GRUSS’ TYPE INEQUALITIES FOR THE COMPLEX INTEGRAL
VIA THE SONIN IDENTITY

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Assume that f and g are continuous on 7, v C C is a piecewise
smooth path parametrized by z (t), ¢ € [a,b] from z (a) = u to z (b) = w with
w # u and the complex Cebysev functional is defined by
1
/ g(2)dz.
—u/,

Dy (1) = = [ 1@e@ds - —— [ f@rde
v v

In this paper, by the use of a Sonin type identiry for the complex integral,
we establish some bounds for the magnitude of the functional D (f, g) under
various assumptions for the functions f and g.

1. INTRODUCTION

For two Lebesgue integrable functions f, g : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider
the Cebysev functional defined by

cu=ity [ romoa L, [roast, oo

In 1934, G. Griiss [17] showed that
(1.1) C(f9l <7 (M m) (N —n),
provided m, M,n, N are real numbers with the property that

(1.2) —co<m< f<M<oo, —oo<n<g<N<oo ae on [ab].

The constant i is best possible in (1.6) in the sense that it cannot be replaced
by a smaller one.
In [6], P. Cerone and S. S. Dragomir proved the following inequalities:

f) -

. 1 b
it g~ 3l %5 /o s)ds| dt,

(1L3)  [C(f.9) < ,
inf llg =l 745 (J7 |£ 0 = 52 [0 (s)as| at) "

where p > 1, 1/p+1/q=1.

For v = 0, we get from the first inequality in (1.3)

b
£y el <l [ |7

s)ds|dt
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for which the constant 1 cannot be replaced by a smaller conbtant
Ifm<g<M for ae. z € [a,b], then Hg m+MHOO <3 L (M —m) and by the
first inequality in (1.3) we can deduce the following result obtained by Cheng and

Sun [9]
bia/abf(s)ds dt

The constant % is best in (1.5) as shown by Cerone and Dragomir in [7].

For other inequality of Griiss’ type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].

In order to extend Griiss’ inequality to complex integral we need the following
preparations.

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

Lf(z)dz Mf(z)dz:/abﬂz(t))z'

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = f(z)dz+ f(z)dz

Yu,w Yu,v Yv,w

b
(15 ()l <5 0r—m)= [ |r -

where v := z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

RCLE —/ F )17 () dt

and the length of the curve + is then

e(v)/m |dz|/ab|z'<t>|dt.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

o) [ f@Ed =W - fwew - [ FEge)d

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

[r@a| < [1r @l <171, 00)

where [|f[ o = sup.e, |f (2)]-
We also define the p-norm with p > 1 by

1Al = (/ e Ipldz|) "

(1.7)
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For p =1 we have

1£l = / 1 ()] |dz]

If p, ¢ > 1 with % + % =1, then by Holder’s inequality we have

112 < EO N EL,,-

Suppose v C C is a piecewise smooth path parametrized by z (t), t € v from
z(a) =wu to z (b) = w with w # u. If f and g are continuous on ~y, we consider the
complex Cebysev functional defined by

D, (f, z)dz g (2)dz.

~

In this paper we establish some bounds for the magnitude of the functional D, (f, g)
under various assumptions for the functions f and g and provide a complex version
for the Griiss inequality (1.1).

2. SOME PRELIMINARY FACTS

Consider the functional

(2.1) Sl =g [ 10— o= [ Fwydw

defined for paths v that are piecewise smooth and for continuous functions f : v —

C.

2
|dz|

We have
o< [ f(z)—ug[yf(w)dwzwz
- [rer -z (7E, (w) )
el AL ]|dz|

- / 1F () |d2)
/f > |w Evl)ﬂ

namely, we have the following inequality of interest:

22 Re (1 [T / flwydu)

;[ [ erE o= [ s dw].

Suppose 7 C C is a piecewise smooth path from z(a) = u to z(b) = w and
f v — C a continuous function on 7. Define the quantity:

—2Re ( f( |dz|

(w) dw

)
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1 2

F ()2 o] ]m)/ () 1d2)

t(v) J, / 2) |

Proposition 1. Assume that the path v is piecewise smooth and f : v — C is
continuous on . Then we have

(2.4) Sy2(f) <2¢ (M) Py (£,F),

where € () := |w( LI > 1, can be interpreted as the deviation of the path v from the

segment joining the points u and w in C.

Proof. We have

1
S0 = z) — f(w))dw
= L[ G e - s

Using Cauchy—Bunyakovsky—Schwarz inequality, we have

< [ [ 17G) = £ @ v

/ £ (2) = £ (@) |du].
Then we have

L L(f(z)—f(w))dw |dz|§€(7)L([/f(z)_f(w)|2 |dw|) dz|

~ () / ( / 17 )7 = 2Re (£ () TT@)) + 1f )] b )
[ ) [ 1@ el -

= 3 L 22 Z_L w w2
~ 2 () lm)/wf( e = | 5 [ 5 G ]

which implies the desired inequality (2.4). |

(2.3) Py (f

2

ol

|dv| > 0.

2
|dz| .

[ @ =7 @)

Y

2

f(w) |dwl

We need the following results that provide some Ostrowski type inequalities for
functions of complex variable that is of interest in itself:

Lemma 1. Let f be holomorphic in G, an open domain and suppose v C G is
a smooth path from z(a) = u to z(b) = w. If v = z(x) with x € (a,b), then
’Yu,w = FYU,U U Yv,ws

(25) )f@) w-w- [ £

:
< [ / |2 — ul |dz] + / 2=l |dz|] 11, oo
u,v Y

v, w
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and

(26) 'f(v) (w—u) - / F(2)dz

!
< max {Zren%i |z — ul , max |z — w} 1M, o

v,w

pr,q>1with%+%:1, then

(27) 'f(v) w-w- [ 7G)a

~

<( [ -ullasls [
Yu,v Yy

Proof. Using the integration by parts formula (1.6) twice we have

1/4q
|z—w|Q|dz|> 11, -

v, w

L (-u)f @d=@-0fw- [ f@Ed

w,v Yu,v

and

If we add these two equalities, we get

l Gowf@det [ Gw)f )

=f)(w—u)— (2)dz — f(2)dz,

Yu,v Yo, w

which gives the following equality of interest

(2.8) f(v)(w—u)—/f(Z)dz:A (Z—U)f’(Z)dZ+L (2 —w) f' (2) d=

v u,v v,w

that is a generalization of Montgomery identity for functions of real variables.
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Using the properties of modulus and the triangle inequality for the complex
integral we have

@m'ﬂww—w—/ﬂww

~

A Couf@des [ Gw)f )

w,v Yo, w

s(ﬁ (2 —u) f' (=) dz| +

U,V

L (2 —w) f' (2) da

v,w

sL Vuwumw+j 2 — wl | (2)]dz]

U,V v,w

N [l 0L, [ 1wl
Yu,v Yv,w

/ |z—u||dz|+/ |z—w|dz|],
Y vy

u,v v,w

Y-~

which proves the desired result (2.5).
We also have

/ w—mmumw+/ I — wl | (2)] |dz]

u,v Yo,w

< max [z —u | (2)] |d=| + max |Z—w|/ £ (2)] |dz|
® ¥

2€%00 .

L ﬁ@mw+Amwunw]

u,v

:max{ max |z—u|,zrergyax |z—w|}/ |f" (2)] |d=|
v,w v

2€%,0

< max{ max |z —u|, max |z—w}
2€Yu,w 2€Yy,w

w,w

and by (2.9) we get (2.6).
If p, ¢ > 1 with % —I—% = 1, then by Holder’s weighted integral inequality we have

[ E-dif @l + [ e wllf @]

w,w Yo, w
1/p
1" (=) dZI)

1/q
s(/ uzwmo (/
Yu,v Yu,v
1/q
+</ wwwwo (/
Yo, w vy

By the elementary inequality

1/p
[f () Id2|> =: B.

v,w

ab+ cd < (a? + cp)l/p (b7 + dq)l/q7
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where a, b, ¢, d > 0 and p, ¢ > 1 with % + i =1, we also have

1/q
B < (L |z—u|q|dz|+[mw z—w|qdz|>
1/p
/ P d _"_ ! p d
x([ 1 (2)P |dz] Awuwa|z)

1/p
1 (=) dZI) :

1/q
_ (/ Iz — |dz|+/ |z—wq|dz|> (/
Y Vv, w Yy

which together with (2.9) gives (2.7). O

u,v

u,v u,w

Proposition 2. Let f be holomorphic in G, an open domain and suppose v C G
is a smooth path from z (a) = u to z (b) = w. Then

Q1) Sa()<E0) et A i [ 17 @F s,
Yu,w

where

1 2
2.11) A, ,2:= / / z—u|”|dz| | |dv
(211) Ayuz:= 5 ™) 7( le I” | |> |dv

:@t’y)/w(/m'dz |dz|> |dv|—ﬁRe U<L <Luvz|dz> |dv> T Juf?
and

@u)Awm:giwL<LWVwﬁw>um
:€2tv)/w</%w|zz|dz|> |dv|—€2?7) Re w<L (/Mz|dz|> |dv|> Huwl?.

Proof. 1f v = z (x) with x € (a,b), then v, ,, = ¥y, U, - Using the inequality
(2.7) for p = ¢ = 2 we have

V@ﬂw@lf@ﬂz

< </ |z—u|2|dz|+/
Yu,v Y

1/2
2
z—w|w4> 11, o

that is equivalent to

2

r0- g [

< ! 1z —ul? |dz|+#
2 2
|w*U| v |U’*U| v

u,v v,

2 2
|z — w| dz|> Hf,”m,wﬂ ’
w
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which implies that

2
|dvl

(213) Sya(f) = —— / f(2)dz

w
1 2 1 2
<| —- |z —ul”|dz| | |dv]| + ——— |z —w|” |dz] | |dv]
2 2
lw —ul” Jy wv lw —ul” Jy Yo, w

1 , 2
x w/ 1 (2)2 d

\b
=
|
||~
I
S~

=¢2 (y) (A%u’z + A%w’z) ﬁlfy)/ |f/ (z)|2 |dz|.

u,w

Now, observe that

Moo=y | ( | dz|> ol
- 75 / ( | (P —2rem 4 o) |dz|) o
-7/ ( / uv|z|2|d;|—2Re u< / Mz|dz> +|u|2€(v)> o
[T )] ) )

—~

+ luf” € (7)1

:éztv)/7</v EE |dz|> |dv|—%3e U(L <L2|dz> |dv> +luf?
and, similarly
Bowa= g | ( / |z—w|2|dz> vl
) S\
1 2 2 _ 2
MA(LW P |dz|> - g e w</7 </Mz|dz|> |dv|> 2,
which proves the statement. O

Remark 1. Similar inequalities may be obtained by taking the square in (2.5) and

(2.6) and performing similar calculations. However, the details are not presented
here.

We can also consider the quantity

(2.14) )= |

F6) = g [ i

w
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By the use of Cauchy-Bunyakovsky-Schwarz integral inequality, we obviously have
1/2

(2.15) Sy (f) < [Sy2 ()]

where the path v is piecewise smooth and f : v — C is continuous on ~.

Proposition 3. Let f be holomorphic in G, an open domain and suppose v C G
is a smooth path from z (a) = u to z (b) = w. Then

(2.16) 831 (£) <€) (Byur + Ay) 111, oo
where

1
2.17 AL ::7/ / z—ulldz| | |dv
( ) v,u,1 62 (7) . < _ | H |> ‘ |
and

1
2.18 A w ::7/ / z—w||dz| | |dv]|.
( ) ¥,w,1 62 (’Y) . < o | ‘ | |) ‘ |

Proof. From (2.5) we have

w—u

1 1
< |— _ d _ d ,
—[|wu|/mz e L w||z|] 17, oo

which implies that

‘f(v)— ! /chz)dz

: [lw e </ o 'd2'> !
el / v 'dzl> 'dvl} i
- |,f mu| lﬁ tw / </ s dz') o
L e%/V(/M z—w||dz> ol | 151, oo

=€ (fY) (A’y,u,l + A’y,’w,l) Ilf/||’yu1w;oo

and the inequality (2.16) is proved. O

3. SOME GRUSS TYPE INEQUALITIES

Suppose v C C is a piecewise smooth path parametrized by z(t), t € ~ from
z(a) = u to z(b) = w. Now, for ¢, ® € C, define the sets of complex-valued
functions

U, (¢, ®) := {f:'y—>(C\Re {(fb—f(z)) (m—aﬂ >0 for each 267}
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and

o+ @
2

A7(¢,<I)):{f:fyﬂ(3| 'f(z) '§;|<I>¢| for each zE’y}.

The following representation result may be stated.

Proposition 4. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, P)
are nonempty, convexr and closed sets and

(3.1) Uy (6,2) = Ay (6, D).
Proof. We observe that for any w € C we have the equivalence
) 1
‘w _ote) Lig g
2 2

if and only if
Re [(® — w) (w—¢)] > 0.
This follows by the equality

1 ¢+ P S
4<I>—¢2—’w—2 =Re [(®—w) (w— ¢)]
that holds for any w € C.
The equality (3.1) is thus a simple consequence of this fact. ([l

On making use of the complex numbers field properties we can also state that:

Corollary 1. For any ¢, ® € C, ¢ # ®,we have that

(32) Uy (¢.@)={f:7—C| (Re®—Ref(2)) (Ref(z) —Reg)
+(Im® —Im f(2)) (Im f () —Im¢) >0 for each z € v} .

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢), then we can define
the following set of functions as well:

(3.3) Sy (¢,®):=={f:7—C| Re(®) >Ref(z) > Re(¢)

and Im (®) > Im f (z) > Im (¢) for each z € ~}.
One can easily observe that S, (¢, ®) is closed, convex and

(3.4) 0#S,(6,2) C Uy (¢,2).
We have the following result:

Theorem 1. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z (b) = w with w # w. If f and g are continuous on =y, then

(3:5) |Dy (f,9)| < e () max]g (z) — A| 8,1 (f) < e (v) max|g () — A[[Sy.2 (N

for any A € C.
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Proof. For any A € C we have

wiu/(f<z>wiulf<w>dw) (9(2) — N d
,u/fz z)dz — 1u[Yf(w)dwwlufyg(z)dz

— 7<f(z)—wiu/7f(w)dw>dz
1

w_u/fz 2)dz — _u[Yf(w)dwwiufyg(z)dz

therefore, we have the following identity of interest, which is a generalization of
Sonin’s identity for functions of real variables

@s)  D(ro - [ (rer- - / Flwydw) (o) - N ds

w—u w—u

for any A € C.
Taking the modulus in (3.6), we get

w—u w—1Uu

(3.7) IDv(f,g)—' ! / (1612 / Flw)du) (9(:) - N

1

f(”‘wiu/f(w)dw‘g(z>—A||dz|
t() S 1 o] s
§|w7u|rgg§|9(z) Alﬁ(v)/y Flz) =~ “/7f( )d ‘|d|

= e () max|g (=) = A[ 85,1 (f) < e () max]g () = A Sy2 ()]/*

for any A € C. |

Remark 2. We observe that, by using the upper bounds for S, 2 (f) we can get
further upper bounds such as

(38) Dy ()| < € () maxg (2) = Al Sy.1 ()
< e () maxg (2) = Al [S,.2 ()7 < V2 (1) max g () = A [P, (£.F)]"

for any A € C.
By using (2.10) we get

(3.9) Dy (f,9)l < e(v)max|g () — Al Sy (f)

< e(y)max|g (2) = A[[Sy2 (N2 <

1/2
1
< max|g(2) = Al € (7) (Ayu2 + Asyu ) (/ 2)] |d2|> )
zey K ~



12 S.S. DRAGOMIR
while by (2.16) we get
(310) [P, (£.0)] < e () maxlg (2) ~ NS, (F)
< () max g (2) N (Bon + By 1o

provided f is holomorphic in G, an open domain and v C G is a smooth path from
z(a) =u to z(b) = w.

Corollary 2. With the assumptions of Theorem 1 and, in addition, if g € Av (¢, D)
for some ¢, ® € C, ¢ # @, then

(B11) 1D, (9] < 518~ 6l (1) S, (1) < 3 12— 0le () (S, (£

Remark 3. For g = f we have

(3.12) D, <f7f>=MAf2 () dz — (wlufwf(z)dz)Q

and by (3.8) we get

(313) 1D, (LS 5 1%~ 0le () Sy () < 51— 0l (1) [S,2 (]2,

provided f 6_57 (¢, @) for some ¢, € C, ¢ # P.
For g = f we have

Gy D (1) = [FEPd- [ @ e [ TG

v

and by (3.8) we get

1 1
(315) Dy (£ )] <512 —dle() S () < 512 —dle() [Sy2 (NN,
provided f € A, (¢, ®).
Corollary 3. With the assumptions of Theorem 1 and, in addition, if f is holo-

morphic in G, an open domain and v C G is a smooth path from z(a) = u to
z(b) =w and g € A, (¢, P) for some ¢, P € C, ¢ # ®, then

(3.16) Dy (fi9)l <5 |<1> ¢le(7)Sya(f)

B~ 61 (1) (Ay s + D) 11, oo

l\D\H Q

and

(317) 1D, (£,0)] < 5 |® — 0l e (1) [, ()]

1/2
1 1
§|(I) ¢| ( )( ’Yu,2+A'y,w2 (M/y | |dZ|> .
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4. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path 7, ;) g centered in 0 and with radius
R>0

z(t) = Rexp (it) = R(cost +isint), ¢ € [a,b].

If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.
Since

|€is _ eit|2 _ |€is|2 — 9Re (ei(sft)) 4 |€it‘2

—t
=2 —2cos (s —t) = 4sin® (52 >

for any t, s € R, then

r

(4.1) et —e|" = 2"

sin st
2

. [(s—1
sin
2
for any ¢, s € R.

If u = Rexp (ia) and w = Rexp (ib) then

for any t, s € R and r > 0. In particular,

|ezs_€zt| -9

w —u = Rlexp (ib) — exp (ta)] = R[cosb+isinb — cosa — isinal

= R[cosb—cosa+i(sinb—sina)].

Since
. a+b\ . b—a
cosb—cosa = —2sin | —— | sin
2 2

and

sinb — sina = 2sin b_J cos ath

N 2 2 )’

hence

w—u=R {—2sin (a2—|—b> sin <b—a> + 2¢sin <b;a) cos <a—2&—b)]
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If ¥ = Y4}, then the circular complex Cebysev functional is defined by

(42) C[a,b],R (fv g) = DW[a b, R (fv )
= ! / f (Rexp (it)) g (Rexp (it)) exp (it) dt
2sin (b%) exp [(i

B 1
4 sin® (b “) exp [2 (‘%b) Z]

b b
X / f (Rexp (it)) exp (it) dt/ g (Rexp (it)) exp (it) dt.

For v = 7, 1),z and v = Re' with ¢ € [a,b] we have

1
(43) Anuy = 7/ (/ 12— |dz|> dv|
52( [ab] R) Yla,b],R Yy

t],R

e | ([t
()
“a i ([ () )
ot L e () G e (55

and

(14) Ay = M [ ( [ el |dz> ol
-
A ([
i [ ([ ()]
S ) PN S

We have the following result:

Proposition 5. Let v, g be a circular path centered in 0 and with radius R > 0
and [a,b] C [0,2n]. If f is holomorphic in G, an open domain and Y, r C G
while g is continuous on Y, ) g and g € AW[M],R (¢, ®) for some ¢, D € C, ¢ # P,
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then

2R b—a . (b—a
(4.5) |C[a’b])R (f, g)| <|® - ¢| iz { 5 —sin (2 )] ||f/\|700

(%3%)

The proof follows by the inequality (3.16).

(1]

[16]

[17]

18]
[19]
[20]
21]
22]
23]

[24]
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