ON SOME CEBYSEV TYPE INEQUALITIES FOR THE
COMPLEX INTEGRAL

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Assume that f and g are continuous on 7, v C C is a piecewise
smooth path parametrized by z (t), ¢ € [a,b] from z (a) = u to z (b) = w with
w # u and the complex Cebysev functional is defined by
1
/ g(2)dz.
—u/,

Dy (1= = [ 1@e@ds - —— [ f@)de
v v

In this paper we establish some bounds for the magnitude of the functional
D~ (f, g) under Lipschitzian assumptions for the functions f and g and provide
a complex version for the well known Cebysev inequality.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider

the Cebysev functional defined by
dt—i/f dti/ g (t) dt.

In 1934, G. Griiss [17 showed that

(s,

(1.1) IC(f.9)l <y S (M —m) (N —n),

provided m, M,n, N are real numbers with the property that

(1.2) —co<m< f<M<oo, —oo<n<g<N<oo ae on [ab].
The constant % is best possible in (1.4) in the sense that it cannot be replaced

by a smaller one.

Another, however less known result, even though it was obtained by Cebysev in
1882, [4], states that

(13) CUa)l < 35171 9o (0= ),

provided that f’, ¢’ exist and are continuous on [a, b] and || f'||, = sup,ejq4 [f' ()]
The constant % cannot be improved in the general case.

The Cebysev inequality (1.3) also holds if f, g : [a,b] — R are assumed to be
absolutely continuous and f', g € Lo [a,b] while || f'| ., = essupyerp | ()]

For other inequality of Griiss’ type see [1]-[5], [6]-[16], [18]-[23] and [25]-][28].

In order to extend Griiss’ inequality to complex integral we need the following
preparations.
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Suppose v is a smooth path parametrized by z (¢), t € [a,b] and f is a complex
function which is continuous on 7. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

b
/f(z)dzz £ () dz ::/ £z (007 (6)dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
v is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on v we define

(2)dz := f(z)dz+ f(z)dz
Ve Vuu,w Vo

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)|dz] == / £z (017 (1) di

and the length of the curve + is then

() = / e = /ab 12 (1) dt.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

(1.4) f(2)g (2)dz = f (w)g(w) — f(u)g(u) - / f'(2) g (2)dz.

Yu,w

Yu,w

We recall also the triangle inequality for the complex integral, namely
[1@az| < [15 @I <181, )
%l ¥

where ||f||'y,oo = Susz’y |f (Z)| .
We also define the p-norm with p > 1 by

7= ([ 1P |dz|)1/p.

I£1,0 = [ 17 @)l
ol

If p, ¢ > 1 with zl? + % = 1, then by Holder’s inequality we have

1
17110 < EEN 11l -
Suppose v C C is a piecewise smooth path parametrized by z (t), t € v from

z(a) =wu to z (b) = w with w # u. If f and g are continuous on ~y, we consider the
complex Cebysev functional defined by

Dy (h0) = iy [ 1@ e e o

w—1Uu w—u

(1.5)

For p =1 we have
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In this paper we establish some bounds for the magnitude of the functional D~ (f, g)

under various assumptions for the functions f and g and provide a complex version
for the Cebysev inequality (1.3).

2. CEBYSEV TYPE RESULTS

We start with the following identity of interest:

Lemma 1. Suppose v C C is a piecewise smooth path parametrized by z (t), t €
from z(a) = u to z (b) = w with w # u. If f and g are continuous on =y, then

(21) D, (f.9) = (w e /(/( ()—f(w))(g(z)—g(w))dw)dz

s / 1) (9(2) g ) dz) ds
- o / [ 6= 1) 0 = g ) dae
(

Proof. For any z € v the integral fv (f(z) = f(w))(g(2) — g (w)) dw exists and

=f(Z)g(Z)/ydw+Lf(w)g(w)dw—g(Z)Lf(w)dw—f(Z)

/
—(wU)f(Z)g(ZH/f(w)g(w)dwg(Z)/vf(w)dwf(Z)Lg(w)dw-

~

The function I (2) is also continuous on +, then the integral f7 1(z)dz exists and

LI@)@—L[<w—u>f<z>g<z>+Af<w>g<w>dw

—g<z>Lf< w) dw — f()/ <>dw}dz

:(w*U)/f() (=) dz + (w —u/f
- vfwdw/g dz—/ (w)def<z>dz
—2(w—u)Lf(Z)g(Z)dz—2Lf(z)d2Lg(Z)dz—Q(w—U)QP»Y(ﬂg),

which proves the first equality in (2.1).
The rest follows in a similar manner and we omit the details. O

Suppose 7 C C is a piecewise smooth path from z(a) = u to z(b) = w and
h : v — C a continuous function on «. Define the quantity:
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2

21 | o [ 0

h (v) L/h ) |dz|
e J,

7)
We say that the function f : G C C — C is L-h-Lipschitzian on the subset G if
[f(z) = f(w)| < L|h(z) = h(w)]

for any z,w € G. If h(z) = z, we recapture the usual concept of L-Lipschitzian
functions on G.

\dv| > 0.

Theorem 1. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z(b) = w with w # u and h : v — C is continuous, f and g are
Ly, Lo-h-Lipschitzian functions on -y, then

(2.3) D, (fg)l < Lngmva (hT).

Proof. Taking the modulus in the first equality in (2.1), we get

(24) 1D, (f.9) = T
7_u|2 [/ ) (0(2) = g () d
2\w—u| /(/ (z)—g(w))||dw|> |dz|

LiL
2 (/ h(2) = h(w)]? |dw|) |dz| =: A.
2 lw — uf? 5
Now, observe that

/ ( / h(2) = (0 dul ) a2
:L<L (\h(z)| — 2Re (h(z)W>+|h(w)|g) dw) |dz|

:A( () A (=) —2Re( [y > § (w)|2|dw|) |dz]

v (L (f(2) = f(w)) (g (2) — g (w)) dw) dz

) [ bGP sl = 2Re [ 121t [ 707 ) [ )P
~ 2 v>/|h<z>2dz|—2Re<Lh<z>|dz|(L< dw)>
l /\h 2|4z -

Therefore, by (2.5) we get

h () |dz|

21 =20% () Py (h, ).

2
A= LlLQL’Y)Q’PV (h,h)

|w —
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and by (2.4) we get the desired result (2.3). O

Further, for v C C a piecewise smooth path parametrized by z (¢) and by taking
h(z) = z in (2.2) we can consider the quantity

@26) Py = g [ 1ol - \@/w

4
S et [zt vt = gt [ ([ 12 w1 2
— — z v| = z —wl|” |dw z| > 0.
BRI N A e 22 (7) J, \J,

Corollary 1. Suppose v C C is a piecewise smooth path parametrized by z (t),
t €~ from z(a) =wu to z (b) = w with w # u and h : v — C is continuous, f and g
are Ly, Lo-Lipschitzian functions on vy, then

2

(27) D, (9 < Il p
w—u

Remark 1. Assume that [ is L-h-Lipschitzian on . For g = f we have

2 ds— (wiu/wf(z)dz')Q

(2.9) D, (. )] < L2

(2.8) D, (f,f) =

and by (2.3) we get

For g = f we have

@10) D (1f) =t [P o @ e [ TR

Y

and by (2.3) we get

2 -
) . )| < 20 (7).
If f is L-Lipschitzian on vy, then

2.12) D, (1.l < 2= p,

lw —u
and
(2.13) {Dw (fvf)} < I a (7)27)?

lw — ul

If the path v is a segment [u,w] connecting two distinct points u and w in C
then we write [ f(2)dz as [ f(2)dz

Now, if f and g are Ly, Lo-Lipschitzian functions on [u, w] := {(1 — t) u + tw, ¢ € [0,1]},
then by (2.7) we have

‘D’Y (f, g)| < L1L2P[u,w]7
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T IS 1
P[u,w]ZH/ </ |(1—t)u+tw—(1—s)u—sw|2dt>ds
w—u 0 0
1 2 ! ! 2 1 2
=2|w—u| ; (/0 (t—s) dt)ds:12|w—u .
1

(2.14) ‘w_u/vf(z)g(z)dz—wiu[yf(z)dzwiu[yg(z)dz

Therefore,

if f and g are Ly, Lo-Lipschitzian functions on [u, w].
If f is L-Lipschitzian on [u,w], then

wiuLfQ(z)dz—(wiu/vf(z)dzy
and

(2.16) \@/Jf(zn?dz—wl_u/vf(z)dz = [ 7

(2.15)

w—u

1
< —|w-— u|2 L2
12

3. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path [, ;) r centered in 0 and with radius
R>0
z(t) = Rexp (it) = R(cost +isint), t € [a,b].
If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.
Since

|eis _ eit|2 _ ’eis|2 _ 9Re (ei(s—t)) + ’eit‘Q

=2 —2cos (s — t) = 4sin® <82_t>
sin st
2

. s—1
sin
2
for any t, s € R.

If u = Rexp (ia) and w = Rexp (ib) then

for any ¢, s € R, then

T

(3.1) e —et|" = 2"

for any t, s € R and r > 0. In particular,

|ezs _ezt| =9

w —u = R[exp (ib) — exp (ia)] = R[cosb+ isinb — cosa — isinal

= Rcosb—cosa+i(sinb—sina)|.
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Since
. a+b\ . b—a
cosb —cosa = —2sin | —— | sin
2 2
and
. ) ) (ba) <a+b>
sinb — sina = 2sin [ —— | cos ,
2 2
hence

w—u=R|-2sin a——i—b sin b—a + 27 sin b—a cos ath
2 2 2
B b—a

If ¥ = (4.}, then the circular complex Cebysev functional is defined by

(3.2) [a bR (f.9) =D (fv 9)

1
ZQSin(%)exp[(i /f (Rexp (it)) g (Rexp (it)) exp (it) dt

1

 4sin? (b2“) exp [2 (‘LTH’) z]

b b
X / f (Rexp (it)) exp (it) dt / g (Rexp (it)) exp (it) dt.

If ¥ =9[4, then

33) P g | ( / |z—w|2|dw|) 22
i [ {[1-ere)e
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:m/le /ab[2—2cos(s—t)]dt ds

2R? (b— a)’

:(bl_if/ab /ab[l—cos(s—t)]dt ds

2 b
:(bl—%a)g/ (b—a—sin(b—s)—sin(s—a))ds
:(bfa)z[(b—a)z_1—|—cos(b—a)—|—cos(b_a)_1}
_(b]—{a)Q [(b—a)Q_Q(l—cos(b—a,))}

_ (l)R2a)2 [(ba)2 — 45in? <b2a>}

_ (b4_RZ)2 <b;a>2 i (b;a)

We have the following result:

Proposition 1. Let v, ) r be a circular path centered in 0 and with radius B > 0
and [a,b] C [0,27]. If f and g are L1, Lo-Lipschitzian functions on i, g - then

R? b—a\’ .9 (b—a
B [Cunn (19| = ey ( . ) ~sin ( . ) L1 Ls.

(1]
2]

(3]
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