb{C}$, then

$$\left|\frac{1}{\left|w-u\right|}\int_{u}^{w}f\left(z\right)g\left(z\right)\left|dz\right|-\frac{1}{\left|w-u\right|^{2}}\int_{u}^{w}f\left(z\right)\left|dz\right|\int_{u}^{w}g\left(z\right)\left|dz\right|$$

$$\leq \frac{1}{|w-u|} \int_{u}^{w} |f(v) - \lambda| \left| g(v) - \frac{1}{|w-u|} \int_{u}^{w} g(z) |dz| \right| |dv|$$

$$\leq \begin{cases} \max_{v \in [u,w]} |f(v) - \lambda| \frac{1}{|w-u|} \int_{u}^{w} \left| g(v) - \frac{1}{|w-u|} \int_{u}^{w} g(z) |dz| \right| |dv|,$$

$$\leq \begin{cases} \left(\frac{1}{|w-u|} \int_{u}^{w} |f(v) - \lambda|^{p} \right)^{1/p} \left(\frac{1}{|w-u|} \int_{u}^{w} \left| g(v) - \frac{1}{|w-u|} \int_{u}^{w} g(z) |dz| \right|^{q} |dv| \right)^{1/q} \\ p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \end{cases}$$

$$\max_{v \in [u,w]} \left| g(v) - \frac{1}{|w-u|} \int_{u}^{w} g(z) |dz| \right| \frac{1}{|w-u|} \int_{u}^{w} |f(v) - \lambda| |dv|.$$

In particular,

$$\begin{aligned} & \left| \frac{1}{|w-u|} \int_{u}^{w} f^{2}\left(z\right) |dz| - \left(\frac{1}{|w-u|} \int_{u}^{w} f\left(z\right) |dz| \right)^{2} \right| \\ & \leq \frac{1}{|w-u|} \int_{u}^{w} |f\left(v\right) - \lambda| \left| f\left(v\right) - \frac{1}{|w-u|} \int_{u}^{w} f\left(z\right) |dz| \right| |dv| \\ & \leq \begin{cases} & \max_{v \in [u,w]} |f\left(v\right) - \lambda| \frac{1}{|w-u|} \int_{u}^{w} \left| f\left(v\right) - \frac{1}{|w-u|} \int_{u}^{w} f\left(z\right) |dz| \right| |dv| \,, \\ & \left(\frac{1}{|w-u|} \int_{u}^{w} |f\left(v\right) - \lambda|^{p} \right)^{1/p} \left(\frac{1}{|w-u|} \int_{u}^{w} \left| f\left(v\right) - \frac{1}{|w-u|} \int_{u}^{w} f\left(z\right) |dz| \right|^{q} |dv| \right)^{1/q} \\ & p, \ q > 1, \ \frac{1}{p} + \frac{1}{q} = 1, \\ & \max_{v \in [u,w]} \left| f\left(v\right) - \frac{1}{|w-u|} \int_{u}^{w} f\left(z\right) |dz| \right| \frac{1}{|w-u|} \int_{u}^{w} |f\left(v\right) - \lambda| |dv| \,. \end{aligned}$$

3. Examples for Circular Paths

Let $[a,b]\subseteq [0,2\pi]$ and the circular path $\gamma_{[a,b],R}$ centered in 0 and with radius R>0

$$z(t) = R \exp(it) = R(\cos t + i\sin t), t \in [a, b].$$

If $[a,b] = [0,\pi]$ then we get a half circle while for $[a,b] = [0,2\pi]$ we get the full circle.

We have

$$z'(t) = Ri \exp(it), t \in [a, b]$$

and |z'(t)| = R for $t \in [a, b]$ giving that

$$\ell\left(\gamma_{[a,b],R}\right) = \int_{a}^{b} |z'(t)| dt = R(b-a).$$

If f and g are continuous on $\gamma_{[a,b],R}$ and there exists ϕ , Φ , ψ , $\Psi \in \mathbb{C}$, $\phi \neq \Phi$, $\psi \neq \Psi$ such that $f \in \bar{\Delta}_{\gamma_{[a,b],R}}(\phi,\Phi)$ and $g \in \bar{\Delta}_{\gamma_{[a,b],R}}(\psi,\Psi)$, then by (2.20) we get

$$(3.1) \quad \left| \frac{1}{b-a} \int_{a}^{b} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) dt \right.$$

$$\left. - \frac{1}{b-a} \int_{a}^{b} f\left(R \exp\left(it\right)\right) dt \frac{1}{b-a} \int_{a}^{b} g\left(R \exp\left(it\right)\right) dt \right|$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \frac{1}{b-a} \int_{a}^{b} \left| g\left(R \exp\left(it\right)\right) - \frac{1}{b-a} \int_{a}^{b} g\left(R \exp\left(is\right)\right) ds \right| dt$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \left(\frac{1}{b-a} \int_{a}^{b} \left| g\left(R \exp\left(it\right)\right) \right|^{2} dt - \left| \frac{1}{b-a} \int_{a}^{b} g\left(R \exp\left(is\right)\right) ds \right|^{2} \right)^{1/2}$$

$$\leq \frac{1}{4} \left| \Phi - \phi \right| \left| \Psi - \psi \right|.$$

If γ is the circle $\mathcal{C}(0,R)$ centered in 0 and of radius R>0 and f and g are continuous on $\mathcal{C}(0,R)$ and there exists ϕ , Φ , ψ , $\Psi \in \mathbb{C}$, $\phi \neq \Phi$, $\psi \neq \Psi$ such that $f \in \bar{\Delta}_{\mathcal{C}(0,R)}(\phi,\Phi)$ and $g \in \bar{\Delta}_{\mathcal{C}(0,R)}(\psi,\Psi)$, then

$$(3.2) \quad \left| \frac{1}{2\pi} \int_{0}^{2\pi} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) dt \right.$$

$$\left. - \frac{1}{2\pi} \int_{0}^{2\pi} f\left(R \exp\left(it\right)\right) dt \frac{1}{2\pi} \int_{0}^{2\pi} g\left(R \exp\left(it\right)\right) dt \right|$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \frac{1}{2\pi} \int_{0}^{2\pi} \left| g\left(R \exp\left(it\right)\right) - \frac{1}{2\pi} \int_{0}^{2\pi} g\left(R \exp\left(is\right)\right) ds \right| dt$$

$$\leq \frac{1}{2} \left| \Phi - \phi \right| \left(\frac{1}{2\pi} \int_{0}^{2\pi} \left| g\left(R \exp\left(it\right)\right) \right|^{2} dt - \left| \frac{1}{2\pi} \int_{0}^{2\pi} g\left(R \exp\left(is\right)\right) ds \right|^{2} \right)^{1/2}$$

$$\leq \frac{1}{4} \left| \Phi - \phi \right| \left| \Psi - \psi \right|.$$

References

- [1] M. W. Alomari, A companion of Grüss type inequality for Riemann-Stieltjes integral and applications. *Mat. Vesnik* **66** (2014), no. 2, 202–212.
- [2] D. Andrica and C. Badea, Grüss' inequality for positive linear functionals. Period. Math. Hungar. 19 (1988), no. 2, 155-167.
- [3] D. Baleanu, S. D. Purohit and F. Uçar, On Grüss type integral inequality involving the Saigo's fractional integral operators. J. Comput. Anal. Appl. 19 (2015), no. 3, 480–489
- [4] P. L. Chebyshev, Sur les expressions approximatives des intègrals définis par les outres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
- [5] P. Cerone, On a Čebyšev-type functional and Grüss-like bounds. Math. Inequal. Appl. 9 (2006), no. 1, 87–102.
- [6] P. Cerone and S. S. Dragomir, A refinement of the Grüss inequality and applications, Tamkang J. Math., 38(1) (2007), 37-49. Preprint RGMIA Res. Rep. Coll., 5(2) (2002), Article 14. [ONLINE: http://rgmia.vu.edu.au/v5n2.html].
- [7] P. Cerone and S. S. Dragomir, Some new Ostrowski-type bounds for the Čebyšev functional and applications. J. Math. Inequal. 8 (2014), no. 1, 159–170.

- [8] P. Cerone, S. S. Dragomir and J. Roumeliotis, Grüss inequality in terms of Δ-seminorms and applications. *Integral Transforms Spec. Funct.* 14 (2003), no. 3, 205–216.
- [9] X. L. Cheng and J. Sun, A note on the perturbed trapezoid inequality, J. Ineq. Pure and Appl. Math., 3(2) Art. 29, (2002).
- [10] S. S. Dragomir, A generalization of Grüss's inequality in inner product spaces and applications. J. Math. Appl. 237 (1999), no. 1, 74–82.
- [11] S. S. Dragomir, A Grüss' type integral inequality for mappings of r-Hölder's type and applications for trapezoid formula. Tamkang J. Math. 31 (2000), no. 1, 43–47.
- [12] S. S. Dragomir, Some integral inequalities of Grüss type. Indian J. Pure Appl. Math. 31 (2000), no. 4, 397–415.
- [13] S. S. Dragomir, Integral Grüss inequality for mappings with values in Hilbert spaces and applications. J. Korean Math. Soc. 38 (2001), no. 6, 1261–1273.
- [14] S. S. Dragomir and I. A. Fedotov, An inequality of Grüss' type for Riemann-Stieltjes integral and applications for special means. *Tamkang J. Math.* 29 (1998), no. 4, 287–292.
- [15] S. S. Dragomir and I. Gomm, Some integral and discrete versions of the Grüss inequality for real and complex functions and sequences. *Tamsui Oxf. J. Math. Sci.* 19 (2003), no. 1, 67–77.
- [16] A. M. Fink, A treatise on Grüss' inequality. Analytic and Geometric Inequalities and Applications, 93–113, Math. Appl., 478, Kluwer Acad. Publ., Dordrecht, 1999.
- [17] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx \frac{1}{(b-a)^2} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., 39(1935), 215-226.
- [18] D. Jankov Maširević and T. K. Pogány, Bounds on Čebyšev functional for $C_{\varphi}[0,1]$ function class. J. Anal. 22 (2014), 107–117.
- [19] Z. Liu, Refinement of an inequality of Grüss type for Riemann-Stieltjes integral. Soochow J. Math. 30 (2004), no. 4, 483–489.
- [20] Z. Liu, Notes on a Grüss type inequality and its application. Vietnam J. Math. 35 (2007), no. 2, 121–127.
- [21] A. Lupaş, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15(38)(2) (1973), 219-222.
- [22] A. Mc.D. Mercer and P. R. Mercer, New proofs of the Grüss inequality. Aust. J. Math. Anal. Appl. 1 (2004), no. 2, Art. 12, 6 pp.
- [23] N. Minculete and L. Ciurdariu, A generalized form of Grüss type inequality and other integral inequalities. J. Inequal. Appl. 2014, 2014:119, 18 pp.
- [24] A. M. Ostrowski, On an integral inequality, Aeguat. Math., 4 (1970), 358-373.
- [25] B. G. Pachpatte, A note on some inequalities analogous to Grüss inequality. Octogon Math. Mag. 5 (1997), no. 2, 62–66
- [26] J. Pečarić and Š. Ungar, On a inequality of Grüss type. Math. Commun. 11 (2006), no. 2, 137–141.
- [27] M. Z. Sarikaya and H. Budak, An inequality of Grüss like via variant of Pompeiu's mean value theorem. Konuralp J. Math. 3 (2015), no. 1, 29–35.
- [28] N. Ujević, A generalization of the pre-Grüss inequality and applications to some quadrature formulae. J. Inequal. Pure Appl. Math. 3 (2002), no. 1, Article 13, 9 pp.

 $^1\mathrm{Mathematics},$ College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E ext{-}mail\ address: sever.dragomir@vu.edu.au}$

 URL : http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA