# TWO PARAMETERS WEIGHTED INEQUALITIES FOR THE COMPLEX INTEGRAL

## SILVESTRU SEVER DRAGOMIR<sup>1,2</sup>

ABSTRACT. In this paper we provide some upper bounds for the quantity

$$\left| \int_{\gamma} f(z) g(z) dz - \lambda \int_{\gamma_{u,v}} g(z) dz - \mu \int_{\gamma_{v,w}} g(z) dz \right|$$

with  $\lambda$ ,  $\mu \in \mathbb{C}$  and under the assumptions that f and g are continuous in D, an open domain and  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a, b)$ . The cases when either f is bounded or Lipschitzian in certain sense are analyzed in some details. Some examples for circular paths are also given.

#### 1. Introduction

Suppose  $\gamma$  is a smooth path parametrized by z(t),  $t \in [a, b]$  and f is a complex function which is continuous on  $\gamma$ . Put z(a) = u and z(b) = w with  $u, w \in \mathbb{C}$ . We define the integral of f on  $\gamma_{u,w} = \gamma$  as

$$\int_{\gamma} f\left(z\right) dz = \int_{\gamma_{u,w}} f\left(z\right) dz := \int_{a}^{b} f\left(z\left(t\right)\right) z'\left(t\right) dt.$$

We observe that that the actual choice of parametrization of  $\gamma$  does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose  $\gamma$  is parametrized by z(t),  $t \in [a, b]$ , which is differentiable on the intervals [a, c] and [c, b], then assuming that f is continuous on  $\gamma$  we define

$$\int_{\gamma_{u,w}} f(z) dz := \int_{\gamma_{u,v}} f(z) dz + \int_{\gamma_{v,w}} f(z) dz$$

where v := z(c). This can be extended for a finite number of intervals.

We also define the integral with respect to arc-length

$$\int_{\gamma_{u,w}} f(z) |dz| := \int_{a}^{b} f(z(t)) |z'(t)| dt$$

and the length of the curve  $\gamma$  is then

$$\ell\left(\gamma\right) = \int_{\gamma_{u,w}} |dz| = \int_{a}^{b} |z'(t)| dt.$$

Let f and g be holomorphic in D, and open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w. Then we have the *integration* 

<sup>1991</sup> Mathematics Subject Classification. 26D15, 26D10, 30A10, 30A86.

 $Key\ words\ and\ phrases.$  Complex integral, Continuous functions, Holomorphic functions, Three points inequalities, Ostrowski inequality, Trapezoid inequality.

by parts formula

(1.1) 
$$\int_{\gamma_{u,w}} f(z) g'(z) dz = f(w) g(w) - f(u) g(u) - \int_{\gamma_{u,w}} f'(z) g(z) dz.$$

We recall also the triangle inequality for the complex integral, namely

(1.2) 
$$\left| \int_{\gamma} f(z) dz \right| \leq \int_{\gamma} |f(z)| |dz| \leq ||f||_{\gamma,\infty} \ell(\gamma)$$

where  $\|f\|_{\gamma,\infty} := \sup_{z \in \gamma} |f(z)|$ . We also define the p-norm with  $p \ge 1$  by

$$\|f\|_{\gamma,p} := \left(\int_{\gamma} \left|f\left(z\right)\right|^{p} \left|dz\right|\right)^{1/p}.$$

For p = 1 we have

$$||f||_{\gamma,1} := \int_{\gamma} |f(z)| |dz|.$$

If p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ , then by Hölder's inequality we have

$$||f||_{\gamma,1} \le [\ell(\gamma)]^{1/q} ||f||_{\gamma,p}.$$

In the recent paper [8], we established the following Ostrowski type inequality for the complex integral:

**Theorem 1.** Let f be holomorphic in G, an open domain and suppose  $\gamma \subset G$ is a smooth path from z(a) = u to z(b) = w. If v = z(x) with  $x \in (a,b)$ , then  $\gamma_{u,w} = \gamma_{u,v} \cup \gamma_{v,w},$ 

$$(1.3) \quad \left| f(v)(w-u) - \int_{\gamma} f(z) dz \right|$$

$$\leq \|f'\|_{\gamma_{u,v};\infty} \int_{\gamma_{u,v}} |z-u| |dz| + \|f'\|_{\gamma_{v,w};\infty} \int_{\gamma_{v,w}} |z-w| |dz|$$

$$\leq \left[ \int_{\gamma_{u,v}} |z-u| |dz| + \int_{\gamma_{v,w}} |z-w| |dz| \right] \|f'\|_{\gamma_{u,w};\infty}$$

and

$$\begin{aligned} (1.4) \quad \left| f\left(v\right)\left(w-u\right) - \int_{\gamma} f\left(z\right) dz \right| \\ &\leq \max_{z \in \gamma_{u,v}} \left| z - u \right| \left\| f' \right\|_{\gamma_{u,v};1} + \max_{z \in \gamma_{v,w}} \left| z - w \right| \left\| f' \right\|_{\gamma_{v,w};1} \\ &\leq \max \left\{ \max_{z \in \gamma_{u,v}} \left| z - u \right|, \max_{z \in \gamma_{v,w}} \left| z - w \right| \right\} \left\| f' \right\|_{\gamma_{u,w};1}. \end{aligned}$$

If p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ , then

$$(1.5) \quad \left| f(v)(w-u) - \int_{\gamma} f(z) dz \right|$$

$$\leq \left( \int_{\gamma_{u,v}} |z-u|^{q} |dz| \right)^{1/q} \|f'\|_{\gamma_{u,v};p} + \left( \int_{\gamma_{v,w}} |z-w|^{q} |dz| \right)^{1/q} \|f'\|_{\gamma_{v,w};p}$$

$$\leq \left( \int_{\gamma_{u,v}} |z-u|^{q} |dz| + \int_{\gamma_{v,w}} |z-w|^{q} |dz| \right)^{1/q} \|f'\|_{\gamma_{u,w};p} .$$

The corresponding trapezoid inequality for complex integral was obtained in [9]:

**Theorem 2.** Let f be holomorphic in G, an open domain and suppose  $\gamma \subset G$  is a smooth path from z(a) = u to z(b) = w. If v = z(x) with  $x \in (a,b)$ , then  $\gamma_{u,w} = \gamma_{u,v} \cup \gamma_{v,w}$ ,

$$(1.6) \quad \left| (v-u) f(u) + (w-v) f(w) - \int_{\gamma} f(z) dz \right|$$

$$\leq \|f'\|_{\gamma_{u,v};\infty} \int_{\gamma_{u,v}} |z-v| |dz| + \|f'\|_{\gamma_{v,w};\infty} \int_{\gamma_{v,w}} |z-v| |dz|$$

$$\leq \|f'\|_{\gamma_{u,w};\infty} \int_{\gamma_{u,w}} |z-v| |dz| ,$$

and

$$(1.7) \quad \left| (v-u) f(u) + (w-v) f(w) - \int_{\gamma} f(z) dz \right|$$

$$\leq \|f'\|_{\gamma_{u,v};1} \max_{z \in \gamma_{u,v}} |z-v| + \|f'\|_{\gamma_{v,w};1} \max_{z \in \gamma_{v,w}} |z-v|$$

$$\leq \|f'\|_{\gamma_{u,w};1} \max_{z \in \gamma_{u,w}} |z-v| .$$

If p, q > 1 with  $\frac{1}{p} + \frac{1}{q} = 1$ , then

$$(1.8) \quad \left| (v-u) f(u) + (w-v) f(w) - \int_{\gamma} f(z) dz \right|$$

$$\leq \|f'\|_{\gamma_{u,v};p} \left( \int_{\gamma_{u,v}} |z-v|^q |dz| \right)^{1/q} + \|f'\|_{\gamma_{v,w};p} \left( \int_{\gamma_{v,w}} |z-v|^q |dz| \right)^{1/q}$$

$$\leq \|f'\|_{\gamma_{u,w};p} \left( \int_{\gamma_{u,w}} |z-v|^q |dz| \right)^{1/q}.$$

For several previous results concerning three points inequalities, see [1], [2] and [10]-[16]. For some trapezoid, Ostrowski, Grüss and quasi-Grüss type inequalities for complex functions defined on the unit circle centered in zero, see [3]-[7].

Motivated by the above results, in this paper we provide some upper bounds for the quantity

$$\left| \int_{\gamma} f(z) g(z) dz - \lambda \int_{\gamma_{u,v}} g(z) dz - \mu \int_{\gamma_{v,w}} g(z) dz \right|$$

with  $\lambda$ ,  $\mu \in \mathbb{C}$  and under the assumptions that f and g are continuous in D, an open domain and  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a, b)$ . The cases when either f is bounded or Lipschitzian in certain sense are analyzed in some details. Some examples for circular paths are also given.

### 2. Some Preliminary Facts

We have:

**Lemma 1.** Let f and g be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Then for any complex numbers  $\lambda$ ,  $\mu$  we have

$$(2.1) \int_{\gamma} f(z) g(z) dz = \lambda \int_{\gamma_{u,v}} g(z) dz + \mu \int_{\gamma_{v,w}} g(z) dz + \int_{\gamma_{u,v}} [f(z) - \lambda] g(z) dz + \int_{\gamma_{v,w}} [f(z) - \mu] g(z) dz = \mu \int_{\gamma} g(z) dz + (\lambda - \mu) \int_{\gamma_{u,v}} g(z) dz + \int_{\gamma_{u,v}} [f(z) - \lambda] g(z) dz + \int_{\gamma_{v,w}} [f(z) - \mu] g(z) dz.$$

In particular, for  $\mu = \lambda$ , we have

$$(2.2) \int_{\gamma} f(z) g(z) dz = \lambda \int_{\gamma} g(z) dz$$

$$+ \int_{\gamma_{u,v}} [f(z) - \lambda] g(z) dz + \int_{\gamma_{v,w}} [f(z) - \lambda] g(z) dz$$

$$= \lambda \int_{\gamma} g(z) dz + \int_{\gamma} [f(z) - \lambda] g(z) dz.$$

*Proof.* Using the properties of the complex integral, we have

$$\begin{split} \int_{\gamma_{u,v}} \left[ f\left(z\right) - \lambda \right] g\left(z\right) dz + \int_{\gamma_{v,w}} \left[ f\left(z\right) - \mu \right] g\left(z\right) dz \\ &= \int_{\gamma_{u,v}} f\left(z\right) g\left(z\right) dz - \lambda \int_{\gamma_{u,v}} g\left(z\right) dz + \int_{\gamma_{v,w}} f\left(z\right) g\left(z\right) dz - \mu \int_{\gamma_{v,w}} g\left(z\right) dz \\ &= \int_{\gamma} f\left(z\right) g\left(z\right) dz - \lambda \int_{\gamma_{u,v}} g\left(z\right) dz - \mu \int_{\gamma_{v,w}} g\left(z\right) dz, \end{split}$$

which is equivalent to the first equality in (2.1).

The rest is obvious.

**Corollary 1.** Let f be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Then for any complex numbers  $\lambda$ ,  $\mu$  we have

$$(2.3) \int_{\gamma} f(z) dz = \lambda (v - u) + \mu (w - v) + \int_{\gamma_{u,v}} [f(z) - \lambda] dz + \int_{\gamma_{v,w}} [f(z) - \mu] dz.$$

In particular, for  $\mu = \lambda$ , we have

$$(2.4) \quad \int_{\gamma} f(z) g(z) dz = \lambda (w - u) + \int_{\gamma_{u,v}} [f(z) - \lambda] dz + \int_{\gamma_{v,w}} [f(z) - \lambda] dz$$
$$= \lambda (w - u) + \int_{\gamma} [f(z) - \lambda] g(z) dz.$$

If we use the equality (2.2) for  $\lambda = f(v)$ ,  $\lambda = \frac{1}{w-u} \int_{\gamma} f(z) dz$  and  $\lambda = \frac{f(u) + f(w)}{2}$ , then we have

(2.5) 
$$\int_{\gamma} f(z) g(z) dz = f(v) \int_{\gamma} g(z) dz - \int_{\gamma_{u,v}} [f(v) - f(z)] g(z) dz + \int_{\gamma_{v,w}} [f(z) - f(v)] g(z) dz = \int_{\gamma} [f(z) - f(v)] g(z) dz,$$

$$(2.6) \quad \int_{\gamma} f(z) g(z) dz = \frac{1}{w - u} \int_{\gamma} f(z) dz \int_{\gamma} g(z) dz + \int_{\gamma} \left[ f(z) - \frac{1}{w - u} \int_{\gamma} f(w) dw \right] g(z) dz,$$

and

$$(2.7) \quad \int_{\gamma} f(z) g(z) dz = \frac{f(u) + f(w)}{2} \int_{\gamma} g(z) dz + \int_{\gamma} \left[ f(z) - \frac{f(u) + f(w)}{2} \right] g(z) dz,$$

respectively.

In particular, for g(z) = 1,  $z \in \gamma$ , we have for any  $v \in \gamma$  that

(2.8) 
$$\int_{\gamma} f(z) dz = (w - u) f(v) - \int_{\gamma_{u,v}} [f(v) - f(z)] dz + \int_{\gamma_{v,w}} [f(z) - f(v)] dz$$
$$= (w - u) f(v) + \int_{\gamma} [f(z) - f(v)] dz,$$

and

(2.9) 
$$\int_{\gamma} f(z) dz = (w - u) \frac{f(u) + f(w)}{2} + \int_{\gamma} \left[ f(z) - \frac{f(u) + f(w)}{2} \right] dz,$$

respectively.

If we take  $\lambda = f(u)$  and  $\mu = f(w)$  in (2.1) we get for  $v \in \gamma$  that

(2.10) 
$$\int_{\gamma} f(z) g(z) dz = f(u) \int_{\gamma_{u,v}} g(z) dz + f(w) \int_{\gamma_{v,w}} g(z) dz + \int_{\gamma_{u,v}} [f(z) - f(w)] g(z) dz + \int_{\gamma_{u,v}} [f(z) - f(w)] g(z) dz.$$

Also, we take  $\lambda = \frac{f(u) + f(v)}{2}$  and  $\mu = \frac{f(v) + f(w)}{2}$  in (2.1) we get for  $v \in \gamma$  that

(2.11) 
$$\int_{\gamma} f(z) g(z) dz$$

$$= \frac{f(u) + f(v)}{2} \int_{\gamma_{u,v}} g(z) dz + \frac{f(v) + f(w)}{2} \int_{\gamma_{v,w}} g(z) dz$$

$$+ \int_{\gamma_{u,v}} \left[ f(z) - \frac{f(u) + f(v)}{2} \right] g(z) dz$$

$$+ \int_{\gamma_{v,v}} \left[ f(z) - \frac{f(v) + f(w)}{2} \right] g(z) dz$$

while for  $\lambda = \frac{1}{v-u} \int_{\gamma_{u,v}} f(y) \, dy$  and  $\mu = \frac{1}{w-v} \int_{\gamma_{v,w}} f(y) \, dy$  we get

$$(2.12) \int_{\gamma} f(z) g(z) dz$$

$$= \frac{1}{v - u} \int_{\gamma_{u,v}} f(y) dy \int_{\gamma_{u,v}} g(z) dz + \frac{1}{w - v} \int_{\gamma_{v,w}} f(y) dy \int_{\gamma_{v,w}} g(z) dz$$

$$+ \int_{\gamma_{u,v}} \left[ f(z) - \frac{1}{v - u} \int_{\gamma_{u,v}} f(y) dy \right] g(z) dz$$

$$+ \int_{\gamma_{v,w}} \left[ f(z) - \frac{1}{w - v} \int_{\gamma_{v,w}} f(y) dy \right] g(z) dz$$

for  $v \in \gamma$  with  $v \neq u, w$ .

In particular, for g(z) = 1,  $z \in \gamma$ , we have for  $v \in \gamma$  that

(2.13) 
$$\int_{\gamma} f(z) dz = (v - u) f(u) + (w - v) f(w) + \int_{\gamma_{u,v}} [f(z) - f(u)] dz + \int_{\gamma_{v,w}} [f(z) - f(w)] dz,$$

and

$$(2.14) \quad \int_{\gamma} f(z) dz = (v - u) \frac{f(u) + f(v)}{2} + (w - v) \frac{f(v) + f(w)}{2} + \int_{\gamma_{u,v}} \left[ f(z) - \frac{f(u) + f(v)}{2} \right] dz + \int_{\gamma_{v,w}} \left[ f(z) - \frac{f(v) + f(w)}{2} \right] dz.$$

## 3. Some Inequalities for Bounded Functions

Suppose  $\gamma \subset \mathbb{C}$  is a piecewise smooth path parametrized by z(t),  $t \in \gamma$  from z(a) = u to z(b) = w. Now, for  $\phi$ ,  $\Phi \in \mathbb{C}$  and  $\gamma$  an interval of real numbers, define the sets of complex-valued functions

$$\bar{U}_{\gamma}\left(\phi,\Phi\right):=\left\{ f:\gamma\rightarrow\mathbb{C}|\operatorname{Re}\left[\left(\Phi-f\left(z\right)\right)\left(\overline{f\left(z\right)}-\overline{\phi}\right)\right]\geq0\ \text{ for each }\ z\in\gamma\right\}$$

and

$$\bar{\Delta}_{\gamma}\left(\phi,\Phi\right):=\left\{ f:\gamma\to\mathbb{C}|\ \left|f\left(z\right)-\frac{\phi+\Phi}{2}\right|\leq\frac{1}{2}\left|\Phi-\phi\right|\ \text{for each}\ z\in\gamma\right\} .$$

The following representation result may be stated.

**Proposition 1.** For any  $\phi$ ,  $\Phi \in \mathbb{C}$ ,  $\phi \neq \Phi$ , we have that  $\bar{U}_{\gamma}(\phi, \Phi)$  and  $\bar{\Delta}_{\gamma}(\phi, \Phi)$  are nonempty, convex and closed sets and

(3.1) 
$$\bar{U}_{\gamma}(\phi, \Phi) = \bar{\Delta}_{\gamma}(\phi, \Phi).$$

*Proof.* We observe that for any  $w \in \mathbb{C}$  we have the equivalence

$$\left| w - \frac{\phi + \Phi}{2} \right| \le \frac{1}{2} \left| \Phi - \phi \right|$$

if and only if

$$\operatorname{Re}\left[\left(\Phi - w\right)\left(\overline{w} - \overline{\phi}\right)\right] \ge 0.$$

This follows by the equality

$$\frac{1}{4} |\Phi - \phi|^2 - \left| w - \frac{\phi + \Phi}{2} \right|^2 = \operatorname{Re} \left[ (\Phi - w) \left( \overline{w} - \overline{\phi} \right) \right]$$

that holds for any  $w \in \mathbb{C}$ .

The equality (3.1) is thus a simple consequence of this fact.

On making use of the complex numbers field properties we can also state that:

Corollary 2. For any  $\phi$ ,  $\Phi \in \mathbb{C}$ ,  $\phi \neq \Phi$ , we have that

(3.2) 
$$\bar{U}_{\gamma}(\phi, \Phi) = \{ f : \gamma \to \mathbb{C} \mid (\operatorname{Re} \Phi - \operatorname{Re} f(z)) (\operatorname{Re} f(z) - \operatorname{Re} \phi) + (\operatorname{Im} \Phi - \operatorname{Im} f(z)) (\operatorname{Im} f(z) - \operatorname{Im} \phi) > 0 \text{ for each } z \in \gamma \}.$$

Now, if we assume that  $\operatorname{Re}(\Phi) \ge \operatorname{Re}(\phi)$  and  $\operatorname{Im}(\Phi) \ge \operatorname{Im}(\phi)$ , then we can define the following set of functions as well:

(3.3) 
$$\bar{S}_{\gamma}(\phi, \Phi) := \{ f : \gamma \to \mathbb{C} \mid \operatorname{Re}(\Phi) \ge \operatorname{Re}f(z) \ge \operatorname{Re}(\phi)$$
  
and  $\operatorname{Im}(\Phi) \ge \operatorname{Im}f(z) \ge \operatorname{Im}(\phi)$  for each  $z \in \gamma \}$ .

One can easily observe that  $\bar{S}_{\gamma}(\phi,\Phi)$  is closed, convex and

(3.4) 
$$\emptyset \neq \bar{S}_{\gamma}(\phi, \Phi) \subseteq \bar{U}_{\gamma}(\phi, \Phi).$$

**Theorem 3.** Let f be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Assume that  $\phi_k$ ,  $\Phi_k \in \mathbb{C}$ ,  $\phi_k \neq \Phi_k$ , with  $k \in \{1,2\}$  and  $f \in \bar{\Delta}_{\gamma_{u,v}}(\phi_1,\Phi_1) \cap \bar{\Delta}_{\gamma_{v,w}}(\phi_2,\Phi_2)$ , then

$$(3.5) \left| \int_{\gamma} f(z) g(z) dz - \frac{\phi_{1} + \Phi_{1}}{2} \int_{\gamma_{u,v}} g(z) dz - \frac{\phi_{2} + \Phi_{2}}{2} \int_{\gamma_{v,w}} g(z) dz \right|$$

$$\leq \frac{1}{2} |\Phi_{1} - \phi_{1}| \int_{\gamma_{u,v}} |g(z)| |dz| + \frac{1}{2} |\Phi_{2} - \phi_{2}| \int_{\gamma_{v,w}} |g(z)| |dz|$$

$$\leq \frac{1}{2} \max \left\{ |\Phi_{1} - \phi_{1}|, |\Phi_{2} - \phi_{2}| \right\} \int_{\gamma} |g(z)| |dz|.$$

*Proof.* Using the identity (2.1) we get

$$(3.6) \quad \left| \int_{\gamma} f(z) g(z) dz - \lambda \int_{\gamma_{u,v}} g(z) dz - \mu \int_{\gamma_{v,w}} g(z) dz \right|$$

$$\leq \left| \int_{\gamma_{u,v}} [f(z) - \lambda] g(z) dz \right| + \left| \int_{\gamma_{v,w}} [f(z) - \mu] g(z) dz \right|$$

$$\leq \int_{\gamma_{u,v}} |[f(z) - \lambda] g(z)| |dz| + \int_{\gamma_{v,w}} |[f(z) - \mu] g(z)| |dz|$$

$$= \int_{\gamma_{u,v}} |f(z) - \lambda| |g(z)| |dz| + \int_{\gamma_{v,w}} |f(z) - \mu| |g(z)| |dz|$$

where  $v \in \gamma$ , for any  $\lambda$ ,  $\mu \in \mathbb{C}$ .

Since  $f \in \bar{\Delta}_{\gamma_{u,v}}(\phi_1, \Phi_1) \cap \bar{\Delta}_{\gamma_{v,w}}(\phi_2, \Phi_2)$ , hence by taking  $\lambda = \frac{\phi_1 + \Phi_1}{2}$  and  $\mu = \frac{\phi_2 + \Phi_2}{2}$  in (3.6) we get

$$\begin{split} \left| \int_{\gamma} f\left(z\right)g\left(z\right)dz - \frac{\phi_{1} + \Phi_{1}}{2} \int_{\gamma_{u,v}} g\left(z\right)dz - \frac{\phi_{2} + \Phi_{2}}{2} \int_{\gamma_{v,w}} g\left(z\right)dz \right| \\ & \leq \int_{\gamma_{u,v}} \left| f\left(z\right) - \frac{\phi_{1} + \Phi_{1}}{2} \right| \left| g\left(z\right) \right| \left| dz \right| + \int_{\gamma_{v,w}} \left| f\left(z\right) - \frac{\phi_{2} + \Phi_{2}}{2} \right| \left| g\left(z\right) \right| \left| dz \right| \\ & \leq \frac{1}{2} \left| \Phi_{1} - \phi_{1} \right| \int_{\gamma_{u,v}} \left| g\left(z\right) \right| \left| dz \right| + \frac{1}{2} \left| \Phi_{2} - \phi_{2} \right| \int_{\gamma_{v,w}} \left| g\left(z\right) \right| \left| dz \right|, \end{split}$$

which proves the first inequality in (3.5).

Corollary 3. Let f be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Assume that  $\phi, \Phi \in \mathbb{C}, \phi \neq \Phi$  and  $f \in \overline{\Delta}_{\gamma_{n,n}}(\phi, \Phi)$ , then

$$\left| \int_{\gamma} f\left(z\right) g\left(z\right) dz - \frac{\phi + \Phi}{2} \int_{\gamma} g\left(z\right) dz \right| \leq \frac{1}{2} \left| \Phi - \phi \right| \int_{\gamma_{u,v}} \left| g\left(z\right) \right| \left| dz \right|.$$

**Remark 1.** If we take g(z) = 1 in (3.5), we get

$$(3.8) \left| \int_{\gamma} f(z) dz - \frac{\phi_{1} + \Phi_{1}}{2} (v - u) - \frac{\phi_{2} + \Phi_{2}}{2} (w - v) \right|$$

$$\leq \frac{1}{2} |\Phi_{1} - \phi_{1}| \ell (\gamma_{u,v}) + \frac{1}{2} |\Phi_{2} - \phi_{2}| \ell (\gamma_{v,w}) \leq \frac{1}{2} \max \{ |\Phi_{1} - \phi_{1}|, |\Phi_{2} - \phi_{2}| \} \ell (\gamma),$$
while from (3.7) we get

(3.9) 
$$\left| \int_{\gamma} f(z) dz - \frac{\phi + \Phi}{2} (w - u) \right| \leq \frac{1}{2} |\Phi - \phi| \ell(\gamma).$$

#### 4. Inequalities for Lipschitzian Functions

Suppose  $\gamma \subset \mathbb{C}$  is a piecewise smooth path parametrized by z(t),  $t \in [a, b]$  from z(a) = u to z(b) = w and v = z(x) with  $x \in (a, b)$ . Let  $p_1, p_2 > 0$  and  $L_{p_1}$ ,  $L_{p_1} > 0$ . We say that  $f \in \mathfrak{Lip}_{p_1,p_2}(L_{p_1}, L_{p_1}; \gamma, v)$  if

$$|f(z) - f(v)| \le L_{p_1} |z - v|^{p_1}$$
 for all  $z \in \gamma_{u,v}$ 

and

$$\left|f\left(z\right)-f\left(v\right)\right| \leq L_{p_{2}}\left|z-v\right|^{p_{2}} \text{ for all } z \in \gamma_{v,w}.$$
 If  $p_{1}=p_{2}=p>0$  and  $L_{p_{1}}=L_{p_{1}}=L>0$ , then we have  $f \in \mathfrak{Lip}_{p}\left(L_{p};\gamma,v\right)$  if 
$$\left|f\left(z\right)-f\left(v\right)\right| \leq L\left|z-v\right|^{p} \text{ for all } z \in \gamma.$$

We have the following weighted Ostrowski type inequality:

**Theorem 4.** Let f and g be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Let  $p_1, p_2 > 0$  and  $L_{p_1}, L_{p_1} > 0$  and assume that  $f \in \mathfrak{Lip}_{p_1,p_2}(L_{p_1}, L_{p_1}; \gamma, v)$ , then

*Proof.* From the identity (2.5) we have

$$\begin{aligned} \left| \int_{\gamma} f\left(z\right) g\left(z\right) dz - f\left(v\right) \int_{\gamma} g\left(z\right) dz \right| \\ & \leq \left| \int_{\gamma_{u,v}} \left[ f\left(v\right) - f\left(z\right) \right] g\left(z\right) dz \right| + \left| \int_{\gamma_{v,w}} \left[ f\left(z\right) - f\left(v\right) \right] g\left(z\right) dz \right| \\ & \leq \int_{\gamma_{u,v}} \left| f\left(v\right) - f\left(z\right) \right| \left| g\left(z\right) \right| \left| dz \right| + \int_{\gamma_{v,w}} \left| f\left(z\right) - f\left(v\right) \right| \left| g\left(z\right) \right| \left| dz \right|. \end{aligned}$$

Since  $f \in \mathfrak{Lip}_{p_1,p_2}(L_{p_1},L_{p_1};\gamma,v)$ , hence

$$(4.3) \int_{\gamma_{u,v}} |f(v) - f(z)| |g(z)| |dz| + \int_{\gamma_{v,w}} |f(z) - f(v)| |g(z)| |dz|$$

$$\leq L_{p_1} \int_{\gamma_{u,v}} |z - v|^{p_1} |g(z)| |dz| + L_{p_2} \int_{\gamma_{v,w}} |z - v|^{p_2} |g(z)| |dz|.$$

By utilising the inequalities (4.2) and (4.3) we get the first part of (4.1).

Using Hölder's integral inequality we have

$$\int_{\gamma_{u,v}}\left|z-v\right|^{p_{1}}\left|g\left(z\right)\right|\left|dz\right|\leq\left\{\begin{array}{l}\max_{z\in\gamma_{u,v}}\left|z-v\right|^{p_{1}}\int_{\gamma_{u,v}}\left|g\left(z\right)\right|\left|dz\right|\\ \left(\int_{\gamma_{u,v}}\left|z-v\right|^{mp_{1}}\left|dz\right|\right)^{1/m}\left(\int_{\gamma_{u,v}}\left|g\left(z\right)\right|^{n}\left|dz\right|\right)^{1/n}\\ m,\ n>1\ \mathrm{with}\ \frac{1}{m}+\frac{1}{n}=1,\\ \max_{z\in\gamma_{u,v}}\left|g\left(z\right)\right|\int_{\gamma_{u,v}}\left|z-v\right|^{p_{1}}\left|dz\right|\end{array}\right.$$

and

$$\int_{\gamma_{v,w}}\left|z-v\right|^{p_{2}}\left|g\left(z\right)\right|\left|dz\right|\leq\left\{\begin{array}{l}\max_{z\in\gamma_{v,w}}\left|z-v\right|^{p_{2}}\int_{\gamma_{v,w}}\left|g\left(z\right)\right|\left|dz\right|\\ \left(\int_{\gamma_{v,w}}\left|z-v\right|^{mp_{2}}\left|dz\right|\right)^{1/m}\left(\int_{\gamma_{v,w}}\left|g\left(z\right)\right|^{n}\left|dz\right|\right)^{1/n}\\ m,\ n>1\ \mathrm{with}\ \frac{1}{m}+\frac{1}{n}=1,\\ \max_{z\in\gamma_{v,w}}\left|g\left(z\right)\right|\int_{\gamma_{v,w}}\left|z-v\right|^{p_{2}}\left|dz\right|, \end{array}\right.$$

which proves the last part of (4.1).

**Corollary 4.** Let f and g be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a, b)$ . Let p > 0 and assume that  $f \in \mathfrak{Lip}_p(L_p; \gamma, v)$ , then

$$(4.4) \quad \left| \int_{\gamma} f(z) g(z) dz - f(v) \int_{\gamma} g(z) dz \right| \leq L_{p} \int_{\gamma} |z - v|^{p} |g(z)| |dz|$$

$$\leq L_{p} \times \begin{cases} \max_{z \in \gamma} |z - v|^{p} \int_{\gamma} |g(z)| |dz| \\ \left( \int_{\gamma} |z - v|^{mp} |dz| \right)^{1/m} \left( \int_{\gamma} |g(z)|^{n} |dz| \right)^{1/n} \\ m, \ n > 1 \ \text{with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma} |g(z)| \int_{\gamma} |z - v|^{p} |dz|. \end{cases}$$

**Remark 2.** If we take g(z) = 1 in (4.1), we get the following Ostrowski type inequality

$$\left| \int_{\gamma} f(z) dz - f(v) (w - u) \right| \\
\leq L_{p_1} \int_{\gamma_{u,v}} |z - v|^{p_1} |dz| + L_{p_2} \int_{\gamma_{v,w}} |z - v|^{p_2} |dz|$$

$$\leq L_{p_{1}} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{u,v}} |z-v|^{p_{1}} \ell \left(\gamma_{u,v}\right) \\ \left(\int_{\gamma_{u,v}} |z-v|^{mp_{1}} |dz|\right)^{1/m} \left[\ell \left(\gamma_{u,v}\right)\right]^{1/n} \\ m, \ n > 1 \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \int_{\gamma_{u,v}} |z-v|^{p_{1}} |dz| \end{array} \right. \\ \left. + L_{p_{2}} \left\{ \begin{array}{l} \max_{z \in \gamma_{v,w}} |z-v|^{p_{2}} \ell \left(\gamma_{v,w}\right) \\ \left(\int_{\gamma_{v,w}} |z-v|^{mp_{2}} |dz|\right)^{1/m} \left[\ell \left(\gamma_{v,w}\right)\right]^{1/n} \\ m, \ n > 1 \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \int_{\gamma_{v,w}} |z-v|^{p_{2}} |dz|, \end{array} \right.$$

while from (4.4) we get

$$(4.6) \quad \left| \int_{\gamma} f(z) dz - f(v) (w - u) \right| \leq L_{p} \int_{\gamma} |z - v|^{p} |dz|$$

$$\leq L_{p} \times \begin{cases} \max_{z \in \gamma} |z - v|^{p} \ell(\gamma) \\ \left( \int_{\gamma} |z - v|^{mp} |dz| \right)^{1/m} \left[ \ell(\gamma) \right]^{1/n} \\ m, \ n > 1 \ with \ \frac{1}{m} + \frac{1}{n} = 1, \end{cases}$$

$$\int_{\gamma} |z - v|^{p} |dz|.$$

Suppose  $\gamma \subset \mathbb{C}$  is a piecewise smooth path parametrized by z(t),  $t \in [a, b]$  from z(a) = u to z(b) = w and v = z(x) with  $x \in (a, b)$ . Let  $p_1, p_2 > 0$  and  $L_{p_1}$ ,  $L_{p_1} > 0$ . We say that  $f \in \mathfrak{Lipe}_{p_1, p_2}(L_{p_1}, L_{p_1}; \gamma, u, v, w)$  if

$$|f(z) - f(u)| \le L_{p_1} |z - u|^{p_1}$$
 for all  $z \in \gamma_{u,v}$ 

and

$$|f(z) - f(w)| \le L_{p_2} |z - w|^{p_2}$$
 for all  $z \in \gamma_{v,w}$ .

If  $p_1 = p_2 = p > 0$  and  $L_{p_1} = L_{p_1} = L > 0$ , then we have  $f \in \mathfrak{Lipe}_p(L_p; \gamma, u, v, w)$  if

$$|f(z) - f(u)| \le L_p |z - u|^p$$
 for all  $z \in \gamma_{u,v}$ 

and

$$|f(z) - f(w)| \le L_p |z - w|^p$$
 for all  $z \in \gamma_{v,w}$ .

We have the following weighted trapezoid type inequality:

**Theorem 5.** Let f and g be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Let  $p_1, p_2 > 0$  and  $L_{p_1}, L_{p_1} > 0$  and assume that  $f \in \mathfrak{Lipe}_{p_1,p_2}(L_{p_1}, L_{p_1}; \gamma, u, v, w)$ ,

then

$$\begin{aligned} (4.7) \quad & \left| \int_{\gamma} f\left(z\right) g\left(z\right) dz - f\left(u\right) \int_{\gamma_{u,v}} g\left(z\right) dz - f\left(w\right) \int_{\gamma_{v,w}} g\left(z\right) dz \right| \\ & \leq L_{p_{1}} \int_{\gamma_{u,v}} \left| z - u \right|^{p_{1}} \left| g\left(z\right) \right| \left| dz \right| + L_{p_{2}} \int_{\gamma_{v,w}} \left| z - w \right|^{p_{2}} \left| g\left(z\right) \right| \left| dz \right| \\ & \leq L_{p_{1}} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{u,v}} \left| z - u \right|^{p_{1}} \int_{\gamma_{u,v}} \left| g\left(z\right) \right| \left| dz \right| \\ \left( \int_{\gamma_{u,v}} \left| z - u \right|^{mp_{1}} \left| dz \right| \right)^{1/m} \left( \int_{\gamma_{u,v}} \left| g\left(z\right) \right|^{n} \left| dz \right| \right)^{1/n} \\ m, \ n > 1 \ \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{u,v}} \left| g\left(z\right) \right| \int_{\gamma_{u,v}} \left| z - u \right|^{p_{1}} \left| dz \right| \\ \left( \int_{\gamma_{v,w}} \left| z - w \right|^{mp_{2}} \left| dz \right| \right)^{1/m} \left( \int_{\gamma_{v,w}} \left| g\left(z\right) \right|^{n} \left| dz \right| \right)^{1/n} \\ m, \ n > 1 \ \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{v,w}} \left| g\left(z\right) \right| \int_{\gamma_{v,w}} \left| z - w \right|^{p_{2}} \left| dz \right|. \end{aligned}$$

*Proof.* Using the equality (2.10) we have

$$\left| \int_{\gamma} f(z) g(z) dz - f(u) \int_{\gamma_{u,v}} g(z) dz - f(w) \int_{\gamma_{v,w}} g(z) dz \right|$$

$$\leq \left| \int_{\gamma_{u,v}} [f(z) - f(u)] g(z) dz \right| + \left| \int_{\gamma_{v,w}} [f(z) - f(w)] g(z) dz \right|$$

$$\leq \int_{\gamma_{u,v}} |f(z) - f(u)| |g(z)| |dz| + \int_{\gamma_{v,w}} |f(z) - f(w)| |g(z)| |dz|$$

$$\leq L_{p_1} \int_{\gamma_{u,v}} |z - u|^{p_1} |g(z)| |dz| + L_{p_2} \int_{\gamma_{v,w}} |z - w|^{p_2} |g(z)| |dz| ,$$

which proves the first inequality in (4.7).

Using Hölder's integral inequality we also have

$$\int_{\gamma_{u,v}} |z-u|^{p_1} |g\left(z\right)| \, |dz| \leq \left\{ \begin{array}{l} \max_{z \in \gamma_{u,v}} |z-u|^{p_1} \int_{\gamma_{u,v}} |g\left(z\right)| \, |dz| \\ \left( \int_{\gamma_{u,v}} |z-u|^{mp_1} \, |dz| \right)^{1/m} \left( \int_{\gamma_{u,v}} |g\left(z\right)|^n \, |dz| \right)^{1/n} \\ m, \ n > 1 \ \text{with} \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{u,v}} |g\left(z\right)| \int_{\gamma_{u,v}} |z-u|^{p_1} \, |dz| \end{array} \right.$$

and

$$\int_{\gamma_{v,w}}\left|z-w\right|^{p_{2}}\left|g\left(z\right)\right|\left|dz\right|\leq\left\{\begin{array}{l} \max_{z\in\gamma_{v,w}}\left|z-w\right|^{p_{2}}\int_{\gamma_{v,w}}\left|g\left(z\right)\right|\left|dz\right|\\ \left(\int_{\gamma_{v,w}}\left|z-w\right|^{mp_{2}}\left|dz\right|\right)^{1/m}\left(\int_{\gamma_{v,w}}\left|g\left(z\right)\right|^{n}\left|dz\right|\right)^{1/n}\\ m,\ n>1\ \mathrm{with}\ \frac{1}{m}+\frac{1}{n}=1,\\ \max_{z\in\gamma_{v,w}}\left|g\left(z\right)\right|\int_{\gamma_{v,w}}\left|z-w\right|^{p_{2}}\left|dz\right|, \end{array}\right.$$

which proves the last part of (4.1).

**Corollary 5.** Let f and g be continuous in D, an open domain and suppose  $\gamma \subset D$  is a piecewise smooth path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Let p > 0 and assume that  $f \in \mathfrak{Lipe}_p(L_p; \gamma, u, v, w)$ , then

$$\begin{aligned} (4.8) \quad & \left| \int_{\gamma} f\left(z\right) g\left(z\right) dz - f\left(u\right) \int_{\gamma_{u,v}} g\left(z\right) dz - f\left(w\right) \int_{\gamma_{v,w}} g\left(z\right) dz \right| \\ & \leq L_{p} \left[ \int_{\gamma_{u,v}} |z - u|^{p} \left| g\left(z\right) \right| \left| dz \right| + \int_{\gamma_{v,w}} |z - w|^{p} \left| g\left(z\right) \right| \left| dz \right| \right] \\ & \leq L_{p} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{u,v}} |z - u|^{p} \int_{\gamma_{u,v}} |g\left(z\right)| \left| dz \right| \\ \left( \int_{\gamma_{u,v}} |z - u|^{mp} \left| dz \right| \right)^{1/m} \left( \int_{\gamma_{u,v}} |g\left(z\right)|^{n} \left| dz \right| \right)^{1/n} \\ m, \ n > 1 \ \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{u,v}} |g\left(z\right)| \int_{\gamma_{u,v}} |z - u|^{p} \left| dz \right| \\ \left( \int_{\gamma_{v,w}} |z - w|^{mp} \left| dz \right| \right)^{1/m} \left( \int_{\gamma_{v,w}} |g\left(z\right)|^{n} \left| dz \right| \right)^{1/n} \\ m, \ n > 1 \ \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{v,w}} |g\left(z\right)| \int_{\gamma_{v,w}} |z - w|^{p} \left| dz \right|. \end{aligned}$$

**Remark 3.** If we take g(z) = 1 then by (4.7) we get

$$\left| \int_{\gamma} f(z) dz - f(u) (v - u) - f(w) (w - v) \right| \\
\leq L_{p_1} \int_{\gamma_{u,v}} |z - u|^{p_1} |dz| + L_{p_2} \int_{\gamma_{v,w}} |z - w|^{p_2} |dz|$$

$$\leq L_{p_{1}} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{u,v}} |z-u|^{p_{1}} \ell \left(\gamma_{u,v}\right) \\ \left(\int_{\gamma_{u,v}} |z-u|^{mp_{1}} |dz|\right)^{1/m} \left[\ell \left(\gamma_{u,v}\right)\right]^{1/n} \\ m, \ n > 1 \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{u,v}} |g\left(z\right)| \int_{\gamma_{u,v}} |z-u|^{p_{1}} |dz| \\ + L_{p_{2}} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{v,w}} |z-w|^{p_{2}} \ell \left(\gamma_{v,w}\right) \\ \left(\int_{\gamma_{v,w}} |z-w|^{mp_{2}} |dz|\right)^{1/m} \left[\ell \left(\gamma_{v,w}\right)\right]^{1/n} \\ m, \ n > 1 \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{z \in \gamma_{v,w}} |g\left(z\right)| \int_{\gamma_{v,w}} |z-w|^{p_{2}} |dz|. \end{array} \right.$$

while from (4.8) we get

$$(4.10) \quad \left| \int_{\gamma} f(z) dz - f(u) (v - u) - f(w) (w - v) \right|$$

$$\leq L_{p} \left[ \int_{\gamma_{u,v}} |z - u|^{p} |dz| + \int_{\gamma_{v,w}} |z - w|^{p} |dz| \right]$$

$$\leq L_{p} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{u,v}} |z - u|^{p} \ell \left(\gamma_{u,v}\right) \\ \left( \int_{\gamma_{u,v}} |z - u|^{mp} |dz| \right)^{1/m} \left[ \ell \left(\gamma_{u,v}\right) \right]^{1/n} \\ m, \ n > 1 \ \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \int_{\gamma_{u,v}} |z - u|^{p} |dz| \\ \end{array} \right.$$

$$+ L_{p} \times \left\{ \begin{array}{l} \max_{z \in \gamma_{v,w}} |z - w|^{p} \ell \left(\gamma_{v,w}\right) \\ \left( \int_{\gamma_{v,w}} |z - w|^{mp} |dz| \right)^{1/m} \left[ \ell \left(\gamma_{v,w}\right) \right]^{1/n} \\ m, \ n > 1 \ \ with \ \frac{1}{m} + \frac{1}{n} = 1, \\ \int_{\gamma_{v,w}} |z - w|^{p} |dz| . \end{array} \right.$$

## 5. Examples for Circular Paths

Let  $[a,b]\subseteq [0,2\pi]$  and the circular path  $\gamma_{[a,b],R}$  centered in 0 and with radius R>0

$$z(t) = R \exp(it) = R(\cos t + i \sin t), \ t \in [a, b].$$

If  $[a,b] = [0,\pi]$  then we get a half circle while for  $[a,b] = [0,2\pi]$  we get the full circle.

Since

$$|e^{is} - e^{it}|^2 = |e^{is}|^2 - 2\operatorname{Re}\left(e^{i(s-t)}\right) + |e^{it}|^2$$
  
=  $2 - 2\cos(s - t) = 4\sin^2\left(\frac{s - t}{2}\right)$ 

for any  $t, s \in \mathbb{R}$ , then

$$\left| e^{is} - e^{it} \right|^r = 2^r \left| \sin \left( \frac{s-t}{2} \right) \right|^r$$

for any  $t, s \in \mathbb{R}$  and r > 0. In particular,

$$\left| e^{is} - e^{it} \right| = 2 \left| \sin \left( \frac{s-t}{2} \right) \right|$$

for any  $t, s \in \mathbb{R}$ .

For s = a and s = b we have

$$\left| e^{ia} - e^{it} \right| = 2 \left| \sin \left( \frac{a-t}{2} \right) \right| \text{ and } \left| e^{ib} - e^{it} \right| = 2 \left| \sin \left( \frac{b-t}{2} \right) \right|.$$

If  $u = R \exp(ia)$  and  $w = R \exp(ib)$  then

$$w - u = R \left[ \exp(ib) - \exp(ia) \right] = R \left[ \cos b + i \sin b - \cos a - i \sin a \right]$$
$$= R \left[ \cos b - \cos a + i \left( \sin b - \sin a \right) \right].$$

Since

$$\cos b - \cos a = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{b-a}{2}\right)$$

and

$$\sin b - \sin a = 2\sin\left(\frac{b-a}{2}\right)\cos\left(\frac{a+b}{2}\right)$$

hence

$$\begin{split} w - u &= R \left[ -2 \sin \left( \frac{a+b}{2} \right) \sin \left( \frac{b-a}{2} \right) + 2i \sin \left( \frac{b-a}{2} \right) \cos \left( \frac{a+b}{2} \right) \right] \\ &= 2R \sin \left( \frac{b-a}{2} \right) \left[ -\sin \left( \frac{a+b}{2} \right) + i \cos \left( \frac{a+b}{2} \right) \right] \\ &= 2Ri \sin \left( \frac{b-a}{2} \right) \left[ \cos \left( \frac{a+b}{2} \right) + i \sin \left( \frac{a+b}{2} \right) \right] \\ &= 2Ri \sin \left( \frac{b-a}{2} \right) \exp \left[ \left( \frac{a+b}{2} \right) i \right]. \end{split}$$

Moreover,

$$|z - u| = R \left| \exp(it) - \exp(ia) \right| = 2R \left| \sin\left(\frac{t - a}{2}\right) \right|$$

and

$$|z - w| = R \left| \exp \left( it \right) - \exp \left( ib \right) \right| = 2R \left| \sin \left( \frac{b - t}{2} \right) \right|$$

for  $t \in [a, b]$ .

If  $[a,b]\subseteq [0,2\pi]$  then  $0\leq \frac{t-a}{2},\,\frac{b-t}{2}\leq \pi$  for  $t\in [a,b]$ , therefore

$$|z-u|=2R\sin\left(\frac{t-a}{2}\right) \text{ and } |z-w|=2R\sin\left(\frac{b-t}{2}\right).$$

We also have

$$z'(t) = Ri \exp(it)$$
 and  $|z'(t)| = R$ 

for  $t \in [a, b]$ .

Let f and g be continuous in D, an open domain and suppose  $\gamma_{[a,b],R} \subset D$  is a circular path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Let p > 0 and  $L_p > 0$  and assume that  $f \in \mathfrak{Lip}_p\left(L_p; \gamma_{[a,b],R}, v\right)$ , then by (4.4) we get

$$(5.1) \quad \left| \int_{a}^{b} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right|$$

$$-f\left(R \exp\left(ix\right)\right) \int_{a}^{b} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt$$

$$\leq 2^{p} R^{p} L_{p} \int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right|^{p} \left| g\left(R \exp\left(it\right)\right) \right| dt$$

$$\leq 2^{p} R^{p} L_{p} \times \begin{cases} \max_{t \in [a,b]} \left| \sin\left(\frac{x-t}{2}\right) \right|^{p} \int_{a}^{b} \left| g\left(R \exp\left(it\right)\right) \right| dt \\ \left(\int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right|^{pm} dt \right)^{1/m} \left(\int_{a}^{b} \left| g\left(R \exp\left(it\right)\right) \right|^{n} dt \right)^{1/n} \\ m, \ n > 1 \text{ with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{t \in [a,b]} \left| g\left(R \exp\left(it\right)\right) \right| \int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right|^{p} dt \end{cases}$$

for all  $x \in [a, b]$ .

The case p = 1, namely  $f \in \mathfrak{Lip}\left(L; \gamma_{[a,b],R}\right)$ , which means that  $|f(z) - f(w)| \le L|z - w|$  for all  $z, w \in \gamma_{[a,b],R}$ 

is of particular interest.

In this case, we have by (5.1) that

$$(5.2) \quad \left| \int_{a}^{b} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right|$$

$$-f\left(R \exp\left(ix\right)\right) \int_{a}^{b} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt$$

$$\leq 2RL \int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right| \left| g\left(R \exp\left(it\right)\right) \right| dt$$

$$\leq 2RL \times \left\{ \begin{array}{c} \max_{t \in [a,b]} \left| \sin\left(\frac{x-t}{2}\right) \right| \int_{a}^{b} \left| g\left(R \exp\left(it\right)\right) \right| dt \\ \left( \int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right|^{m} dt \right)^{1/m} \left( \int_{a}^{b} \left| g\left(R \exp\left(it\right)\right) \right|^{n} dt \right)^{1/n} \\ m, \ n > 1 \text{ with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{t \in [a,b]} \left| g\left(R \exp\left(it\right)\right) \right| \int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right| dt \end{array} \right.$$

Observe that

$$\int_{a}^{x} \left| \sin\left(\frac{t-x}{2}\right) \right| dt = \int_{a}^{x} \sin\left(\frac{x-t}{2}\right) dt = 2 - 2\cos\left(\frac{x-a}{2}\right)$$
$$= 4\sin^{2}\left(\frac{x-a}{4}\right)$$

and

$$\int_{x}^{b} \left| \sin \left( \frac{t - x}{2} \right) \right| dt = \int_{x}^{b} \sin \left( \frac{t - x}{2} \right) dt = 2 - 2 \cos \left( \frac{b - t}{2} \right)$$
$$= 4 \sin^{2} \left( \frac{b - x}{4} \right),$$

then

$$\int_{a}^{b} \left| \sin \left( \frac{x - t}{2} \right) \right| dt = \int_{a}^{x} \left| \sin \left( \frac{t - x}{2} \right) \right| dt + \int_{x}^{b} \left| \sin \left( \frac{t - x}{2} \right) \right|$$
$$= 4 \left[ \sin^{2} \left( \frac{x - a}{4} \right) + \sin^{2} \left( \frac{b - x}{4} \right) \right]$$

for  $x \in [a, b]$ .

Using (5.2) we get the following simple inequality of interest:

$$(5.3) \quad \left| \int_{a}^{b} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right|$$

$$-f\left(R \exp\left(ix\right)\right) \int_{a}^{b} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right|$$

$$\leq 2RL \int_{a}^{b} \left| \sin\left(\frac{x-t}{2}\right) \right| \left| g\left(R \exp\left(it\right)\right) \right| dt$$

$$\leq 8RL \max_{t \in [a,b]} \left| g\left(R \exp\left(it\right)\right) \right| \left[ \sin^{2}\left(\frac{x-a}{4}\right) + \sin^{2}\left(\frac{b-x}{4}\right) \right]$$

for  $x \in [a, b]$ .

Let f and g be continuous in D, an open domain and suppose  $\gamma_{[a,b],R} \subset D$  is a circular path from z(a) = u to z(b) = w and v = z(x) with  $x \in (a,b)$ . Let p > 0 and  $L_p > 0$  and assume that  $f \in \mathfrak{Lipe}_p\left(L_p; \gamma_{[a,b],R}, u, v, w\right)$ , then

$$(5.4) \quad \left| \int_{a}^{b} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right.$$

$$\left. - f\left(R \exp\left(ia\right)\right) \int_{a}^{x} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right.$$

$$\left. - f\left(R \exp\left(ib\right)\right) \int_{x}^{b} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right|$$

$$\leq 2^{p} R^{p} L_{p} \left[ \int_{a}^{x} \sin^{p} \left(\frac{t-a}{2}\right) \left| g\left(R \exp\left(it\right)\right) \right| dt + \int_{x}^{b} \sin^{p} \left(\frac{b-t}{2}\right) \left| g\left(R \exp\left(it\right)\right) \right| dt \right]$$

$$\leq 2^{p}R^{p}L_{p} \times \begin{cases} \max_{t \in [a,x]} \left[ \sin^{p} \left( \frac{t-a}{2} \right) \right] \int_{a}^{x} \left| g\left( R \exp\left( it \right) \right) \right| dt \\ \left( \int_{a}^{x} \sin^{pm} \left( \frac{t-a}{2} \right) dt \right)^{1/m} \left( \int_{a}^{x} \left| g\left( R \exp\left( it \right) \right) \right|^{n} dt \right)^{1/n} \\ m, \ n > 1 \text{ with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{t \in [a,x]} \left| g\left( R \exp\left( it \right) \right) \right| \int_{a}^{x} \sin^{p} \left( \frac{t-a}{2} \right) dt \\ + 2^{p}R^{p}L_{p} \times \begin{cases} \max_{t \in [x,b]} \left[ \sin^{p} \left( \frac{b-t}{2} \right) \right] \int_{x}^{b} \left| g\left( R \exp\left( it \right) \right) \right| dt \\ \left( \int_{x}^{b} \sin^{pm} \left( \frac{b-t}{2} \right) dt \right)^{1/m} \left( \int_{x}^{b} \left| g\left( R \exp\left( it \right) \right) \right|^{n} dt \right)^{1/n} \\ m, \ n > 1 \text{ with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{t \in [x,b]} \left| g\left( R \exp\left( it \right) \right) \right| \int_{x}^{b} \sin^{p} \left( \frac{b-t}{2} \right) dt \end{cases}$$

for  $x \in [a, b]$ .

The case p = 1, namely  $f \in \mathfrak{Lip}\left(L; \gamma_{[a,b],R}\right)$ , then by (5.4) we get

$$(5.5) \quad \left| \int_a^b f\left(R\exp\left(it\right)\right)g\left(R\exp\left(it\right)\right)\exp\left(it\right)dt \right. \\ \left. - f\left(R\exp\left(ia\right)\right)\int_a^x g\left(R\exp\left(it\right)\right)\exp\left(it\right)dt \right. \\ \left. - f\left(R\exp\left(ib\right)\right)\int_x^b g\left(R\exp\left(it\right)\right)\exp\left(it\right)dt \right| \\ \leq 2RL \left[ \int_a^x \sin\left(\frac{t-a}{2}\right) \left| g\left(R\exp\left(it\right)\right)\right|dt + \int_x^b \sin\left(\frac{b-t}{2}\right) \left| g\left(R\exp\left(it\right)\right)\right|dt \right] \\ \leq 2RL \times \left\{ \begin{array}{l} \max_{t\in[a,x]} \left[\sin\left(\frac{t-a}{2}\right)\right]\int_a^x \left| g\left(R\exp\left(it\right)\right)\right|dt \\ \left(\int_a^x \sin^m\left(\frac{t-a}{2}\right)dt\right)^{1/m} \left(\int_a^x \left| g\left(R\exp\left(it\right)\right)\right|^n dt\right)^{1/n} \\ m, \ n > 1 \ \text{with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{t\in[a,x]} \left| g\left(R\exp\left(it\right)\right)\right| \int_x^x \sin\left(\frac{t-a}{2}\right) dt \\ \left(\int_x^b \sin^m\left(\frac{b-t}{2}\right) dt\right)^{1/m} \left(\int_x^b \left| g\left(R\exp\left(it\right)\right)\right| dt \right. \\ \left(\int_x^b \sin^m\left(\frac{b-t}{2}\right) dt\right)^{1/m} \left(\int_x^b \left| g\left(R\exp\left(it\right)\right)\right|^n dt\right)^{1/n} \\ m, \ n > 1 \ \text{with } \frac{1}{m} + \frac{1}{n} = 1, \\ \max_{t\in[x,b]} \left| g\left(R\exp\left(it\right)\right)\right| \int_x^b \sin\left(\frac{b-t}{2}\right) dt \right. \end{array} \right.$$

for  $x \in [a, b]$ .

Observe that

$$\int_{a}^{x} \sin\left(\frac{s-a}{2}\right) ds = 2 - 2\cos\left(\frac{x-a}{2}\right) = 4\sin^{2}\left(\frac{x-a}{4}\right)$$

and

$$\int_{x}^{b} \sin\left(\frac{b-s}{2}\right) ds = 2 - 2\cos\left(\frac{b-t}{2}\right) = 4\sin^{2}\left(\frac{b-x}{4}\right)$$

for  $x \in [a, b]$ .

By using (5.5) we get

$$(5.6) \quad \left| \int_{a}^{b} f\left(R \exp\left(it\right)\right) g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right.$$

$$\left. - f\left(R \exp\left(ia\right)\right) \int_{a}^{x} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right.$$

$$\left. - f\left(R \exp\left(ib\right)\right) \int_{x}^{b} g\left(R \exp\left(it\right)\right) \exp\left(it\right) dt \right|$$

$$\leq 2RL \left[ \int_{a}^{x} \sin\left(\frac{t-a}{2}\right) \left| g\left(R \exp\left(it\right)\right) \right| dt + \int_{x}^{b} \sin\left(\frac{b-t}{2}\right) \left| g\left(R \exp\left(it\right)\right) \right| dt \right]$$

$$\leq 8RL \max_{t \in [a,x]} \left| g\left(R \exp\left(it\right)\right) \right| \sin^{2}\left(\frac{x-a}{4}\right)$$

$$+ 8RL \max_{t \in [x,b]} \left| g\left(R \exp\left(it\right)\right) \right| \left[ \sin^{2}\left(\frac{b-x}{4}\right) + \sin^{2}\left(\frac{b-x}{4}\right) \right]$$

$$\leq 8RL \max_{t \in [a,b]} \left| g\left(R \exp\left(it\right)\right) \right| \left[ \sin^{2}\left(\frac{x-a}{4}\right) + \sin^{2}\left(\frac{b-x}{4}\right) \right]$$

for  $x \in [a, b]$ .

### References

- Cerone, P.; Dragomir, S. S. Three point identities and inequalities for n-time differentiable functions. SUT J. Math. 36 (2000), no. 2, 351–383.
- [2] Cerone, P.; Dragomir, S. S. Three-point inequalities from Riemann-Stieltjes integrals. Inequality theory and applications. Vol. 3, 57–83, Nova Sci. Publ., Hauppauge, NY, 2003.
- [3] Dragomir, S. S. Trapezoid type inequalities for complex functions defined on the unit circle with applications for unitary operators in Hilbert spaces. Georgian Math. J. 23 (2016), no. 2, 199-210
- [4] Dragomir, S. S. Generalised trapezoid-type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces. *Mediterr. J. Math.* 12 (2015), no. 3, 573–591.
- [5] Dragomir, S. S. Ostrowski's type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces. Arch. Math. (Brno) 51 (2015), no. 4, 233–254.
- [6] Dragomir, S. S. Grüss type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces. Rev. Colombiana Mat. 49 (2015), no. 1, 77–94
- [7] Dragomir, S. S. Quasi Grüss type inequalities for complex functions defined on unit circle with applications for unitary operators in Hilbert spaces. Extracta Math. 31 (2016), no. 1, 47–67.
- [8] Dragomir, S. S. An extension of Ostrowski's inequality to the complex integral, RGMIA Res. Rep. Coll. 21 (2018), Art. 112, 17 pp. [Online https://rgmia.org/papers/v21/v21a112.pdf].
- [9] Dragomir, S. S. An Extension of trapezoid inequality to the complex integral, RGMIA Res. Rep. Coll. 21 (2018), Art. 113, 16 pp. [Online https://rgmia.org/papers/v21/v21a113.pdf].

- [10] Hanna, G.; Cerone, P.; Roumeliotis, J. An Ostrowski type inequality in two dimensions using the three point rule. Proceedings of the 1999 International Conference on Computational Techniques and Applications (Canberra). ANZIAM J. 42 (2000), (C), C671–C689.
- [11] Klaričić Bakula, M.; Pečarić, J.; Ribičić Penava, M.; Vukelić, A. Some Grüss type inequalities and corrected three-point quadrature formulae of Euler type. J. Inequal. Appl. 2015, 2015:76, 14 pp.
- [12] Liu, Z. A note on perturbed three point inequalities. SUT J. Math. 43 (2007), no. 1, 23-34.
- [13] Liu, W. A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term. An. Stiint. Univ. Al. I. Cuza Iași. Mat. (N.S.) 63 (2017), no. 1, 65–78.
- [14] Liu, W.; Park, J. Some perturbed versions of the generalized trapezoid inequality for functions of bounded variation. J. Comput. Anal. Appl. 22 (2017), no. 1, 11–18.
- [15] Pečarić, Josip; Ribičić Penava, M. Sharp, integral inequalities based on general three-point formula via a generalization of Montgomery identity. An. Univ. Craiova Ser. Mat. Inform. 39 (2012), no. 2, 132–147.
- [16] Tseng, K. L.; Hwang, S. R. Some extended trapezoid-type inequalities and applications. Hacet. J. Math. Stat. 45 (2016), no. 3, 827–850.

 $^1\mathrm{Mathematics},$  College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

 $E\text{-}mail\ address: \verb|sever.dragomir@vu.edu.au| } URL: \verb|http://rgmia.org/dragomir| \\$ 

 $^2$ DST-NRF Centre of Excellence, in the Mathematical and Statistical Sciences, School of Computer Science & Applied Mathematics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050, South Africa