A REFINEMENT OF GRUSS INEQUALITY FOR THE
COMPLEX INTEGRAL

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Assume that f and g are continuous on 7, v C C is a piecewise
smooth path parametrized by z (t), ¢ € [a,b] from z (a) = u to z (b) = w with
w # u and the complex Cebysev functional is defined by

Dy (1= = [ 1@e@ds - —— [ f@ e [ ) a
v v vy

w—u

In this paper we establish some Griiss type inequalities for D~ (f, g) under
some complex boundedness conditiond for the functions f and g.

1. INTRODUCTION

For two Lebesgue integrable functions f, ¢ : [a,b] — C, in order to compare the
integral mean of the product with the product of the integral means, we consider
the Cebysev functional defined by

1 10 10
= — t t)dt — —— t)dt—— t)dt.
Ciro)= 5= [ 10sma- = [ rwa [ a0
In 1934, G. Griiss [17] showed that
1
(1.1) IC(f.9)l < 7 (M —m)(N—n),
provided m, M,n, N are real numbers with the property that

(1.2) —co<m< f<M<oo, —oo<n<g<N<oo ae on [ab].

The constant % is best possible in (1.6) in the sense that it cannot be replaced
by a smaller one.
In [6], P. Cerone and S. S. Dragomir proved the following inequalities:

ft) - ﬁf:f(s)ds‘dt,

. 1 b
;Ielﬂfg 19 = 525 /o

(13) 10Ul < .
N f(t)—ﬁfff(s)ds’ at)’

wherep > 1, 1/p+1/q=1.

- 1
iréufg lg =, =2 (
For v = 0, we get from the first inequality in (1.3)

b b
(14) Chal <ol [ 1057 [ 7@l
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for which the constant 1 cannot be replaced by a smaller conbtant
Ifm<g<M for ae. z € [a,b], then Hg m+MHOO <3 L (M —m) and by the
first inequality in (1.3) we can deduce the following result obtained by Cheng and

Sun [9]
bia/abf(s)ds dt

The constant % is best in (1.5) as shown by Cerone and Dragomir in [7].

For other inequality of Griiss’ type see [1]-[5], [7]-[16], [18]-[23] and [25]-[28].

In order to extend Griiss’ inequality to complex integral we need the following
preparations.

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

Lf(z)dz Mf(z)dz:/abﬂz(t))z'

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
« is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = f(z)dz+ f(z)dz

Yu,w Yu,v Yv,w

b
(15 ()l <5 0r—m)= [ |r -

where v := z (¢) . This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

RCLE —/ F )17 () dt

and the length of the curve + is then

e(v)/m |dz|/ab|z'<t>|dt.

Let f and g be holomorphic in G, and open domain and suppose v C G is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
by parts formula

o) [ f@Ed =W - fwew - [ FEge)d

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

[r@a| < [1r @l <171, 00)

where [|f[ o = sup.e, |f (2)]-
We also define the p-norm with p > 1 by

1Al = (/ e Ipldz|) "

(1.7)
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For p =1 we have

1Al o= / 1 ()] |dz]
Yy

If p, ¢ > 1 with ]1; + % =1, then by Holder’s inequality we have

£, < UL, -

Suppose v C C is a piecewise smooth path from z(a) = u to z(b) = w and
f v — C a continuous function on . Define the quantity:

(1.8) P = s |f<z>|2|dz|—‘£(17) 7 (2) iz
1 1 2
em/vf”mw (2)|dzl| |do] >0

If f and g are continuous on 7, we consider the complex Cebysev functional
defined by

D’)’ (fag) =

wiuLf(Z)g(z)dzwiu/vf(z)dzwiu/vg(z)dz_

In this paper we establish some Griiss type inequalities for D, (f,g) under some
complex boundedness conditions for the functions f and g.

2. SOME PRELIMINARY RESULTS

We have the following equalities:

Lemma 1. Assume that the path 7y is piecewise smooth and f : v — C is continuous
on vy. Then for ¢, ® € C with ¢ # ® we have
1
( R0
£(v)

1) Py (17) =Re (o g Lo )1d:1)
~ i1y | el >(m—a)] ]

and, equivalently,

(2.2) Pw(f,f):i|<1>—¢|2_‘l/f(z) d’”)

ey
~ 77y | Rel@ s (FE 7) b=l

—~
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Proof. We have

~Re 7 (2) 1] ‘%wlf(MZT
=re (07 [ TEel) v (585 [ 1102)
—mww)‘JﬂL (=) dz]

and
b= gy [ Rel@ £ ) (& -3)] o

= 17 | R[0T @ 37 () 85— 17 ()] e

:“17)/ Re (€7 (2)) + Re (3f ()) — Re (#9) ~ [ (2)/*] dz]
= Re (Ei)Lf(z) |dz|)+Re< /f |dz|)
&wlfwmw.

Therefore

2

h—hz’lﬁqumzﬂ'lLf@wa

proving the identity (2.1).
We have the equality for complex numbers

Re (@~ w) (@ 3)] = &~ o ~ w27

2
: /
f(2) |dz]
) Jy
in this equality, we get

(o ity ) (s [0 -3)

2 1 o+ ®|°
plo o = |7 [ 1@ - 25

and by (2.1) we obtain the desired result (2.2). O

for w € C, then by taking

Suppose v C C is a piecewise smooth path parametrized by z(t), ¢t € v from
z(a) = u to z(b) = w. Now, for ¢, & € C, define the sets of complex-valued
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functions

U, (¢,®) := {f:WH(C\Re[(@ff(z)) (W*EH > 0 for each ZG’)’}
and

Ay (o, D) :{f:’yH(C| 'f(z)gé—;q)'g;@qﬂ for each zefy}.

The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, ®)
are nonempty, convex and closed sets and

(2.3) Uy (¢,0) = A, (4, @)
Proof. We observe that for any w € C we have the equivalence
o+ P 1
_rT P 2 —
L

if and only if

Re [(® —w) (m—5)] >0
This follows by the equality
2

1 o+ _ =
4<I>—<;52—’w— 5| =Re[(@-w)(@-9)]
that holds for any w € C.
The equality (2.3) is thus a simple consequence of this fact. O

On making use of the complex numbers field properties we can also state that:
Corollary 1. For any ¢, ® € C, ¢ # ®,we have that
(24)  Uy(¢,@2)={f:7—C| (Re® —Ref(2)) (Ref(2) —Reg)
+(Im®—Imf(2)) Imf(2) —Im¢) >0 for each z € v} .

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

(2.5) Sy (6, ®):={f:7— C| Re(®) >Ref(2) > Re(9)
and Im (®) > Im f (2) > Im (¢) for each z € v}.
One can easily observe that S, (¢, ®) is closed, convex and
(2.6) 0#S,(4,2) CU, (6 ®).

Theorem 1. Assume that the path v is piecewise smooth and f :~v — C is contin-
uous on y and there exist ¢, & € C with ¢ # ® such that f € A, (¢, ®). Then
(2.7)

P (s 1) <ke| (0 5 [ @) (77 [ TENaz )| < Gl —of

or, equivalently,

28) P (7)< 0o | [ re -
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Proof. Since f € A, (¢, ®), hence

Re [(@ —f(2) (mf @)} >0 for each z € 7.

Therefore
1 _
d — — >
1y | Rel@ =5 (FE-3)] o=l 20
and by Lemma 1 we deduce the desired result. ([
We have:

Lemma 2. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z(a) = u to z(b) = w. If f is continuous on vy, then for all A € C we have

20 P T = g [ (100 g [ £l ) (T ) b

Proof. We observe that

El/( (17 /f Idzl> /\> dv]
%) /7 * o] - —/f )ld| 5 AMW
oA / e |dz|) ol

Lo o=t [ sz ([ sormi)

— dv| — —— v) |dv

- 7|f||| e oy ([0

1 / ‘ 1 /

— dv| — |——= ) |dz

- i LI @r = |z [ 1) |
for any A € C, which proves (2.9). O
We have:

Lemma 3. Suppose v C C is a piecewise smooth path parametrized by z (), t € v
from z(a) = u to z(b) = w. If f is continuous on 7y and there exists ¢ € C and
p > 0 such that

(2.10) feD(cp):={z€C| |z - <p},

then
~ iy | F @

(2.11) 0< P, L
1
/wa)—M/vf(z) dz]

|dv]

2
|dv|)

and
(2.12) 0<PI(f.f)<p (6(17)

< pzp'y (fa?) .
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Proof. For the equality (2.9) for A = ¢ we have

P (0 =g [ (£ = 55 [ £ 1ae1) (FET ) o

)
1 1
SWAf(U)_WL ()IdZI‘ —c‘\dv|
1 1
e /Wf(”)—m)/7 (2) |dz]| | (v) = ¢ |dv|
1 1
Spm [/f(U)WLf(Z)dZ| |dv],

which proves (2.11).
Using Cauchy-Bunyakovsky-Schwarz integral inequality, we have

/ £ (2)]dz]
V 5 1/2
/ (=) |dz |dv>
2>1/2

(Nl)/| el = | 5 [ 121
dol < p [Py (£.7)]"%,

1

(2.13) w

|dv]

where for the last equality we used (1.8).
From (2.11) and (2.13) we have

— 1 1
Oﬁpy(faf)ﬁﬂg(j) v)g(,y)/vf(zﬂdﬂ

which implies (2.12). O
Corollary 2. Assume that the path v is piecewise smooth and f : v — C is
continuous on vy and there exist ¢, ® € C with ¢ # ® such that f € A, (¢, P).

Then

(2.14) 0< Py (f.f) < |<I> o s |dv|

1
e / £(2) ldz|

and
(215) 0<P2(f.F) < i|q>_¢|2 <1/ f(v)—g(lfy)/f(z)dzﬂ |dv|)

vy
gjl@_qme[( —ulv)/vf( >|dz|) (6(17) Wf(Z)IdZI—qb)}

¢>+q>

< — |-
< ple—ol'.
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3. REFINEMENTS OF GRUSS’ INEQUALITY
We start with the following identity of interest:

Lemma 4. Suppose v C C is a piecewise smooth path parametrized by z (t), t € ~y
from z(a) =u to z (b) =w with w # u. If f and g are continuous on =, then

(3.1) Dy (frg) = —— (w e /(/( (2) - f(w))(g(z)—g(w))dw>dz
/(/ T () - <>>dz)dw
) / (9(2) — g ) dc

Proof. For any z € v the mtegral f (f(z) = f(w))(g(2) — g (w)) dw exists and

I(z):= / (F (2) = f () (9 (=) — g (w)) du
—/<f<> (2)+ £ (w) g (w) — g () f (w) — f (2) g (w)) duw

/dw+/f w)dw - g(z /f ) duw - f()L(w)dw
— (w /f wydw—g(» /f ) dw — f()[y()dw-

The function I (2) is also continuous on <, then the integral f7 I(z)dz exists and

LI(z)dz—/ {( /f

which proves the first equality in (3.1).
The rest follows in a similar manner and we omit the details. O

‘We have:

Lemma 5. Suppose v C C is a piecewise smooth path parametrized by z (t), t €
from z(a) = u to z (b) = w with w # w. If f and g are continuous on =y, then

(3.2) D, (£, 9) < () [Py (1,92 [Py (9,92,

where € () = ‘i(jil can be interpreted as the deviation of the path -~y from the

segment joining the points u and w in C.
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Proof. Taking the modulus in the first equality in (3.1), we get

Dy (f,9)] =

s [ (U@ -1 -gwa) i

w)) (9 (2) — g (w)) dw

< |dz| =: A
2|w

Using the Cauchy-Bunyakovsky-Schwarz integral inequality, we have

[0 - £ @) 66 - g ) dul

<( [ = dw)m ( 1o =g |dw|)1/2,

which implies that

A

< s L ([ @ -rer 'd’wl)w (f1oe1=sP dw)m )

=: B.

By the Cauchy-Bunyakovsky-Schwarz integral inequality, we also have

/ (/ IF (2 'd“")m ( / 9= d;ﬂ>m 1|iz|
: (/ (fre-rwr |dw|)1/2] Idz|)

(/ e dw)l/zrdz)l/z
(ot (st

which implies that

oy me (/ (/ ||dw|)|dz|)1/2 )
(sl
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Now, observe that

o [([re-s |uw)w|
= [ ([ (P =2 (£ 76) +17 @) b )b
=L(€()f (9 ~2Re (1 () [ Tl il ) + [ 1 ) ) b=
() [ 15 P las =2 [ el [ Tl ) +06) [ 1 0P o
=2€wyﬂuwa|wd—zRe(Af@>dﬂ(Afuwwa)

2
=21l(y %\dz| - d
and, similarly

(3.5) A(A l9(2) —g(w)QIdw|> |dz| = 20% (v) Py (9,9) -

Making use of (3.4) and (3.5), we get

= 5w 1_ ol 22 () Py (£, )] [22 (1) P, (9,9)]*
2 _
) |w_(7u)| [P, (1)) 1Py (9.9,
which proves the desired result (3.2). 0

Remark 1. For g = f we have

2
and by (3.2) we get

For g = f we have

88 Dy(1h) = gy [l o [ 1@ [ TR

w—u w—u

(3.6)

and by (3.2) we get

(3.9) D, (£, )] <Py (f]) -

Theorem 2. Suppose v C C is a piecewise smooth path parametrized by z (t), t € v
from z (a) = u to z (b) = w with w # w. If f and g are continuous on vy and there
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exists ¢, ®, 1, W € C, ¢ # ®, v # U such that f € A, (¢,®) and g € A, (1, V)

then
2) 1/2

(310) D, (f.0) <€ (7) (i@—w?—\m) [r@ne-232

x 1|\If—w|2—L/ <z>|dz|—¢’”’2 "
1 ‘7 2

—'1Lf(z)ldzl—QZ);(DHE(IV)/WQ(Z)WI—T}

<

e (1)@~ ||~

Proof. The first inequality in (3.10) follows by Corollary 2 and Lemma 5.
Using the elementary inequality

A~ =

(m2 _ n2)1/2 (p2 _ q2)1/2 < mp —ng
that holds for m > n > 0 and p > ¢ > 0, for the choices

1 1 o+ P
mz@—qb,nz’/fz dz| — ——
3190 n= g [ £ - 5
and b4
1 1 +
pzm—w,qz‘/gz de| - 2=
s vl 0= |5y [ o -5
we get the second inequality in (3.10).
The last part is obvious. ([l

Remark 2. If there is information on the boundedness of only one function, namely
f e, (o,®), where g : v — C is continuous, then we have the "premature” Griiss

inequality
2) 1/2

x [Py (9, 9)]"7.

4. APPLICATIONS FOR TRAPEZOID INEQUALITY

(3.11) 1D, (f9) <€ () <i|<1>¢|2 \é(l,y)/fwdz St

Suppose v is a smooth path parametrized by z (t), ¢t € [a,b] and f holomorphic
in G, an open domain and suppose ¥ C G. Put 2 (a) = w and z(b) = w with wu,
w € C. Using the integration by parts formula (1.6) twice we have

/(zfv)f’(Z)dz:(va)f(u)f f(2) d

u,v Yu,v
and

/(z—v)f’(Z)dz=(w—v)f(w)— f(2)dz,

v,w Yo,w

for any v € 7.
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If we add these two equalities, we get the generalized trapezoid equality
(@D =) f )+ o) f @)~ [ e
— _ ! dz + _ U dz = _ / d
| emor@es [ carees [ cooree

u,v v,w

with the above assumptions for u, v and w on 7.
If we take v = “"2'“’, then we get the trapezoid equality

(12) (wmf@ogfwoAf@MZ—L<ZU;w)f@Ma

which also can be written as

f+fw) 1

2 w—1u

/f@Mz=Dﬂfﬁ)

where h (z) = 2 — *5*, z € C, since [ (z — “t2) dz = 0.
If f/ € A,(0,0) for some 0, © € C with 6§ # O, then by (3.11) we get the
following trapezoid inequality of interest:

‘f W+ftw) 1 /f(mZ

< (j1o-0- g [ o242 )/2 P, ()

Lo/ () [P, (h 7)),

=Dy (f', )

=5
where

If the path v is a segment [u, w] C G connecting two distinct points v and w in G
then we write [ f(2)dz as [ f () dz. We then have

u—+w
2

7

\w—u| w =l
\w _ f(w) = f(w)
and
|lw — ul u+w|

_ 1
_|lw =l ((1—t)u+tw—u—;w>dt
0

|w —ul
t——)dt
G

> [, 1Y 2
= |w — ul t—= | dt —|w—u
0 2

We can state the following result:
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Proposition 2. Assume that f is holomorphic in G, an open domain and suppose
[u,w] C G. If f' € Apyu (0,0) for some 0, © € C with 0 # ©, then

Wy |[F)+F@w) _u/ "

2
/2
V3 Lo e [f)—fw 0+
SFW_U' Z|®_9| _‘ w— U 2
§£| —ul|® —6].
12
Since
ro (o L0 =10} (701710 3
w—1u w—1u
1 o |[fw) —fu) ¢+
_Z|¢_¢| ‘ w—u 2 ’
then the inequality can also be written as
f(u +f(
o [ e
/3 - 1/2
Bl e ((I,_f(w)f(U)) Fwl =76
6 w—u w—u
§§|w—u||@—9\.
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