TWO PARAMETERS WEIGHTED INEQUALITIES FOR THE
COMPLEX INTEGRAL

SILVESTRU SEVER DRAGOMIR!:2

ABSTRACT. In this paper we provide some upper bounds for the quantity

[t@e@d-r [ g@d-nf 9@
¥ Vu,v v

v, w

with A\, u € C and under the assumptions that f and g are continuous in D,
an open domain and v C D is a piecewise smooth path from z(a) = u to
z(b) = w and v = z (x) with & € (a,b). The cases when either f is bounded
or Lipschitzian in certain sense are analyzed in some details. Some examples
for circular paths are also given.

1. INTRODUCTION

Suppose v is a smooth path parametrized by z (¢), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =7 as

b
/f(z)dz= f(2)dz ::/ f(z (@) 2 (t)dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
~ is parametrized by z (¢), t € [a,b], which is differentiable on the intervals [a, ]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = (2)dz + f(2)dz
Vurw Y Vo, w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
£ (2)|dz] == / £ (2 (017 (1) dt

and the length of the curve v is then

() = / BGE / 1 @l

Let f and g be holomorphic in D, and open domain and suppose v C D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
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by parts formula

[ f@eEd =W - fwew - [ FEge)d

Yu,w Yu,w

We recall also the triangle inequality for the complex integral, namely

(1.2) z)dz

< / F @ 1dz] < F1L o ()

where [|f]l, o := sup.e, [f (2)] .
We also define the p-norm with p > 1 by

i, = ([ e

I£1,0 = [ 17 @)l
ol

If p, ¢ > 1 with 1% + % =1, then by Holder’s inequality we have

For p =1 we have

£, <N, -

In the recent paper [8], we established the following Ostrowski type inequality
for the complex integral:

Theorem 1. Let f be holomorphic in G, an open domain and suppose v C G
is a smooth path from z(a) = u to 2z (b) = w. If v = z () with x € (a,b), then
’Yu,w = ’Yu,v U r}/v,w’

(13) 'f(v) (w—U)—Af(Z)dz

Ny [ =l 0L [ 1wl

w,v Yo, w

< V |z — ul |dz|+/ z—w||dz|] [N

w,v v, w

and

(1.49) 'f(v) (w—U)—Lf(Z)dz

< max |z —ul[|f']

T 2€7, . Yu,vi

2+ max o wl|f]

,w

Yo, un

< - B ' '
<max o =l 2wl 17,
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Ifp,g>1 with%—k%:l, then

ab>}fwﬂw—u»—/fuwu

<(£ 7

1/q
q '
|z—wuz> 171 oo

1/q
q !
|z — ul d2|> I1f H'yu,wp + (/
Yo,
g(/ 2=l + [
Vo 7

The corresponding trapezoid inequality for complex integral was obtained in [9)]:

u,v

1/q
q /
|Z_'LU| |dZ|> ||f ||7u,w;p.

v, w

Theorem 2. Let f be holomorphic in G, an open domain and suppose v C G
is a smooth path from z(a) = u to z(b) = w. If v = z (z) with z € (a,b), then
7u,w = ’yu,'u U Wv,wv

(16) (v—@f@%ﬂw—@f@»—/f@ﬂz

Uy oo [ o= olldal 417 e [ 2= ol
Y

w,v Yo, w

<Ny [ 1o elldel,
Y

u,w

(1.7)

(v—@fwwuw—wfwn—/f@mZ

ol
! !
<UF o gme [z = vl ], o mase |2 =

v,w

<7

, max |z —uv|.
2€7,

Yu,wi
,w

pr,q>1with%—|—%:1, then

(1.8)

(v*wferw*wf@O*/f@Mz

p
S ||f/||’Yu,w3p (/
v

1/q
V—UVW4>

1/q
|z —v|? dz|> :

For several previous results concerning three points inequalities, see [1], [2] and
[10]-[16]. For some trapezoid, Ostrowski, Griiss and quasi-Griiss type inequalities
for complex functions defined on the unit circle centered in zero, see [3]-[7].

Motivated by the above results, in this paper we provide some upper bounds for
the quantity

1/q
q /
u—v|da> -HfH%mm<L

gnfwmmp</

Yu,w

u,v

Afww@ﬁk—klwg@ﬂk—ul g9(z)dz

v,w
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with A, 4 € C and under the assumptions that f and g are continuous in D, an
open domain and v C D is a piecewise smooth path from z(a) = u to z(b) = w
and v = z (z) with « € (a,b). The cases when either f is bounded or Lipschitzian
in certain sense are analyzed in some details. Some examples for circular paths are
also given.

2. SOME PRELIMINARY FACTS
We have:
Lemma 1. Let f and g be continuous in D, an open domain and suppose v C D is

a piecewise smooth path from z (a) = u to z (b) = w and v = z (z) with x € (a,b).
Then for any complex numbers A, u we have

(2.1) /f dz—)\/ g(z)dz—i—u/ g(z)dz

u,v v, w

+/ ()= Alg <>dz+/ () = ulg(z)dz

v,w

uLg z)dz + (A — N)L g(z)dz

u,v

+/ [f(z)—A]g(Z)dz+/ [f (2) — p] g (2)dz.

u,v v, w

In particular, for = A, we have

(2.2) /f dz)\[/g(z)dz

ALg<z>dz+L[f<z>—A]g(z)dz.

Proof. Using the properties of the complex integral, we have

/ [f(Z)—A]g(Z)dZJr/ () - g (2)dz

u,v v,w

=/ f@eEd—A [ g(x)ds+ f(Z)g(z)dz—u/ g(2)dz

w,v Yu,v Yo, w v,w

/f @z [ g(z)dzu/w 9(2)d,

u,v v,w

which is equivalent to the first equality in (2.1).
The rest is obvious. ]

Corollary 1. Let f be continuous in D, an open domain and suppose v C D is a
piecewise smooth path from z(a) = u to z(b) = w and v = z (x) with x € (a,b).
Then for any complex numbers A\, u we have

(2.3) /f Ao-w a0t [ @ -Nder [ (£ - pdx

u,v v, w
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In particular, for p = X\, we have

111111

: _ _ _ fw)+f(w)
If we use the equality (2.2) for A = f (v), A = L [, f(z)dz and A = 2252,
then we have

(2.5) /ﬂdﬂ@M=NW/MdM

Y

and
N O e L

[ [~ 0 g
respectively.

In particular, for g (2) = 1, z € v, we have for any v € v that

(2.8) /ﬂ@w:mfwﬂwf/ vw—ﬂmw+/ F(2)— f ()] dz

v, w

:4w—Mfw»g/www—ﬂmwa

~

and
29) [ s o LI [y LT,
respectively.

If we take A = f (u) and p = f (w) in (2.1) we get for v € y that

210 [f@s@d=fw [ s@dtrw [ 9@

Yuurw Yo, w

+/ uw—ﬂwwam+/ () — f (w)] g (=) d=.

v, w
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Also, we take A = M and p = M in (2.1) we get for v € «y that

(2.11) /f

2 2 .
of 76 = L0 o
) o= e

while for A = L fv f(y)dy and p = -1 fv f (y) dy we get

(2.12) / f(2)g(z)dz

“o ) e[ sees f(y)dy/% 9(z)d

o et sl

1
+f lf(z)—
Vo
for v € v with v # u, w.

w—v
In particular, for g (z) =1, z € 7, we have for v € 7 that

/ () dy] g(z)dz

(2.13) /f(z)dz=<v—u> (w) + (w — v) f (w)
+/ dz+/ [ (2) = f (w)]dz,

and

(2.14) /f(z)dz:(v—u)w—&-(w—v)%

+A {f () - f(u);f(”)] dz+/%’w {f () fW)JFf(“’)} 5

3. SOME INEQUALITIES FOR BOUNDED FUNCTIONS

Suppose v C C is a piecewise smooth path parametrized by z(t), t € v from
z(a) = u to z (b) = w. Now, for ¢, ® € C and v an interval of real numbers, define
the sets of complex-valued functions

U, (¢,®) := {f:fyH(C\Re {(q)ff(z)) (m*$ﬂ >0 for each ze’y}

and

2

A, (¢, ®) = {f;»y*)(m 'f(z)¢+<1>'

1
§§|<I)f¢| for each zE’y}.
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The following representation result may be stated.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, P)
are nonempty, convexr and closed sets and

(3.1) Uy (6,2) = Ay (6, D).
Proof. We observe that for any w € C we have the equivalence
d 1
‘w _oke) Lig g
2 2

if and only if
Re [(® — w) (W —¢)] > 0.
This follows by the equality

1 o+ @ S—
4<I>¢2’w2 =Re [(® —w) (w - ¢)]
that holds for any w € C.
The equality (3.1) is thus a simple consequence of this fact. |

On making use of the complex numbers field properties we can also state that:

Corollary 2. For any ¢, ® € C, ¢ # ®,we have that

(32)  Uy(¢,®2)={f:7—C| (Re®—Ref(2)) (Ref(2) —Reo)
+(Im®—Imf(2)) (Imf(2) —Im¢) >0 for each z € v} .

Now, if we assume that Re () > Re (¢) and Im () > Im (¢) , then we can define
the following set of functions as well:

(33) 85(¢,®):={f:7— C| Re(®) >Ref(2) >Re(¢)
and Im (®) > Im f (z) > Im (¢) for each z € v}.

One can easily observe that S, (¢, ®) is closed, convex and

Theorem 3. Let f be continuous in D, an open domain and suppose v C D is a
piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with x € (a,b).

Assume that ¢y, @y € C, ¢, # Py, with k € {1,2} and f € A, (¢, P1) N
A“/U,w (¢27 (I)2)7 then

P d
5 |[1@0@a- 252 [ g@a- 2 [ g
1 1
<gle-ol [ lgGlldel+ 5 1@ 6ol [ lo(2)lla)
Yu,v Yo, w
1
< (01— on], [~ 6al} [ lg ()l Jd=|
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Proof. Using the identity (2.1) we get

/f 2)dz — A /y(z)dz—u/y g(2) ds

u,v v, w

(3.6)

<

/ ()~ Ng(2)de| +

/ [ (2) — ulg () dz

u,v v, w

S/ I[f(Z)—A]g(Z)HdZIJr/ [ (2) = ] g (2)] |d=]

u,v v, w

[ r@=Alg@lidel+ [ 1) - ullg (2 1d]
where v € ~, for any A\, u € C.
Since f € A’m,v (61, 21) N A%’w (¢g, P2), hence by taking A = @ and p =

@ in (3.6) we get

d d
_f/>1'12‘ 1/ g(z)dz—(b?—g 2/ 9(2) dz

o1+ P4 @gy + P2
<[ -2 e@lel+ [ |7e - 25 g
Ve vow
1
< 5% = ¢y lg (= )||dZ|+ |P2 — oo 9 ()] |dz],
Yu,v Yo, w
which proves the first inequality in (3.5). O

Corollary 3. Let f be continuous in D, an open domain and suppose v C D is a
piecewise smooth path from z(a) = u to z (b) = w and v = z (v) with x € (a,b).
Assume that ¢, ® €C, ¢ # © and f € A, | (¢, ®), then

[1@a@a= % [a@a] < glo—ol [ ol

u,v

(3.7)

Remark 1. If we take g (2) =1 in (3.5), we get

d _¢)1+¢’1 ¢2+<1)2
2 2

(v—u) -

35) (=)
.

1
< ) ‘ 11— ¢1|€(7u,'u)+§ |(I)2 - ¢2|£(7U,w) < §max{\(l>1 - ¢1| y ‘(I’Q - ¢2|}€(7)7
while from (3.7) we get

(3.9)

SO | =g dlee).

4. INEQUALITIES FOR LIPSCHITZIAN FUNCTIONS

Suppose v C C is a piecewise smooth path parametrized by z (¢), ¢ € [a, b] from
z(a) = u to z(b) = w and v = z(z) with € (a,b). Let p1, po > 0 and L,
Ly, > 0. We say that f € Cip,, . (Lp,, Lp,;7,0) if

£ (2) = )] < Ly, |2 = of” forall z € 7,
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and
|f (2) = f ()| < Ly, |z —v|"* for all z € v,
If pp =p2=p>0and L,, = L, = L>0, then we have f € Lip, (Lp;7,v) if
If(z) = f(v)]| < Llz—wv|” forall z €.
We have the following weighted Ostrowski type inequality:

Theorem 4. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = to z (b) = w and v = z (x) with x € (a,b) .
Let p1, p2 > 0 and Ly,, Ly, > 0 and assume that f € Lip, . (Lpys Lp,;y,v) , then

(4.1)

Lf<z>g<z>dz—f<v>/g<z>dz

Y

<Ly [ o= ol lg@lldel+ Ly [ =0l g2l
Y Y

u,v v, w

max.ey, |z —v[" [ |g(2)||dz|
, Yu,v
/m

m 1 n 1/n
cry xd (Lo lz=ommmiasl) ™ (1, e ()" de))
m, n>1 withi—F%:l,

m

maxecs, 9 ()| [, |2~ ol |dz

maxzey, , |2 =0l [ 1g(2)]ldz]

v,w

m 1/m " 1/n
vr, ) (b =™ iael) 7 (1 e )" 1dz)
m, n> 1 with L +%:1,

m

maxeey, , |9 ()| [, |2~ ol |dz].

Proof. From the identity (2.5) we have

(4.2)

[yf(Z)g(z)dz—f(v)/g(Z)dz

Yy

< +

/ @)~ f()g(2)dz

u,v

/ F(2) — £ ()] g (=) d

v, w

s/ \f(v)—f(Z)\lg(z)HdZH/ £ (2) = £ ()] g (=)] |dz] .

u,v Yo,w

Since f € £ip,,, », (Lp,> Lp,;7,v), hence

(4.3) / \f(v)—f(Z)\lg(Z)l\dZ|+/ £ (2) = f (v)]1g (2)] |dz]

u,v Yo,w

SLm/ Iz—vlpllg(Z)l\dzlJerz/ |2 = v[” |g (2)]|dz] -
ol Y

u,v v, w

By utilising the inequalities (4.2) and (4.3) we get the first part of (4.1).
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Using Holder’s integral inequality we have

e, 2= v [, 19 (2)]1dz

L 1/m 1/n
[ sena s (==l ) (1 o)
o m,n>1with%—i—%:17
maXzev, , 19 (Z)| f’Yu.u |Z - U|p1 |dZ|

and

maxzery, .,

=™ [ lg(2)]]d]

v, w

m 1/m " 1/n
/ oo g (el < 4 (o 2= o™ 1del) (L o 1" ld)
Vorw m, n>1with L +1 =1

m

maxees, |9 ()| [, |2 = ol |d],

which proves the last part of (4.1). (]

Corollary 4. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = z (x) with x € (a,b) .
Let p >0 and L, > 0 and assume that f € Lip, (Ly;7,v), then

(4.4)

Lf<z>g<z>dz—f<v>/g<z>dz

ol

< Lp/ |2 — ol |9 (2)] |d2]
vy

max.ey [z —v[" [ g (2)]|dz]

mp 1/m " 1/n
<, d (Llz=omiael) ™ (1 lg (1" la])
m, n > 1 with X +%:1,

m

max.cy g (2)] [, |2 = vl |dz].

Remark 2. If we take g(z) = 1 in (4.1), we get the following Ostrowski type
inequality

(4.5)

/f(z)dz—f<v><w—u>

<Ly [ ol el Ly, [ ol
v Y

u,v v, w
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p1
max.eq, | |z —v|" ¢ (fyuyv)
/m

1
_ py|mP1
cry b (1ol ja])
i+h L 1 _
m, n>1 with -+ ;- =1,

Sy, 12—l ldz|

maXzE’yv,w |Z - v|p2 14 (71},11))

mpa 1/m 1/n
o) () T ()]
P2 ’
m, n>1 wz’th%—k%:l,

[, 1z = vl |dz],

v, w

while from (4.4) we get

(4.6)

/f(z)dz—f(v)(w—u)

<1, / 12— o] dz]
Yy

max.cy |z —v[" £(7)

m 1/m 1/n
oL (= ommazl) e
m, n>1with%+%:1,

fw |z —v|P |dz|.

Suppose v C C is a piecewise smooth path parametrized by z (t), ¢ € [a, b] from
z(a) = u to z(b) = wand v = z(z) with z € (a,b). Let p1, po > 0 and L,,,

Ly, > 0. We say that f € Lipe, . (Lp,, Lp,;7,u,v,w) if

1f (2) = f ()] < Ly, [z —u|” forall z €7,
and

If (2) = f ()] < Ly, |z —w|? forall z € Yo w-
If py=p2=p>0and L, =L, =L >0, then we have f € Lipe, (Lp;7,u,v,w)
if

|f(z) = f(u)| < Ly |z —ul’ forall z €7,,

and

|f(2) = f (w)| < Ly |z —wl” for all z €7,

We have the following weighted trapezoid type inequality:

Theorem 5. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = z (x) with x € (a,b) .
Let py, p2 > 0 and Ly, , Ly, > 0 and assume that f € Lipe, . (Lp,, Lp, 57, u,v,w),
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then

(4.7)

Lf(Z)g(Z)dzf(U)/mg(Z)dzf(w)/ g(2)dz

Vv, w

SLpl/ |z —ul™ Ig(Z)IIdZIJerz/ |z = w|” |g (2)] |dz]
v

w,v Yo,w

maxzey, |2 —ul™ [ 19(2)||dz]

/m 1/n

cr ) (5= ia) " (1, lo @I de)

m, n>1with%+%:1,

max.cy, , l9(2)| [, |2~ ul™ |dz

s—wf [ Jg(2)]lds]

maXzey, ,,

mpa 1/m n 1/n
vn o d (bl =el1ael) ™ (1l jaz1)
m, n>1with L +1 =1,

m

max.ey, , 19 (2| [, 12— wl”|dz].

Proof. Using the equality (2.10) we have

/7f<z>g<z>dzf<u>/mg<z>dzf<w>/ g(2) ds

Yo, w

<

_|_

/ () — f (w)] g (=) d

u,v

/ F () — f (w)] g (=) d

v,w

S/ \f(z)—f(u)llg(Z)lleI+/ |f (2) = f (w)llg (2)]|dz]

u,v Yo,w

SLm/ IZ—UIpllg(z)lleHLm/ |z = w|” |g (2)| |dz],
ol v

u,v v,w

which proves the first inequality in (4.7).
Using Holder’s integral inequality we also have

max.e, |2 —ul™ [, |g(2)||dz

mps 1/m n 1/n
[ g < (£, == jazl) " (1, g 1" 1de1)
v

R T
v m, n>1with -~ + - =1,

maXzexv, , 19 (Z)| f’Yu,v |Z - u|p1 |dz‘
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and

maXzey, ,, |z — w|p2 f»y |g (2)] |dZ‘

v,w

mpa 1/m n 1/n
[ el < (. 12 = wl™ Jazl) " (S, la ()" d=])
Y.

- m,n>1with1—i—%:17

m

maXzey, ,, |g (Z)| ‘[’Yv,w |Z - w|p2 |dz‘ )

which proves the last part of (4.1). O

Corollary 5. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = z (x) with x € (a,b) .
Let p >0 and L, > 0 and assume that f € Lipe, (Lp; 7y, u,v,w), then

(4.8)

/Wf(z)g(Z)dz—f(U)/%lug(Z)dz—f(w)/ 9(2) dz

Yv,w

[ E-alla@lidel+ [ -l lo () |dz|]

<L,

u,v

maXzev, , |Z - u|p f’Yu,u |g (Z)‘ |dZ|

A e =uias) (1 i)
=1,

m, n>1 with L +1

maxzevu’v

9@ f, |=—ul"ld

maxecs, |2 wl” [, 1o (2)||d

m 1/m " 1/n
vryxd (=) (L, e (1" de))
m, n > 1 with X —l—%:l,

m

maxXzeqy, .

9@, 1z —wl’|dz].

Remark 3. If we take g (z) =1 then by (4.7) we get

(4.9)

/f(Z)dz—f(u)(v—U)—f(w)(w—v)

<Ly [ le—ullasd + Ly [ - wl?ld]
v Y

u,v v, w
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max.ey, | |z —ulP* ¢ (’yu’v)

mp1 1/m 1/n
cr ] (B e =™ 1az) 7 ()]
m, n>1 with%Jrl:l,

n

maxeey, || [, 12—l |dz]

maXzE’yvyw |Z - w|p2 14 (71},11))

mps 1/m n
(£, 1z =wl™ lazl) " (€ (o))

+ L,, X
P m,n>1with%—|—%:1,

maxeey, () [, == wl” |dz|.

while from (4.8) we get

(4.10)

/f(z)dz—f(u)(v—u)—f(w)(w—v)

<[

maXzE’yuy,,, |Z - u|p 14 (’Yu,v)

|z — ul” |dz| —I—/ z—w|pdz|]
¥

u,v v,w

/m

m 1 1/n
cryd (L =™ 1) 7 (a)
m, n>1 wz’th%Jrl:l

n Y

[, lz=ul|ds
maxze’yv,w |Z - w|p ¢ (FYv,w)

/m

1 n
(e = wl™1azl) " [ ()] Y
1

m, n>1withf—|—%=1,

m

+ L, x

[z —w|”lde|.

v, w

5. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path [, ;) r centered in 0 and with radius
R>0
z(t) = Rexp (it) = R(cost + isint), t € [a,b].
If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.
Since

|e _eit|2:|eis|2_2Re (6i(s—t))+|eit‘2

-1
=2 —2cos (s — t) = 4sin” (82>
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sin st
2

. s—1t

sin

° 2

and ’eib — e”” =2

for any ¢, s € R, then

T

}eis _ eit|T —9r

for any t, s € R and r > 0. In particular,

|€zs_ezt| -9

for any t, s € R.
For s = a and s = b we have

sin L_t
2

If u = Rexp (ia) and w = Rexp (ib) then

’ela_ezt‘ -9

m (2=t
s 5 .

w —u = R[exp (ib) — exp (ia)] = R[cosb + isinb — cosa — isin a)

= R[cosb—cosa+i(sinb—sina)].

Since
. a+b\ . b—a
cosb —cosa = —2sin [ —— | sin
2 2
and
. . . b—a a+b
sinb — sina = 2sin cos ,
2 2
hence

w—u=R {—QSin (T) sin <b—a> + 27 sin <b;a) cos <a—2&—b)]

= 2Risin (b_ a) [cos <a+b> +isin (CH_ b)]
2 2
= 2Risin <b;a> exp [(a;—b) )
Moreover,
|z — u| = R|exp (it) — exp (ia)| = 2R |sin (t ; a>‘
and
; . . [(b—t
|z —w| = R|exp (it) — exp (ib)] = 2R |sin <2>‘
fort € [a

0]
If [a,b] C [0,2n] then 0 < 52, 2= < 7 for ¢ € [a, b], therefore

t— b—t
|z—u|:2Rsin< a) and |z —w| = 2Rsin <2>

2
We also have
2" (t) = Riexp (it) and |2’ (¢)] =R
for t € [a,b].
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Let f and g be continuous in D, an open domain and suppose Viap,r C D is a
circular path from z (a) = u to z (b) = w and v = 2z (z) with = € (a,b). Let p > 0
and L, > 0 and assume that f € Lip, (Lp§7[a,b],R7U) , then by (4.4) we get

b
(5.1) f (Rexp (it)) g (Rexp (it)) exp (it) dt

b

—f (Rexp (iz)) / g (Rexp (it)) exp (it) dt

b
gwm%/

. T —t
sin [ ——
2

max;e(q,p] |sm( )|pf lg (Rexp (it))| dt

(Rexp (it))| dt

b . z—t\|Pm 1/m b . " 1/n
<oprr, < (JRlsin ()™ ) 7 (1o (Resp )" dt)
m, n > 1 with L " +1=1,

n n

maxye(q,p) |9 (Rexp (it)) \f |sin (25)[" dt

for all z € [a,b].
The case p = 1, namely f € L£ip < $Viabl,R ) , which means that

[f (2) = f(w)| < L]z —w| forall z, w € Ypap,r

is of particular interest.
In this case, we have by (5.1) that

b
(5.2) / f(Rexp (it)) g (Rexp (it)) exp (it) dt

b

—f (Rexp (iz)) / g (Rexp (it)) exp (it) dt

b r—t
< 2RL/ sin <2> ‘ lg (Rexp (it))| dt

max;eap [sin (552) | [7 g (Rexp (it))| dt

n o\
<onrnx (J1sin (259" dO (2 Ny (Rexp (i)™ it
m, n>1with L+ 1 =1

maxX;e(q,p |9 (Rexp (it)) |f |sm (%)’dt

z T —t T —a
= [ sin(Z==)dt=2-2cos
dt /a bln( 5 )dt cos( 5 )
— 4sin? T—a
e (220)

Observe that

f (5
S1n

)
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and
o5 ()09
—at (P5)).
then
Lln G5 = b () [ (57)
- () e ()
for:re[a,]

Using (5.2) we get the following simple inequality of interest:

(5.3) / " F(Rexp (it)) g (Rexp (it)) exp (it) dt
F (Rexp (iz) / " o (Rexp (it)) exp (it) dt
< 2RL sin (”32 )‘g Rexp (it))| dt
< 8RL max |g (Rexp (if)) [sinQ (T) + sin? <b . xﬂ
for x € [a,b].

Let f and g be continuous in D, an open domain and suppose Viap,r C D is a
circular path from z (a) = u to 2 (b) = w and v = z (x) with = € (a,b). Let p > 0
and L, > 0 and assume that f € Lipe, (Lp; Va,b],R> u,v,w) , then

b
(5.4) / f (Rexp (it)) g (Rexp (it)) exp (it) dt
— f (Rexp (ia)) /w g (Rexp (it)) exp (it) dt
b
—f (Rexp (b)) / g (Rexp (it)) exp (it) dt
. . b _
<RI, / sin® <’52> 19 (Rexp (it))| dt + / sin® <b2t> 19 (Rexp (it)] dt]
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maxe(q 7 [sin? (15%)] f lg (Rexp (it))| dt

( g (Rexp (it))|" dt) tn

< 2PRPL, x (f sin”™ (15¢)

dr) "/
m, n>1w1th%+ =

1
maXse(q,q] |9 (Rexp (it))] [ sin? (152) dt

maxe(y,p [sin” (%51)] ff lg (Rexp (it))| dt
1/m

" 1/n
correr, < ) (L () ) ([ g (Resp o))" )
m, n> 1 with + + = =1,

max;e(yp) |9 (Rexp (it)) f sin? (b5t) dt

for z € [a,b].
The case p = 1, namely f € £ip < i Viabl,R ) , then by (5.4) we get

b
(5.5) f (Rexp (it)) g (Rexp (it)) exp (it) dt

x

— f(Rexp (ia)) / g (Rexp (it)) exp (it) dt

b

—f (Rexp (ib)) / g (Rexp (it)) exp (it) dt

xT

/j sin <tQG> lg (Rexp (it))| dt + /: sin <b2t> lg (Rexp (it))| dt

maxse(q,q [sin (152)] [ g (Rexp (it))| dt

<2RL

| E——

conL x d (7 sin™ (55) dt )”’"(f lg (Rexp (it))|" dt) /"
- m, n>1w1th 141 =1,

maxeq,q |9 (Rexp (it))| [ sin (52) dt
maxie(, o) [sin (450)] J; g (Rexp (it))) dt

1/m n 1/n
Corn x4 (s (55 de) T ([ lg (Rexp (i) " dt)

maxye(ep) g (Rexp (it))] [ sin (45L) dt

for z € [a,b].
Observe that

sin s—a ds =2 — 2cos r—a = 4sin? r—a
a 2 2 4
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b — J— J—
/ sin b—s ds =2 — 2cos u = 4 gin? b—w
- 2 2 4

for z € [a,b].
By using (5.5) we get

and

b
(5.6) / f(Rexp (it)) g (Rexp (it)) exp (it) dt

x

— f(Rexp (za))/ g (Rexp (it)) exp (it) dt

a
b

—f (Rexp (ib)) / g (Rexp (it)) exp (it) dt

T

<9RL / sin (“;‘) 19 (Rexp (it))] dt + /: sin (T) g (Rexp (it))] dt

< 8RL max |g(Rexp (it))]|sin? <x - a>
t€la,z] 4

+ 8RL max |g (Rexp (it))]sin? <b — x>
te(z,b] 4

< 8RL max |g (Rexp (it))| {SmQ (x;a) +sin’ <b;x>}

t€la,b]

for z € [a,b].

REFERENCES

[1] Cerone, P.; Dragomir, S. S. Three point identities and inequalities for n-time differentiable
functions. SUT J. Math. 36 (2000), no. 2, 351-383.

[2] Cerone, P.; Dragomir, S. S. Three-point inequalities from Riemann-Stieltjes integrals. In-
equality theory and applications. Vol. 3, 57-83, Nova Sci. Publ., Hauppauge, NY, 2003.

[3] Dragomir, S. S. Trapezoid type inequalities for complex functions defined on the unit circle
with applications for unitary operators in Hilbert spaces. Georgian Math. J. 23 (2016), no.
2, 199-210

[4] Dragomir, S. S. Generalised trapezoid-type inequalities for complex functions defined on unit
circle with applications for unitary operators in Hilbert spaces. Mediterr. J. Math. 12 (2015),
no. 3, 573-591.

[5] Dragomir, S. S. Ostrowski’s type inequalities for complex functions defined on unit circle with
applications for unitary operators in Hilbert spaces. Arch. Math. (Brno) 51 (2015), no. 4,
233-254.

[6] Dragomir, S. S. Griiss type inequalities for complex functions defined on unit circle with
applications for unitary operators in Hilbert spaces. Rev. Colombiana Mat. 49 (2015), no. 1,
77-94.

[7] Dragomir, S. S. Quasi Griiss type inequalities for complex functions defined on unit circle
with applications for unitary operators in Hilbert spaces. Extracta Math. 31 (2016), no. 1,
47-67.

[8] Dragomir, S. S. An extension of Ostrowski’s inequality to the complex in-
tegral, ~RGMIA Res. Rep. Coll. 21 (2018), Art. 112, 17 pp. [Online
https://rgmia.org/papers/v21/v21al12.pdf].

[9] Dragomir, S. S. An Extension of trapezoid inequality to the complex in-
tegral, RGMIA Res. Rep. Coll. 21 (2018), Art. 113, 16 pp. [Online
https://rgmia.org/papers/v21/v21a113.pdf].



20

[10]

[16]

ME

S.S. DRAGOMIR

Hanna, G.; Cerone, P.; Roumeliotis, J. An Ostrowski type inequality in two dimensions using
the three point rule. Proceedings of the 1999 International Conference on Computational
Techniques and Applications (Canberra). ANZIAM J. 42 (2000), (C), C671-C689.

Klarici¢ Bakula, M.; Pecari¢, J.; Ribic¢i¢ Penava, M.; Vukeli¢, A. Some Griiss type inequalities
and corrected three-point quadrature formulae of Euler type. J. Inequal. Appl. 2015, 2015:76,
14 pp.

Liu, Z. A note on perturbed three point inequalities. SUT J. Math. 43 (2007), no. 1, 23-34.
Liu, W. A unified generalization of perturbed mid-point and trapezoid inequalities and as-
ymptotic expressions for its error term. An. Stiint. Univ. Al. I. Cuza lagi. Mat. (N.S.) 63
(2017), no. 1, 65-78.

Liu, W.; Park, J. Some perturbed versions of the generalized trapezoid inequality for functions
of bounded variation. J. Comput. Anal. Appl. 22 (2017), no. 1, 11-18.

formula via a generalization of Montgomery identity. An. Univ. Craiova Ser. Mat. Inform.
39 (2012), no. 2, 132-147.

Tseng, K. L.; Hwang, S. R. Some extended trapezoid-type inequalities and applications.
Hacet. J. Math. Stat. 45 (2016), no. 3, 827-850.

IMATHEMATICS, COLLEGE OF ENGINEERING & SCIENCE, VICTORIA UNIVERSITY, PO Box 14428,
LBOURNE CITY, MC 8001, AUSTRALIA.

E-mail address: sever.dragomir@vu.edu.au

URL: http://rgmia.org/dragomir

2DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES,

ScHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND,
PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA





