GRUSS’ TYPE INEQUALITIES FOR THE COMPLEX INTEGRAL
ON PATHS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Assume that f and g are continuous on v, v C C is a piecewise
smooth path and the Cebysev functional on paths is defined by

Py (frg) = ﬁ/vf(Z)g(Z) \dz] le)/y“z”dz‘ ﬁ/yg(z) \dz.

In this paper we establish some bounds for the magnitude of the functional
P~ (f,g) under various assumptions for the functions f and g and provide a
complex version of the Griiss inequality.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider
the Cebysev functional defined by

1 h 1 h 1 h
€)==z [ f0ewi— = [ rwa— [gww
In 1934, G. Griiss [17] showed that

1
(1) Cf.9)| < 5 (M = m) (N =n),
provided m, M,n, N are real numbers with the property that
(1.2) —co<m< f<M<oo, —oo<n<g<N<oo ae on [ab].

The constant i is best possible in (1.6) in the sense that it cannot be replaced
by a smaller one.
In [6], P. Cerone and S.S. Dragomir proved the following inequalities:

£ =55 [ f (s)ds] dt,

. 1 b
inf llg =7l 555 Lo

(1.3) IC(f,9)] < b 2
P lr =5t 21 s)as|ar)
where p > 1, 1/p+1/q=1.

For v = 0, we get from the first inequality in (1.3)

. 1
yelufk lg =M, =2 (

b b
(14) Cll <lol s [ |70~ 50 [ F(e)dsae

for which the constant 1 cannot be replaced by a smaller constant.
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If m < g <M for ae. € [ab], then ||g— 24| < 3 (M —m) and by the

first inequality in (1.3) we can deduce the following result obtained by Cheng and
Sun [9]

dt.

- [ [

The constant % is best in (1.5) as shown by Cerone and Dragomir in [7].

For other inequality of Griiss’ type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].

In order to extend Griiss’ inequality to complex integral with respect to arc-
length we need the following preparations.

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on . Put 2 (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

(15 IC(fel <y

b
/f(z)dz: f(2)dz ::/ f(z(t) 2 (t)dt.

We observe that that the actual choice of parametrization of 7 does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
7 is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on v we define

(2)dz := (2)dz + f(2)dz

Yu,w Yu,v Yo, w

where v := z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f(2) e = / F (1) | (1)) de

and the length of the curve 7 is then

z(v)Luw|dz|Lb|z'<t>|dt.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.6) f(2)g (2)dz = f (w) g (w) = f (u) g (u) - / f(2)g(2)dz.

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

/ f(2)dz| < / £ @l 1d2] < £, o ()

where [[f[|, o = sup.e, |f ()]
We also define the p-norm with p > 1 by

71 = ([ 170 |dz|)1/p.

(1.7)
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For p =1 we have
I£1,0 = [ 17 @)l
y

If p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

I£1l,0 < UL, -

Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € v from
z(a) = u to z(b) = w. If f and g are continuous on v, we consider the Cebysev
functional on paths defined by

Py (f.) = ﬁ/f(zmz) dz] — ﬁ/f(z) |dz|ﬁ/g<z> dz .

In this paper we establish some bounds for the magnitude of the functional P, (f, g)
under various assumptions for the functions f and g and provide a complex version
of the Griiss inequality (1.1).

2. GRUSS’ TYPE INEQUALITIES

Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € v from
z(a) = u to z(b) = w. Now, for ¢, & € C, define the sets of complex-valued
functions

U, (¢,®) := {f:’y—>(C\Re [(fb—f(z)) (m—g)} >0 for each 267}

and

By (9,®) = {frwm 'f<z)—¢;‘1’

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, D)
are nonempty, convexr and closed sets and

1
'§2|¢—¢| for each z6v}.

Proof. We observe that for any w € C we have the equivalence
) 1
w221 | — ¢
2 2

if and only if B

Re [( —w) (@ — )] > 0.
This follows by the equality
2

1 o+ @ S
4(13—(;52—’11)—2 — Re [(® — w) (@—9)]
that holds for any w € C.
The equality (2.1) is thus a simple consequence of this fact. [l

On making use of the complex numbers field properties we can also state that:
Corollary 1. For any ¢, ® € C, ¢ # ®,we have that

(22)  Uy(¢,®)={f:7—C| (Re®—Ref(2)) (Ref(2) —Reo)
+(Im® —Im f(2)) (Im f (2) —Im¢) >0 for each z € v} .
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Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(2.3) S,(¢,®):={f:7— C| Re(®) > Ref(z) > Re(q)
and Im (®) > Im f (z) > Im (¢) for each z € v}.
One can easily observe that S, (¢, ®) is closed, convex and

(2.4) 0#5,(6,®) C U, (6,0).
We have the following simple facts:

Lemma 1. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) =u to z (b) = w. If [ is continuous on =, then for all A € C we have

(25) 17 ﬁ/u Idl—‘/f )z

(17/( MLf(Z)IdZ|> (707 = A) lao

2
|dv] > 0.

~

and, in particular,

e P =gy [ |10 g [ £
Proof. We observe that

i [ (0= 5 [ @) (76 - ) o

= i L@ = s [ s @ o [ TR
i L o5 / P ) ao

:E(lw)/ww L /f 17(/7f<v>|dv)
:g(l’y)/y )2 |do| - ‘ /f ) ldz|

for any A € C, which proves (2.5).
The equality (2.6) follows by (2.5) by taking

—@(/vf(v)ldvl)

‘We have:

Theorem 1. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z(b) = w. If f is continuous on v and there exists ¢ € C and
R > 0 such that

(2.7) fe€D(,R):={2€C| |z—c| <R},
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1
v)m)/vf(z) dz]

(2.9) 0< P, (f.F) < R
Proof. For the equality (2.5) for A = ¢ we have

(2.8) 0<P,(f.f) <

|dv]

P07 = <f(v)—£1) f<z>dz|) (T —2) laa
6(17 f(lv/yf ) ldel| [F0) | vl
=1 Fw- ﬁ [ £ @117 @) el
<o | [ 10 =5y [ 1@z vl

which proves (2.8).
Using Cauchy-Bunyakovsky—Schwarz integral inequality, we have

/ £ / (=) Jd2|
2|dv)1/2

v)
1
-5 / £(2) ldz|

( / el |7 [ £ )jasl|
ol < B[P, (£.7)]""*

(2.10)

|dv]

N ?\
— —

where for the last equality we used (2.6).
From (2.8) and (2. 10) we have

/f ﬁ/ (2)|dz]

S
proving the desired result (2.9). O

0<P, (f. f

which implies that

Corollary 2. Suppose v C C is a piecewise smooth path parametrized by z (t),
t € from z (a) = u to z (b) = w. If f is continuous ony and there exists ¢, ® € C,
¢ # ® such that f € A, (¢,<I>) then

@11)  0<P (AT < 5186l / (=) ldz]| vl
and
(2.12) 0<P, (f, ) < |<1> o).

The proof follows by Theorem 1 by choosing ¢ = MT‘I’ and R= 1@ — ¢|.
We have the following Griiss’ type inequality:
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Theorem 2. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z (b) = w. If f, g are continuous on v and \ € C, then

1
213) 1P, (ol < i [ 110 =Ml ]o0) = 75 [ o)
maxyey |f () = Al 755 f, |9 (0) = o5 [, 9 (2) |2l vl

|dv]

(5 1,17 =3) " (5 £ o @) = 7 1, ) el |l )

IN

maxye |9 (v) = 75 J, 9 (2) |2l 75 [, 1F () = Alldv

@14) [P (£ A<= [ 1F @) =A|f ) = == [ £(2)Ide]]|dv]
e e
maxoe, 1S (0) = A 7 [, |1 ©) = g5 [, £ (2) |dzl| ],

IN
/N
o~
o=
5=
~
4
=

maxuey | f (v) = o [, £ (=) |

z(«,) f |f (v) = Alldv],

o= gy [ £ )1l - <€(17)/Wf(2)ld2|)2.

Proof. We have the following Sonin type identity for the integral with respect to
arc-length

(2.15) ﬁ/ﬂ)()w ()/f<z>|dz|(3§wlg<z>|dz|
ek - - [
for any A € C.

By taking the modulus in (2.15) we get

iy @0 [s0) =55 [o@1asl]
Su{y)[yv(?)) )\|’ 6(17[Yg z) |dz|

where

|dv.




GRUSS’ TYPE INEQUALITIES 7

The last inequality follows by Holder’s inequality

1 1
M)/Jf(v)—M g(v)—w/vg(Z)dZI
maxyey |f (v) = M 75 [, [9.0) = o5 [, 9.(2) |l

)\p)l/p (ﬁ f,y

|dv]

q 1/q
9(0) = 75 J, 9 ()|l v

IN
/
)
3,_.
5=
~
4
N~—

‘We have:

Corollary 3. Suppose v C C is a piecewise smooth path parametrized by z (t),
t € fromz(a) =u to z(b) = w. If f is continuous on vy and there exists ¢ € C
and R > 0 such that (2.7) is true, then

1 1
@16) 1P, (f.0)| < Ry / g(v) — / 9(2) |dz]

_\1/2
g(,y) |dv‘ < R[P’Y (979)] .

In particular,

1 1
A7) [Py ()] < R / F0) = 55 / £ (2)|dz]

If f is continuous on vy and there exists ¢, ® € C, ¢ # ® such that f € A, (¢, ®),
then

1/2

jdo| < R [P, (f.)]

218 1P, (fl < 510 =0l 775 [ o) = 55 [o @l

\V]

< 12— I[P, (5.0,
In particular,
1 1 1
19) Py (5 NI < 3106l 55 [ 50055 [ 1)1l
<gle—ol [P, (£, 7).

We have the following Griiss type inequality:

Corollary 4. Suppose v C C is a piecewise smooth path parametrized by z (t),
t €y from z(a) = u to z(b) = w. If f and g are continuous on vy and there exists
¢, @, Y, e, ¢#®, 1 # TV such that f € Ay (¢, P) and g € A, (¢, V), then

@200 [Py (£l <510 -l | v
:

2 £(v)

g(v)—g(lw/ygwdz

1 1
< 5 12— l[Py (9.9 < 1|2~ 6||T — ¥
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and, symmetrically

1
21 P9 <5 10—l s [ 0) = g [ £ (a1l
géw—wuw(f,f)]”z 12— ol —ul.

Remark 1. By taking A = Tl“/) f,y f(2)|dz| in (2.18) we also get

If we take in (2.13) X = M, then we get

(2.23) [Py (f,9)l
1

1
< i o - P oy = 5 [ ot ol
Ifm= z( ) then by taking A = f (m) in (2.13), we obtain
220 P < s [ 1F@) = Fml|ato) - 2 [dz| lav].

Further, observe that

I/f(v)—A‘ 0= 77 [

17 A\ () - Ag<z>|dz|

|dv]

|dv]

—9(2)]dz|

<7 / / )=o)~ o Nl ]

therefore by (2.13) we get

|dv]

< b

225 1P, (1) < 55 [ 1@ = Ao ) - 15 [ o 1a

for A € C.
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If we use Holder’s inequality for double integrals, we have

1
M/W/Wf(v)—A|g<v)—g(z)l|dzlldv|
maxvey | (V) = A 57 [, [, 9 (0) = g (2)| |dz]|dv],

()1 a1 av])

(i, 11 () = APzl ol ) " (5 S, f Lo (0

1 1 _
p7q>]—v E+§_]—a

IA

L, Jo 1 (0) = Nl |de dv] max,, - g (v) = g (2)]
max,e, |f () = A zt5; [, [, |9 (0) = g ()] |d=| do]
(L1 CHE

P, qg>1,

0 = AP laol) " (2 £, S, g (0
+i=1,

DI~

v) — Al |dv].

maXy e~ |g (U) -9 (Z)| le) f’y |f(

Therefore we can state the following result concerning double integrals as well

Corollary 5. Suppose v C C is a piecewise smooth path parametrized by z (t)
t €y from z(a) =u to z(b) =w. If f, g are continuous on v and X € C, then

1 1
226) 1P, (£l < i [ 1700 90~ 15 [ atetasl|
masyen |f (v) = M 72 [ [, 19 (0) — g (2)] 2] [del,
(s L@ = arian) " (s 1 1 e @)~ g (217 azlao])
B paq>]—)%+%:]~a
maks,sen |9 (0) = 9 ()| 75 [, 1 (0) — Al|do].

If the path + is a segment [u,w] connecting two distinct points u and w in C

then we write f,y f(2)dzas [ f(2)dz
If f, g are continuous on [u, w] and A € C, then

|wfu|/ f(2)g(2)]dz] = |/f |dz|/ %) |dz|

(2.27)
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<ot [0 -Alsw -t [

maxy e fu,w] |f(’l}) - )\| \w£u| fu U - \w7u| f“ g(Z) ‘dzw |d'U|,

)" (g e )

|dv]

w q 1/q

(\w mi

£ (
p,a>1, 5+

IN

:1’

»Qh—t

maxve[“aw] ‘g( \w ul fu g ‘d2|’ |w—u| fu )\| |d1}|

In particular,

(2.28)

" eyt~ (e [ r@1a1)
sw/uwu(v)M\f(v)miu'/uwﬂznda

maxuepua | (0) = M ey [ |1 0) = ke S £ (2) a2l o],

|dv]

w q 1/
) (s L@ = ar) T (kS| ) = kg S () a2 Jaw))
| a1 i i=1,
maxve["’w] ‘f( |w | f f ‘d2|’ |w | f )‘| |d1}|

3. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path [, ;) r centered in 0 and with radius
R>0

z(t) = Rexp (it) = R(cost +isint), t € [a,b].

If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.
We have

2" (t) = Riexp (it), t € [a, b]

and |2 (t)] = R for t € [a, b] giving that

¢ ('V[mb],R) = /ab 2/ ()| dt =R (b—a).
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If f and g are continuous on 7|, r and there exists ¢, ¢, ¢, ¥ € C, ¢ #+
1 # ¥ such that f € Av[a,b],a (¢, ®) and g € Av[a,b],g (1, W), then by (2.20) we get

b
(3.1) ﬁ / F(Rexp (it)) g (Rexp (it)) dt

b b
bia/a f(Rexp(it))dtﬁ/a g (Rexp (it)) dt

1 1 _ 10 _
< §|©—¢|m/ Q(Rexp(”))—m/ g (Rexp (is)) ds| dt
1 1 ) 10 AN
<5lo—ol | ;= [ lo(Rew ()Pt~ |2 [ g (Rexp (i) ds
1
< 1le—gllw—yl.

If ~ is the circle C (0, R) centered in 0 and of radius R > 0 and f and g are
continuous on C (0, R) and there exists ¢, ®, 1, ¥ € C, ¢ # ®, ¢ # ¥ such that
f € Acq,r) (¢,®) and g € Ac(o,r) (¥, V), then

2i i f(Rexp (it)) g (Rexp (it)) dt

™ Jo

(3.2)

27 27
_1 f(Rexp(it))dt%/o g(Rexp(it))dt’

27T 0
1 1 27 ) 1 27 )
<glo—alg [ oo -5 [ o (Rexp (is) ds|a
0
1 1 2 5 1 2m 2\ 1/2
<3le—g) (M/ g (Rexp (it)) dt—‘%/o g(Rexp(z‘s))ds>
1
< TIe—ol|w -y,
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