SEVERAL GRUSS’ TYPE INEQUALITIES FOR THE COMPLEX
INTEGRAL

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. Assume that f and g are continuous on 7, v C C is a piecewise
smooth path parametrized by z (t), ¢ € [a,b] from z (a) = u to z (b) = w with
w # u and the complex Cebysev functional is defined by

Dy (1= = [ 1@e@ds - —— [ f@ e [ ) a
v v vy

w—u

In this paper we establish some bounds for the magnitude of the functional
D+ (f,9) and a related version of this under various assumptions for the func-
tions f and g and provide some examples for circular paths.

1. INTRODUCTION

Suppose v is a smooth path parametrized by z (t), t € [a,b] and f is a complex
function which is continuous on «. Put z (a) = u and z (b) = w with u, w € C. We
define the integral of f on v, , =~ as

b
/f(z)dz= f(2)dz ::/ f(z ()2 (t)dt.

We observe that that the actual choice of parametrization of v does not matter.

This definition immediately extends to paths that are piecewise smooth. Suppose
7 is parametrized by z (t), ¢ € [a,b], which is differentiable on the intervals [a, c]
and [c, b], then assuming that f is continuous on v we define

f(z)dz = / f(z)dz+ f(z)dz

Yo,w

Yu,w

where v := z (¢). This can be extended for a finite number of intervals.
We also define the integral with respect to arc-length

b
f () |dz] = / f (2 @) 12 ()] dt

and the length of the curve + is then

() = / BGE / 1 @l

Let f and g be holomorphic in D, and open domain and suppose v C D is a
piecewise smooth path from z (a) = u to z (b) = w. Then we have the integration
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by parts formula

(1.1) f(2)g (2)dz = f(w)g(w) = f(u)g(u) - / f(2)g(2)dz.

Yu,w

We recall also the triangle inequality for the complex integral, namely

/f(Z)dZ S/If(Z)HdZI < £l 00 €(0)

where [[f[|, o = sup.e, |f (2)]-
We also define the p-norm with p > 1 by

nﬂum::([;f@npud)wé

wmf=/u@mmw
Yy

If p, ¢ > 1 with % + % = 1, then by Holder’s inequality we have

1l < O, -

Suppose v C C is a piecewise smooth path parametrized by z (t), t € v from
z(a) = u to z(b) = w. Now, for ¢, ® € C, define the sets of complex-valued
functions

U, (¢, ®) := {f:7—>(C\Re {(‘I)—f(z)) (m—aﬂ >0 for each zE'y}

and

8,00 = {0l |-

(1.2)

For p = 1 we have

o+ P
2

The following representation result may be stated.

1
'§2|¢’—¢| for each zeW}.

Proposition 1. For any ¢, ® € C, ¢ # ®, we have that U, (¢, ®) and A, (¢, ®)
are nonempty, convex and closed sets and

U’Y (¢, @) = AV (¢, 2).
On making use of the complex numbers field properties we can also state that:
Corollary 1. For any ¢, ® € C, ¢ # ®,we have that
Uy (¢,2)={f:7—>C| (Re®—Re [ (2)) (Ref(z) —Reg)
+(Im®—Imf(2)) Im f (2) —Im¢) > 0 for each z € v} .

Now, if we assume that Re (®) > Re (¢) and Im (®) > Im (¢) , then we can define
the following set of functions as well:

Sy (¢,®):=={f:7—C| Re(®) = Re f(2) > Re(¢)

>

and Im (®) > Im f (2) > Im (¢) for each z € v}.

One can easily observe that 5‘7 (¢, @) is closed, convex and

0# S, (6,2) CU, (6, 9).
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Assume that f and g are continuous on v, v C C is a piecewise smooth path
parametrized by z(t), ¢t € [a,b] from z (a) = u to z(b) = w with w # u and the
complex Cebysev functional is defined by

o [ 1@ o [ @it [

In the recent paper we obtained the following Gruss’ type inequality for the
complex integral:

D’Y (fag) =

Theorem 1. If f and g are continuous on v and there exists ¢, @, ¥, ¥ € C,
¢ # @, # VU such that f € Ay (¢, P) and g € A, (¢, V) then

£ (v)

(13) D, (f.0)| < 3 12— ol [0~y 2
=

For several previous results concerning three points inequalities, see [1], [2] and
[11]-[17]. For some trapezoid, Ostrowski, Griiss and quasi-Griiss type inequalities
for complex functions defined on the unit circle centered in zero, see [3]-[7].

Motivated by the above results, in this paper we provide some other Gruss’ type
inequalities for various assumptions of the functions involved. Examples for circular
paths are provided as well.

2. SOME PRELIMINARY FACTS
‘We have:

Lemma 1. Let f and g be continuous in D, an open domain and suppose v C D is
a piecewise smooth path from z (a) = u to z (b) = w and v = z (z) with x € (a,b).
Then for any complex numbers A, u we have

(2.1) Lﬂ@ﬂ@m=AL M@M+ML g(2)dz

u,v v, w

+/ U@—MM@W+/ () — g (z)dz

w,v Yo, w

MLQQMZHAML g(2)dz

u,v

[ U@-Ng@dt [ -

u,v Yv,w

In particular, for = A, we have
(2.2) /ﬂ@mawzxfmaw
[ U@-Ng@der [ (- Ng)d:

v Yo, w

- Awwm+wawmmwm%
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Proof. Using the properties of the complex integral, we have

/ Lﬂd—ﬂg@ﬂz+/ () — g (z)dz

u,v v,w

g
—A FE g uaW+L fEg@d - [ g

u,v Yu,v v,w Yo,w

111111

which is equivalent to the first equality in (2.1).
The rest is obvious. O

Corollary 2. Let f be continuous in D, an open domain and suppose v C D is a
piecewise smooth path from z(a) = u to z(b) = w and v = z (x) with x € (a,b).
Then for any complex numbers A, p we have

as)Lf@ﬁuzxw—uyumw—m+/

Yu,v

[ﬂ@—ﬂm+/ [ (2) — ] d.

Yo, w

In particular, for p = X\, we have

(2.4) /f@g@M:AW—m+/ U@—Mw+/ [F (2) - N dz

u,v

w—

If we use the equality (2.2) for A = fv f (2) dz, then we have

w—u

(2.5) Lf@g@m= ! Lﬂawlﬂaw

Moreover, since

/v{f(z)_wiu/vf(w)dw} =0,

then from (2.5) we get the more general equality

(2.6) Lf@g@wz ! Aﬂawlmaw

w—u

+LP@%-1 wamﬂw@—ﬂw

w—u

for any § € C.
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Also, we take in (21) A= [ f(y)dy and p = f (y) dy, then we

get v W=V JYy
en [ feged
:Uiu f(y)dy/ g(z)dz—km/ f(y)dy/ g(2)dz
+f [ﬂz)—viu f(y)dy]g(Z)dz

for v € v with v # u, w.
The identity (2.7) provides the more general equality

(2.8) / f(2)g(2) dz

=viu/7/ f(y)dy/%mg<z>dz+w1_vfy f(y)dyL 9(z)dz

w,v

s [f@‘yiu/mf(y)dy] 9(2) ~ o] dz
+f [f(z)‘wl_vfy

v, w

f () dy] l9(2) — B dz

v, w

for v € v with v # u, w and for any «, 5 € C.

3. SOME INEQUALITIES FOR BOUNDED FUNCTIONS
We start with the following result:

Theorem 2. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w andv = z (x) with x € (a,b).
Let ¢, ® € C, ¢ # ® and assume that g € A, (Qj), , then

1@ — 4|
3.1 D,
BN Pl gy |
Proof. Using the identity (2.6) we get

2 [ s

for any ¢ € C.
Since g € A, (¢, ®) , hence

g(z) —

dw‘ |dz] .

(2)dz ! [yg (2)dz

w) dw] 19.(2) — ] |dz]

f‘w 8

o+ 1
T < 2 —
5| =512l

for each z € ~.
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Therefore
1 + o

L [ #wdu o) - 252 e
|w . u J,

< L[®—4| 1 /

-— dw| |d
< sl | [F s [ F i
and by (3.2) we get the desired result (3.1). O

We say that f € Lip, (Ly;7,v) for given p > 0 and L, > 0 if
If (2) = f(v)| < Lp|z—v|” forall z € ~.
In the recent paper [8] we obtained the following Ostrowski type inequality

Lf(w)dwf(Z)(wU) SLPL|wz|p|dw|

maxyey [w — z|" £ ()

(3.3)

) (e iant) " e

mn>1w1th7 + 1= =1,

n n

Using this inequality and the inequality (3.1), we get:

Corollary 3. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = z (z) with x € (a,b).
Let ¢, ® € C, ¢ # ® and assume that g € A, (¢, ®) while f € Lip, (Lp;v,v), then

@4) 1D (100 < gLyt [ ([ o= op bt o

|w —

€(y) [, (maxpey [w — z[") |dz|
_ ‘(I) _ (’b' 1/m
= QLP\w —ul ) et I ((f7 lw — 2|™P Idwl) ! ) |dz|

m, n>1wz’th%+%:1.

The case p = 1, namely f € Lip (L;7), which means that
|f (2) = f (w)] < L|z —wl| for all z, w € vy r

is of particular interest.
Therefore, by (3.4) we get

@) 1D, (o)l < 202 [ ([ 1wl ) 2

£(y) [, (maxyey |w = 2|) |dz]

10— .
2wl ) e (b ol b))

m, n>1w1th%+5:1.

Let f and g be continuous in D, an open domain and suppose v C D is a
piecewise smooth path from z(a) = u to 2 (b) = w and v = z (z) with = € (a,b)
and assume that v # u, w.
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We define the following functional

D, (fg,0) = / F(2)g(2)dz

Y

1 /Wuf(y)dy/%lug(z)dz—wl_vfy f(y)dyL g(2)dz.

v—1u
v,w v,w

Further, we have the following result as well:

Theorem 3. Let f and g be continuous in D, an open domain and supposey C D is
a piecewise smooth path from z (a) = u to z (b) = w and v = z (x) with © € (a,b).
Let ¢;, @i € C, ¢; # &; with i € {1,2} and assume that g € A,  (¢1,P1) N

A, (¢g,®2), then for v # u, w we have

(3.6) )5w(f»g,v)‘<;|@1—¢1|L ’f(z)—vfu/v f (y) dy| |d2]
eyl [ re - [ @l
Proof. Using the identity (2.8) we get b
(3.7) [yf(z)g(z)dz
_viu[% | f(y)dy/m g(z)dz—wl_v/w f(y)dy/w 0 () dz
fﬂ [f@)—vlu i f(y)dy] l9(2) - aldz
+/y [f(z)_wlv g f(y)dy] lg(z) — Bldz
</7 lf(z)_viu/% uf(y)dy] 9 (2) — al| |dz]
+/7 lf(2>—wl_v i f(y)dy] l9(2) — ]| ldz]
/ f(z)viu/%vf(y)dy 19 () — al |dz|
+/7 f(z)_wl_v/%wf(y)dy g () — B |dz|

v, w

for v € v with v # u, w and for a, 8 € C.
If g < A"/u (¢17 @1) n A%uu (¢2, (DQ) s then

v

IN

1
5 |(I)1 - ¢1| for z € Yu,v
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and
) - 2322 < 1 - 03] for 2 €
then
[ o] rwaljee -t e
<ol re- [ sl
2 Yun vy,
and
[ Po-a5 ] rwalse -2 e
<slte-ol [ @ - [ rwdias
2 Yow W= Jy, .,
and by (3.7) we get the desired result (3.6). O

Suppose v C C is a piecewise smooth path parametrized by z (t), ¢ € [a, b] from
z(a) = u to z(b) = wand v = z(z) with z € (a,b). Let p1, po > 0 and L,,,
Ly, > 0. We say that f € Lip,, . (Lp,, Lp,;7,0) if

[f (2) = f (V)] < Lp, |z = v|"" forall z €7,,

and
|f(Z) - f (U)| < Lpz |Z - U|p2 for all z € Yv,w+

Corollary 4. Let f and g be continuous in D, an open domain and suppose v C D
is a piecewise smooth path from z (a) = u to z (b) = w and v = 2z (z) with x € (a,b).
Let ¢;, ®; € C, ¢; # ®; with i € {1,2} and assume that g € A, (¢, P1) N

A%,w (@9, ®2) and f € Lip,, ,, (Lp, s Lp,;7,v) where p1, p2 > 0 and L,,, L, >0,
then for v # u, w we have

(3.8) )@ (fyg,v)‘ < ;LmMA (/7

1|2 — oy
+ §Lp2 |w7v\2
Yo \7Y

Proof. By using (3.3) we have

|2 — w|™ |de> |dz|

|z — w|” |dw|> |dz| .

v, w

(w) dw — f (2) (v —u)

< LP1 / ‘w - Z|p1 |dw‘ , 2 € ’}/u,v
Y

u,v

Yu,v

and

[ fwde-s@w-v)

<Ly [ - ldul, 2 e,
v

v, w
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These imply

i wa g s g [ e e

and

/ w) dw — f()_ﬁ/ lw— 2P |dw|, 2z € vy .-

- |w — v - )
Therefore
[ fro-= [ rwafu< e | (/ |wz|p1|dw|> dz],

w VU Sy, v —ul Yurw o

and

/

v, w

FE -y [ e < e [ (/

v, w

|w — 2| |dw|) |dz] .

v, w

By utilising (3.6) we get the desired result (3.8). O

Remark 1. We remark that if g € A, (¢, ®) where ¢, ® € C, ¢ # ® and f €
Lip, (Lp;y) where p >0 and L, > 0, then by (3.8) we get

_ 1 1
(3.9) )Dv (f,g,v)‘ LIl llv -y (/ 2 — w|? |dw|> |dz|
Yurw \Y Vv

1
+ / |z —wl? |dw| | |dz]| .
=2 )5, , \Vn.

In particular, if p=1 and f € Lip (L;v), then by (3.9) we have
(310) |B, (Fo0)| < 2L1® 0| | — [l ullduf ) az
IS o=l L\

1
+ / |z —w||dw]| | |dz]| .
lw — vl Yo vyw

4. EXAMPLES FOR CIRCULAR PATHS

Let [a,b] C [0,27] and the circular path v, ;) r centered in 0 and with radius
R>0
z(t) = Rexp (it) = R(cost + isint), t € [a,b].
If [a,b] = [0, 7] then we get a half circle while for [a,b] = [0,27] we get the full
circle.
Since

|eis _ eit|2 _ |eis|2 _ 9Re (ei(s—t)) + |eit‘2

-1
=2 —2cos (s — t) = 4sin” (S2>

—1
" sin(s )
2

for any t, s € R, then

T
. o
els — ezt|
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X s—t
sin [ ——
2

for any ¢, s € R and r > 0. In particular,

|€zs_ezt| -9

for any ¢, s € R.
For s = a and s = b we have

. (a_t>
sin | ——
2

If u = Rexp (ia) and w = Rexp (ib) then

|ei“—e“| =2 and |eib—e”| =2

) <b—t>‘
s | —— .
2

w —u = R[exp (ib) — exp (ia)] = R[cosb + isinb — cosa — isina)

= Rcosb—cosa+i(sinb—sina)].

Since
. fa+b\ . [(b—a
cosb — cosa = —2sin sin
2 2
and
. ) ) (ba) <a+b>
sinb —sina = 2sin [ —— | cos ,
2 2
hence

w—u=R {—2sin <a+b> sin <ba> + 2isin (ba) cos <a+b)]
2 2 2
b—a
2
= 2Risin (b;a) [cos <a+b> + ¢sin (a—;—b)]

2
b— b
= 2Risin < 5 a exp [(a;— > 7
Moreover,
. . . [t—a
|z — u| = R|exp (it) — exp (ia)| = 2R sm( 5 )‘
and
, . . (b—t
|z — w| = R|exp (it) — exp (ib)| = 2R |sin 5
fort € [a

0]
If [a,b] C [0,2n] then 0 < 52, 2=t < 7 for ¢ € [a, b], therefore

t— b—t
|z — ul :2Rsin< 2a) and |z —w| = 2Rsin (2>

We also have
2/ (t) = Riexp (it) and |2/ (t)| =R
for t € [a,b].
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If ¥ = Y4}, then the circular complex Cebysev functional is defined by

(4.1) C[a,b],R (f,9) = DW[a,b],R (f, g)

1 b . . .
~ 2sin (5% exp [(52) 1 |7 (Resp () g (Rexp i) exp i0)

1

" T (5 exp 2 (737

b b
X / f (Rexp (it)) exp (it) dt/ g (Rexp (it)) exp (it) dt.

By making use of the inequality (3.5) for the circular path Va,b],R

1 |®— YL (st
(4.2) ’C[MLR (f.9)] < QLRM/Q (/a sin <82> ds) dt

2
provided that g € AWW)]’R (¢, ®) and f € Lip (LW[a,b],R) .

Observe that
b ¢ b
. s—t . t—s . s—t
/a sin <2> ds-/a sin <2> ds—l—/t sin <2> ds
t—s ¢ s—t
—2cos(2>a—2cos( 5 )t
=2 {1 — Cos <t—a>} —2 {cos <b_t) — 1}
2 2
t—a b—t
=212— —_— ] = —_—

Yo oo (152 e (5]
oot n (5) - n (52)]
=4 :b—a—zsin(b;aﬂ

and

[

. <S_t>
sin | ——
2

and by (4.2) we get

| —¢| [b—a . (b—a
4.3 C <4LR—— _
( ) | [a,b],R (fa g)| = sin (b;a) 5 sin 5
provided that g € Av[a,bm (¢, @) and f € Lip (LQ'V[a,b],R) '
Similar results may be obtained by the use of (3.10), however the details are not
presented here.
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