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SOME INEQUALITIES OF FEJER TYPE FOR HYPERBOLIC
p~-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish several Fejér type integral inequalities
for hyperbolic p-convex functions.

1. INTRODUCTION

The following integral inequality

b
(1) H(*57) <52 [ r0a < HOTIE,

which holds for any convex function f : [a,b] — R, is well known in the literature
as the Hermite-Hadamard inequality.

There is an extensive amount of literature devoted to this simple and nice result
which has many applications in the Theory of Special Means and in Information
Theory for divergence measures, for which we would like to refer the reader to the
monograph [9], the recent survey paper [8] and the references therein.

In 1906, Fejér [10], while studying trigonometric polynomials, obtained the fol-
lowing inequalities which generalize that of Hermite & Hadamard:

Theorem 1 (Fejér’s Inequality). Consider the integral f: h(z)w (x)dz, where h
is a convex function in the interval [a,b] and g is a positive function in the same
interval such that

g(@)=gla+b—x), z€lab],
i.e., y =g (x) is a symmetric curve with respect to the straight line which contains
the point (% (a+0b) ,0) and is normal to the x-axis. Under those conditions the
following inequalities are valid:

(1.2) h<a;b)/abg(a:)d:rg/abh(x)g(x)dzgh(a);rh(b)/abg(x)dx.

If h is concave on [a,b], then the inequalities reverse in (1.2).

Clearly, for g () =1 on [a,b] we get (1.1).

Let I be a finite or infinite open interval of real numbers and p € R, p # 0.

In the following we present the basic definitions and results concerning the class
of hyperbolic p-convex function, see [3]. For other concepts of modified convex
functions see for example [12], [13], [4], [6], [7], [11], [14], [15] and [16].
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We consider the hyperbolic functions of a real argument z € R defined by

il et —e " e?® —1 L et +e " e 41
smmnT = = , coshx := = R
2 2e* 2 2e*
sin cosh x
tanhz = and cothz := — .
cosh x sinh x

We say that a function f : I — R is hyperbolic p-convex (or sub H-function,
according with [3]) on I, if for any closed subinterval [a, b] of I we have

sinh [p (b — z)]

sinh [p (z — a)]
sinh [p (b — a)]

sinh [p (b — a)] 1)

(1.3) flx) < fla)+
for all z € [a,b].

If the inequality (1.3) holds with ” > ", then the function will be called hyperbolic
p-concave on I.

Geometrically speaking, this means that the graph of f on [a,b] lies nowhere

above the p-hyperbolic function determined by the equation
H (z) = H (z;a,b, f) := Acosh (px) + Bsinh (px)

where A and B are chosen such that H (a) = f (a) and H (b) = f (b).
If we take x = (1 —t)a+tb € [a,b], ¢t € [0,1], then the condition (1.3) becomes

sinh [p (1 —t) (b — a)] sinh [pt (b — a)]

(14)  f((1=ta+th) < Snb [ (b — a)] f(a)+m

f(b)

for any t € [0,1].
We have the following properties of hyperbolic p-convex on I, [3].

(i) A hyperbolic p-convex function f : I — R has finite right and left deriv-
atives f! () and f’ (z) at every point x € I and f’ (z) < f) (x). The
function f is differentiable on I with the exception of an at most countable
set.

(ii) A necessary and sufficient condition for the function f : I — R to be
hyperbolic p-convex function on [ is that it satisfies the gradient inequality

(1.5) fy) = f(x)cosh[p(y — z)] + Ky ysinh [p (y — 2)]

for any @, y € I where K, 5 € [f_ (z), f} (z)] . If f is differentiable at the
point = then K, r = f' ().

(iii) A necessary and sufficient condition for the function f to be a hyperbolic
p-convex in I, is that the function

so<x>:f'<x>—p2/$f<t>dt

is nondecreasing on I, where a € I.
(iv) Let f : I — R be a two times continuously differentiable function on I.
Then f is hyperbolic p-convex on [ if and only if for all x € I we have

(L6) F" (@)~ p2f (@) = 0.

For other properties of hyperbolic p-convex functions, see [3].
Consider the function f,. : (0,00) — (0,00), fr(z) = 2" with p € R\ {0}. If
r € (—00,0) U[1,00) the function is convex and if r € (0, 1) it is concave. We have
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for r € (—o00,0) U[1,00)

F7 (@) = 2y (8) = (7 — 1) 272 — pPa” — pPar? (

We observe that f”(z) — p?f, (z) > 0 for x € (0, Y T(T1)> and f/'(x) —

Pl

p?fr(z) < 0 for z € <V T(r_l),oo> , which shows that the power function f,

[Pl

for r € (—00,0) U [1,00) is hyperbolic p-convex on (O, v T(;_1)> and hyperbolic
\r(r—1)

lpl

If r € (0,1), then f/(z) — p*f- (z) < 0 for any = > 0, which shows that f, is
hyperbolic p-concave on (0, 00) .

Consider the exponential function f, (z) = exp (ax) for @ # 0 and = € R. Then

p-concave on <

f(lx/ (.’IJ) _p2fa (LL') _ QQeaw _pZe(xw — (a2 _pQ) eaw7 x> 0.

If |a] > |p|, then f, is hyperbolic p-convex on R and if || < |p| then f, is
hyperbolic p-concave on R.

In this paper we establish several Fejér type integral inequalities for hyperbolic
p-convex functions.

2. SOME FEJER’S TYPE INEQUALITIES

We start with the following lemma of interest in itself:

Lemma 1. Assume that the function f : I — R is hyperbolic p-convex on I. Then
for any a, b € I with a <b and x € [a,b] we have

(2.1) f(“;b)cosh{p(x“gb)]gi[ﬂx)w(wbx)}
o f@+ f®)cosh[p(z— 5]

= 2 (b—a
cosh {p 5

=
[E—1

Proof. From (1.3) we have by replacing « with a + b — = that

< sinh [p (z — a)] sinh [p (b — )]

(2.2) fla+b—z) < sinh [p (b — a)] f(a) + mf (0)

for any x € [a,b].
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If we add (1.3) with (2.2) we get

(2.3) f@)+fla+b—1)
sinh [p (b — z)] sinh [p (z — a)]
= sinh [p (b — a)] fa) sinh [p (b — a)] 1)
sinh [p (z — a)] sinh [p (b — z)]
sinh [p (b — a)] fla)+ sinh [p (b — a)] F®
_ sinh [p(b—x)] +sinh[p(z — a)] f(a)
sinh [p (b — a)]
sinh [p (b — x)] + sinh [p (z — a)]
sinh [p (b — a)] 7
_ sinh [p (b — x)] 4 sinh [p (z — a)] a
_ Lt (@) + 1 0]

for any « € [a,b].
Observe that

(2.4) sinh [p (b — 2)] + sinh [p (z — a)]

sinh [p (b — a)]
~ 2sinh |20 | cosh [p (2 = 42)]  cosh [p (x - %22)]
92sinh [@} cosh [P(bfa):| cosh [P(b;a)]

for any x € [a,b].
Using the equality (2.4) and dividing by 2 in (2.3) we get the second inequality
in (2.1).

From (1.4) for t = 1 and a = u, b =v we get

u+v sinh [p (454)] u sinh [p (“5*)] v
f( 2 )SSinh[p(v—u)]f() smh[p(v—u)]f()
P UZ)  )+ f o)

sinh [p (v — u)]
sinh [p (5*)]

which implies that

(25) (M Yo [p (M51)] £ LS

for any u, v € I.
Now, if we in (2.5) take v = 2 and u = a + b — x, then we get the first inequality
in (2.1). |
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Remark 1. By taking © = (1 —t)a + tb in (2.1) we get the equivalent double
inequality

(2.6) f <a;b) cosh {p (t - ;) (b— a)]

[f(1=t)a+th)+ f (ta+ (1 —1¢t)b)]

fla)+f(b)cosh[p(t—73)(b—a)
2 cosh [@]

1
< Z
-2

<

foranya,bel andt € |0,1].
We have:

Theorem 2. Assume that the function f: I — R is hyperbolic p-convex on I and
a, b € I. Assume also that w : [a,b] — R is a positive, symmetric and integrable
function on [a,b], then we have

(2.7) f(“;rb>/abcosh[p<x—“;b)]w(x)dx
S/abf(x)w 7) d

- f(a);f(b) o {p(b2 a)] /abcosh {p <x a;b)] w () dz.

Proof. We multiply the inequality (2.1) by w () > 0 and integrate to get

28) f <‘“2Lb> /abcosh {p <x— “;b)] w (2) dz

b
gl/ [f () + f(a+b—2)|w(z)dz

2
~ S @+ f ) Jcosh[p(x— )] w (@) da
B 2 cosh {Lb;a)]

By using the change of variable y = a + b — x and the symmetry of w we have

/ubf(a—kb—w dx—/f w(a+b— ydy—/f (y) dy,

therefore

1 b b

5/ [f(a:)—l—f(a—i—b—a:)]w(x)dx:/ f(x)w(z)dx
and by (2.8) we get (2.7). O
Corollary 1. With the assumption of Theorem 2 for f we have

(2.9) (b—a)f (‘“Lb) /f Sech[ (x—a;b)}dx

fla)+f(®)  b-a

<
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and

(2.10) % [b—a—i— Zl)sinh[p(b—a)]} f (‘“2”’>

g/abf(x)cosh {p(z—a;b>]d$

b—a+ %sinh[p(b—a)] f(a)+ f(b)
2 cosh [M} 2

Proof. The inequality (2.9) follows by (2.7) for w(z) = sech [p (z — 2$2)], = €
[a,b] .
If we take in (2.7) w (z) = cosh [p (z — “E2)], then we get

(2.11) f(“;b> /abcosh2 [p <x—a;b>}dx
g/abf(x)cosh{p(x—“;b)]dx

_f @)+ F ) Jy cosh® [p (x — “FP)] de
= 2 cosh {paﬁa)] '
Since
/abcosh2 {p <x— “;b)] da = % [(b—a) +/abcosh [Qp <a:— “;b)] dx]
and

b
a+b 1 . a+b
/{Lcosh{Qp(x— 5 ﬂdm—%smh[Qp(x— 5 )}
1

= —sinh [2p<b a;—b)} f;smh {2p< - ath
P

= —sinh [p (b —a)],

hence

b
2 _atb SR A _
/a cosh {p (:c 5 )] dx = 5 {(b a)—i—psmh[p(b a))
and by (2.11) we get (2.10). O

Corollary 2. Assume that the function f: I — R is hyperbolic p-convex on I and
a, b € I. Assume also that q : [a,b] — R is a positive, symmetric and integrable
function on [a,b], then we have

212 1(%3) < qu(lx)dw[fu)q(x)sech (o= 25")] @

@20 [p0-0),
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The proof follows by Theorem 2 for the positive symmetric mean w (xz) =
q (x) sech [p (33 — %rb)] , T € la,b].

3. RELATED RESULTS
We have:

Theorem 3. Assume that the function f : 1 — R is hyperbolic p-convex on I and
a, b€ I. Assume also that w : [a,b] — R is a positive, integrable function on [a,b]
and

b .
(3.1) T, = %artanh (f% sinh (py) w (y) dy) € [a,b],

[, cosh (py) w (y) dy

then we have

b b
(3.2) / f@w@)de> f (fp)/ cosh [p (t — Tp)]w (t) dt.

Proof. From the gradient inequality (1.5) we have, by multiplying with w (y) > 0
and integrating on [a, b], that

b b
(3.3) / f @) w(y)dy > f (2) / cosh [p (y — )] w () dy

b
Ky [ sinhlp(y - o) w () dy

for any x € [a,b].
We have

b
/ sinh [p (y — 2)] w (y) dy

b
— [ s (py) cosh () — sinb () cosh (p)] w v) dy

b b
— cost () | sinls(py) 0 (5) dy = sinhs (pr) [ cosh () w (4) dy

= cosh (px bcos w f“b sinh (py)w (W) dy anh (pz
= cosh (pa) [ cosh (pm) 0 () dy (I;cosh@y)w(y)dy tanh (7 ))
for any z € [a,}].
From (3.1) we have
o f)sinh (py)w (y) dy
tanh (pT,) = =% ,
) J;, cosh (py) w (y) dy

which implies that

b
[ sinh o - 3w ) dy =0
Therefore, by taking T, in (3.3) we get the desired result (3.1). O

The following result also hold.
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Theorem 4. Assume that the function f: I — R is hyperbolic p-convex on I and
a, b€ I. Assume also that w : [a,b] — R is a positive, integrable function on [a,b],
then

b
(3.4) / f(x)w (z)dex
fa) + f(b)

< DT seen [p(b;a)}/abcosh [p (xa;bﬂw(:r)dx

+f@;prmhvw;@}L:m%?@_agﬁ]w@mm

Proof. We have
sinh [p (b — )] f (a) + sinh [p (= — a)) f ()
sinh [p (b — a)]

sinh[p(b — 2)] + sinh [p (¢ — )]  (a) + £ (B)
sinh [p (b — a)] 2

s (- L0270

2

Jsmbiple - o) (f(b)— W)
_ )= f(a {Sinh[zo(fv—a)] —sinhﬂp(b—w)}]
2

sinh [p (b — a)]

_ £(b) = f(a) sinh [p (x — “T'H’)] cosh [M]

2 2sinh [Lb;a)} cosh [Lb;a)]

and

sinh [p (b — z)] + sinh [p (z — a)]
sinh [p (b — a)]

_ 2sinh [@} cosh [p (z — )] cosh [p (z — *3*)]

2
2sinh [@} cosh [p(b_“)} cosh [p(b_a)]

for any x € [a,b].
Therefore

sinh [p (b — x)] f (a) + sinh [p (z — a)] f (b)

(3.5) sinh [p (b — a)]
_cosh[p(e— )] f(a) + f(5) , f(b)~ f(a)sinh [p(v— *3*)]
cosh {p(b;a)] 2 2 sinh [p(b_a)} 7

for any x € [a,b].
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If we multiply (3.5) by w (z) > 0 and integrate, then we get
f(a) f; sinh [p (b — z)]w (x) dx + f (b) f(f sinh [p (z — a)]w (x) dx
sinh [p (b — a)]

_ Msech {p(b;‘z)] /abcosh |:p (x— “;b)] w (2) dz

O 152] P o)t

Now, if we multiply the definition of hyperbolic p-convex functions by w (z) > 0
and integrate, then we get

(3.6)

/abf(w)w(w)dw

f(a) ff sinh [p (b — z)]w (z) dz + f (b) f; sinh [p (z — a)]w (x) dz
sinh [p (b — a)]
and by (3.6) we obtain the desired result (3.4). O

<

Corollary 3. With the assumption of Theorem 4 and if

(3.7) /:sinh [p (a:— “;rb)} w (z) dz = 0,

then the second inequality in (2.7) holds.

Remark 2. Since g (x) = sinh [p (ac — “T'H’)] is antisymmetric on [a,b], then, if w is
symmetric on [a, b, the condition (3.7) holds and then the second inequality in (2.7)
is valid. The condition (3.7) for the positive weight w is a more general condition
for the second inequality in (2.7) to hold than the usual symmetry considered in
Fejér’s type inequalities.
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