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SOME INEQUALITIES OF JENSEN TYPE FOR
TRIGONOMETRICALLY p-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we establish several Jensen type integral inequalities
for trigonometrically p-convex functions. Some examples for power function
and applications for continuous functions of selfadjoint operators on Hilbert
spaces are provided as well.

1. INTRODUCTION

Suppose that [ is an interval of real numbers with interior JTand ®:1 — Ris
a convex function on I. Then ® is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if z, y € I and o < y, then @ (z) <
¢’ () < @' (y) < @, (y) which shows that both ®_ and ®’_ are nondecreasing
function on I. It is also known that a convex function must be differentiable except
for at most countably many points.

For a convex function ® : I — R, the subdifferential of ® denoted by 9 is the

set of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

(1.1) O (z)>®(a)+ (x—a)p(a) for any z, a € 1.

It is also well known that if ® is convex on I, then 0® is nonempty, ®’_, &, € 9P
and if p € 99, then

d (z) < (z) <@, (z) for any z € I.

In particular, ¢ is a nondecreasing function.

If ® is differentiable and convex on I, then 9® = {9'}.

Let (2, A, 1) be a measurable space consisting of a set 2, a o -algebra A of parts
of Q and a countably additive and positive measure p on A with values in RU{oco} .
For a p-measurable function w : @ — R, with w (z) > 0 for u -a.e. (almost every)
x € §2, consider the Lebesgue space

Ly, (Qu):={f:Q—R, fis p-measurable and /Q If ()| w (z)dp (z) < oo}

For simplicity of notation we write everywhere in the sequel fQ wdp instead of
Jow () dp(x).

In order to provide a reverse of the celebrated Jensen’s integral inequality for
convex functions, we obtained in 2002 [7] the following result:
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Theorem 1. Let ® : [m, M] C R — R be a differentiable convex function on (m, M)
and f: Q — [m,M] so that ®o f, f, ®' o f, (D' o f)f € Ly, (Q,un), where w >0
p-a.e. (almost everywhere) on Q with fQ wdp = 1. Then we have the inequality:

(1.2) OS/Q(@of)wdu—tﬁ(/wadu>

< [[@op pudn= [ @opudu [ fudn

s%[@', (M) — " (m)]/ﬂ‘f—/gfwdu‘wdw

We also have the following result which provides a general Fejér’s type inequality
[11] for the general Lebesgue integral [8]:

Theorem 2. Let @ : [m, M] C R — R be a convex function on [m,M] and f : Q —
[m, M] so that ® o f, f € Ly, (), where w > 0 p-a.e. on Q with [, wdp = 1.
Then we have the inequalities:

a e () e () [ (1w
S/Q(flwf)wdu
Tz 0 (.,

where ¢ (5H) € [@F (=54, @ (m5H)]

In order to extend these results for trigonometrically p-convex functions, we need
the following preparations.

Let I be a finite or infinite open interval of real numbers and p > 0.

In the following we present the basic definitions and results concerning the class
of trigonometrically p-convex function, see for example [14], [15] and [3], [5], [6],
[12], [16], [17] and [18].

Following [1], we say that a function ® : I — R is trigonometrically p-convex on
I'if for any closed subinterval [a, b] of I with 0 <b—a < 7 we have

sin [p (b — )] sin [p (z — a)]
for all x € [a,b].
If the inequality (1.4) holds with ” > 7, then the function will be called trigono-
metrically p-concave on I.
Geometrically speaking, this means that the graph of ® on [a,b] lies nowhere
above the p-trigonometric function determined by the equation

H (z) = H (x;a,b,®) := Acos (px) + Bsin (px)

where A and B are chosen such that H (a) = ® (a) and H (b) = @ (b).
If we take x = (1 —t)a +tb € [a,b], t € [0,1], then the condition (1.4) becomes

sin[p(1—1t)(b—a)) B (a) + sin [pt (b — a)] o (b)

(15) (0] ((1 — t)a +tb) < sin [p (b 7 CL)] sin [p (b _ a)]

for any t € [0,1].
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We have the following properties of trigonometrically p-convex functions on I,
[1]:
(i) A trigonometrically p-convex function ® : I — R has finite right and left
derivatives @’ (z) and @’ (z) at every point x € I and &’ (z) < @' (z).
The function ® is differentiable on I with the exception of an at most
countable set.
(ii) A necessary and sufficient condition for the function ® : I — R to be
trigonometrically p-convex function on I is that it satisfies the gradient
inequality

(1.6) P (y) = @ (x)cos[p(y — x)] + Kz asinfp(y — )]

for any x, y € I where K, ¢ € [®_ (2),®/, (z)]. If ® is differentiable at
the point = then K, ¢ = &' (z).

(iii) A necessary and sufficient condition for the function ® to be a trigonomet-
rically p-convex in I, is that the function

x

o () =<I>/(a:)—|—p2/ B (1) dt
is nondecreasing on I, where a € I.
(iv) Let ® : I — R be a two times continuously differentiable function on I.
Then @ is trigonometrically p-convex on I if and only if for all z € I we
have

(1.7) " (z) + p*® (x) > 0.

For other properties of trigonometrically p-convex functions, see [1].
As general examples of trigonometrically p-convex functions we can give the
indicator function

log ‘ F (rei‘g) ‘
P

hr (0) := lim sup , 0€(a,p),

T—00
where F' is an entire function of order p € (0,00).

fo<pg—-—ax< %, then, it was shown in 1908 by Phragmén and Lindelsf, see
[14], that hp is trigonometrically p-convex on (a, f3) .

Using the condition (1.7) one can also observe that any nonnegative twice dif-
ferentiable and convex function on I is also trigonometrically p-convex on I for any
p> 0.

There exists also concave functions on an interval that are trigonometrically
p-convex on that interval for some p > 0.

Consider for example ® (x) = cosx on the interval [—% g] , then

®" (z) 4 p°® () = —cosz + p*cosz = (p* — 1) cosz,

which shows that it is trigonometrically p-convex on the interval [—g, g] for all
p > 1 and trigonometrically p-concave for p € (0,1).

In this paper we establish several Jensen type integral inequalities for trigono-
metrically p-convex functions. Some examples for power function and applications
for continuous functions of selfadjoint operators on Hilbert spaces are provided as
well.
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2. MAIN RESULTS

In the following we assume that p > 0 and m, M are real numbers such that
0<M-mc< %.

We have the following result:
Theorem 3. Let @ : [m, M] C R — R be a trigonometrically p-convex function on

[m, M] and f: Q — [m, M) so that ®o f, Do (m+ M — f), f € L, (Q, ), where
w >0 p-a.e. on Q. Then

o () Lo

;[lkéoﬁwmpﬁé¢oon+ﬂi—fﬂmé
P

(m) + @ (M) Joweos [p (f — "™F*)] du
- 2 p(M;m)] '

IN

(o)) |:

Proof. From (1.4) we have by replacing z with m + M — z that
sin [p (M — )]

o osmb-m)
(2.2) @ (m+ M =) < 8@ )+ S E S (M)

for any = € [m, M].
If we add (1.4) with (2.11) we get

(2.3) D(x)+P(m+ M —=x)
sin [p (M — )] sin [p (z — m)]
snfo L —m)] "™ S =y M)
sin [p (z —m)] sin [p (M — )]
sl Gl o =y ® Y
_sin[p(M — )] +sin [p (x —m)] .
B sin [p (M — m))] @ (m)
sin [p (M — z)] + sin [p (x — m)]
* sin [p (M — m)) @ (M)
_sin[p (M — x)] 4 sin [p (x — m)] .
B sin[p (M — m)] [ (m) + & (M)]
for any x € [m, M].
Observe that
sin [p (M — )] + sin [p (x — m)]
24 sin [p (M — m)]
~ 2sin [M] cos [p (z — mEM)] cos [p (- mEM)]
- 2sin [M} cos [W} B cos {p(M;m)}

for any = € [m, M].
Using the equality (2.4) and dividing by 2 in (2.3) we get

cos [p (z — mEM m
(25)  L[0(@) +®(mtM—1)] < bﬁﬂb$f]P()+¢wd

2 COS |:



SOME INEQUALITIES OF JENSEN TYPE 5

for any = € [m, M].
From (1.5) for t = 1 and m = u, M = v we get

w0\ _ sin[p (5] sin[p (*5)] &

*("57) < e gt
s ()] s @
e IIORTI0)

]
2sin [p (45%)] cos [p (454)]

1 P (u) + P (v)
cos [p (*5*)] 2

which implies that

(2.6) ¢><“;”>COS [p <”2“>} < ‘I’(U);Mv)

for any u, v € 1.
Now, if in (2.6) we take v = z and u =m + M — x, then we get

(2.7) <I><m+2j\4)cos[p<xmJ;M>}§;[<I)(x)+‘I>(m+Mm)]

for any = € [m, M].
By taking © = f(s), s € Qin (2.5) and (2.7), we get

=)

1
<@+ (m+ M~ f(s))]
_ () + B () cos [p (7 (5) — 25
=T 2 cos [A0L0]
for any s € Q.
By multiplying (2.8) with w (s) > 0 and integrate on 2, we get the desired result
(2.1). |

Corollary 1. Let ® : [m,M] C R — R be a trigonometrically p-convex function
on [m, M] and f : [a,b] — [m, M] so that Do f, Do (m+ M — f), f € Ly|[a,b],
where w > 0 p-a.e. on [a,b]. Then

(2.9) <I>(m;M>/abw(t)cos{p(f(t)—sz)]dt

b b
S;U @(f(t))w(t)dtJr/a <I>(m+Mf(t))w(t)dt]
_ D (m) + @ (M) J;w () cos [p(f (1) — 5] dt
- 2 cos {p(M;m)] '

We also have the Jensen’s type inequality:
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Theorem 4. Let @ : [m, M] C R — R be a trigonometrically p-convex function on
[m, M] and f : Q — [m, M| so that Do f, f € L, (Q, ), where w > 0 p-a.e. on Q.
Assume that [, cos (pf)wdp # 0 and

( fQ sin (pf) wdp

(2.10) f Laret
. w ‘= — arctan
P fQ cos (pf) wdp

: ) €.l

then we have:

(2.11) /Q (@ o fuwdp> D (F,.,) /Q cos [ (f = F)] wili.

Proof. By the gradient inequality (1.6) we have

(2.12) D(y) > (?mw) cos [p (y — ?p,w)} + K?,,,w‘i’ sin [p (y — fmw)]

for any y € [m, M].
If we replace y with f(s) € [m, M], multiply by w(s) > 0, with s € Q and
integrate on €2, we get

(2.13) /Q (@ o fuwdp > (F, ) /Q cos [p (f = T )] wilp

T K?M,;b /Q sin [P (f - fp)w)] wdp.

We have, by using the definition of fpﬂu, that

[ sin o (7 = 7,0 il
= /Q [sin (pf) cos (pf ) —sin (pf ,.) cos (pf)] wdp

=cos (pfpw) /Q sin (pf) wdp — sin (pf ,..,) /Q cos (pf) wdp

_ in (pf) wd _
= cos (pf ) /QCOS (pf) wdp Hm ~ tan (pfp,w)]

(pf)
=cos (pf,u) /QCOS (pf) wdp [f” sin Epf”)) wdp Jg sin (

B pf) wdu}
Jocos(pf)wdp [, cos (pf) wdp
=0
and by using the inequality (2.13) we deduce the desired result (2.11). O

The case of functions of a real variable is as follows:

Corollary 2. Let ® : [m, M] C R — R be a trigonometrically p-convex function
on [m,M] and f : |a,b] — [m, M] so that ® o f, f € L, [a,b], where w > 0 p-a.e.
on [a,b]. Assume that f; cos (pf (t))w(t)dt # 0 and
b
t t)dt
J sin (o1 () w (1) )emM]’
[ cos (of () w (1) dt

— 1
(2.14) [ pw = — arctan (
T

then we have:

b B b
ey [eumunazed,.,) [ wb@©-T,0)] v

We have the reverse of Jensen’s inequality:
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Theorem 5. Let @ : [m, M] C R — R be a trigonometrically p-convex function on
[m, M] and f : Q — [m, M| so that Do f, f € L, (Q, ), where w > 0 p-a.e. on Q.
Then

® (m) +® (M) Joweos [p (f — =F)] du

(216) /Q (© © f) ’U)du < 2 |:p(M—m):|
cos | =—5—

L 2(M) B (m) Jowsin[p(f = =5)] du

2 sin [M} '

Proof. We have
sin [p (M — z)] ® (m) + sin [p (x —m)] © (M)
sin [p (M —m)]
sinfp (M — )] + sin[p (z — m)] © (m) + @ (M)
sin [p (M — m))] 2

]
& (M) — ® (m) 28in [p (z — ™)) cos {p(M—m)}

2 2sin |:p(M2—m) i| cos |:p(1\12—’m) i|

® (M) — @ (m) sin [p (z — =51)]
2 sin [P(M;m)}

and
sin [p (M — )] + sin [p (z — m))]
sin[p (M — m)]

2sin {M] COs [p (DC — #)] _ cos [p (:c _ m;M)]
2sin {M} CcoSs {w] N cos |:p(M27m):|

for any = € [m, M].
Therefore

sin [p (M — 2)] ® (1m) + sin o (z — m)] ® (M)
(2.17) sin [p (M — )]
_cos [p(z — FH)] @ (m) + @ (M)
p(Mz—m)i| 2

[¢0)] |:

O (M) —®(m)sin |p (v —
+ 2 M[Ipl ({p(M;m)]

5]

for any x € [m, M].
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Now, let s € Q and by using the identity (2.17) for x = f(s) we have, by
multiplying with w (s) > 0 and integrating, that
@ (m) J,,wsin [p (M — )] di+ ® (M) [, wsin[p (f — m)] dy
sin[p (M —m)]
_ @(m) + @ (M) Joweos [p(f = =F)] dp
2 p(M*m)]
2

(2.18)

CcOos |:

@ (M) — @ (m) Jywsin [p (f — 5)] dp

- 2 M}
2

sin [
From the definition (1.4) we have

sin [p (M — f (s))]

sin[p (£ (s) = m)]
sinfp (M — m)] "

sin [p (M — m)]

(2.19) ®(f(s) < ®(m @ (M)

for any s € Q1.
If we multiply this inequality by w (s) > 0 and integrate, we get

/Q(@Of)wdu

_ B m) fywsinlp (M — f)]dp + @ (M) o wsin|p(f —m) d
= sinp (M —m)]

and by (2.18) we deduce the desired result (2.16) O

The case of functions of a real variable is as follows:

Corollary 3. Let ® : [m,M] C R — R be a trigonometrically p-convez function
on [m, M] and f : [a,b] — [m, M] so that ® o f, f € Ly, [a,b], where w > 0 p-a.e.
on [a,b] . Then

b m bw (t) cos — m+M
@%){/¢Uﬁ»w®ﬁ<¢();¢WDL 0 M%SLWQ )] di

COS [

@ (M) — @ (m) J,w(t)sin p (f (1) — ™5*)] dt.

+
2 sin |:P(M2*m)]

3. APPLICATIONS FOR SELFADJOINT OPERATORS

We denote by B(H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H;(-,-)). Let A € B(H) be selfadjoint and let ¢, be
defined for all A € R as follows

1, for —oc0 < s <A,

Py (s) =
0, for A < s < 4o0.

Then for every A € R the operator
(3.1) E\ :=¢p, (A)

is a projection which reduces A.
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The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [13, p. 256]:

Theorem 6 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min {\ |\ € Sp(A4)} =: min Sp (A) and
b=max{A|X € Sp(A)} =: maxSp(A). Then there exists a family of projections
{Ex}ycr, called the spectral family of A, with the following properties

a) Ex < Ey for A<\
b) E, 0=0,E,=1 and E)\+0 =F), for all A € R;
c) We have the representation

b
A= / AE).
a—0

More generally, for every continuous complex-valued function ¢ defined on R
there exists a unique operator ¢ (A) € B(H) such that for every € > 0 there exists
a § > 0 satisfying the inequality

| ¢ (A) - zn)p (ML) [Bx, — Ex,_ || <e

k=1

whenever
M<a=A<..<A_1< A, =0,

Ak —Ap—1 <0 for 1<k <n,

A, € [Me—1, M) for1<k<n

this means that

b
(3:2) e = [ pyam,

where the integral is of Riemann-Stieltjes type.

Corollary 4. With the assumptions of Theorem 6 for A, Ex and ¢ we have the
representations

b
@(A)x:/ ¢ (N)dE\z forallz € H
a—0

and

b
(3.3) (p(A)z,y) = /—090 (A d{Exz,y) forallxz, y < H.

Theorem 7. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min{A|A € Sp(A)} =: minSp(A4) and b = max{A|A € Sp(A)} =:
max Sp(A). Let ® : J C R — R be a trigonometrically p-convex function on J,
f:I—J,w:I — [0,00) continuous functions and such that [a,b] C I and
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f([a,b]) € [m, M] C J where 0 < M —m < Z. Then

) o ("5 u e | (£ - "))
@ (f (A)) + @ (m+ M — f (A))] w ()

< @(m); M) . {p(MQm)]w(A)COS {p(f(A)m;Mﬂ

L2m e [ﬂ(M—m)]w(A)COS [p<f(A)_m+M>}

in the operator order of B(H).

Proof. For small € > 0, since @ is continuous an (Fyz, z) (with « € H) is of bounded
variation on any closed interval, the Riemann-Stieltjes integrals exists in the fol-
lowing inequalities obtained from (2.1)

(3.6) @(m;M>l:w@ﬂ%P<ﬂﬂ—mth}ﬂﬁam

b b
[/ Wﬂmw@d@%@+/i¢W+M—ﬂmw@dW%@

—€

<

N | =

® (m)+® (M) [} w(t)cos [p(f (t) — ZEM)] d By, )
2

<

for any z € H.
By taking the limit over &€ — 0+ in (3.6) and utilising Corollary 4, we deduce

o(5) w52

% (@ (f (A)w(A)z,2) + (B (m+ M — f(A))w(A)z, )]

< @ (m) + @ (M) (w(A)cos [p(f (A) — 2EM)] 2, z)
- 2 p(M;m)}

IN

COS |:

for any & € H, which is equivalent to the desired operator inequality (3.4).
The inequality (3.5) follows in a similar way from the inequality (2.16). d

The following result also holds:

Theorem 8. With the assumptions of Theorem 7 and if

(sin (o (4)) w (A) 2, 2)
(cos (of (A)w (A, m>> € m. M,

- 1
(3.7 fowAz = ;arctan <
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and {cos (pf (A))w (A) z,x) # 0 for x € H, then
(3.8) (2(f(A)w(A)z, )
Z o (?p,w,A,z) <’LU (A) COS [p (.f (A) - ?p,w,A,le)} 1’,1’> .

The proof follows by the integral inequality (2.11) in a similar manner to the one
from Theorem 7 and we omit the details.

4. EXAMPLES FOR POWER FUNCTION

Consider the function @, : (0,00) — (0,00), @, (z) = 2" with » € R\ {0}. If
r € (—o00,0)U[1, 00) the function is convex and therefore trigonometrically p-convex
for any p > 0. If » € (0,1) then the function is concave and

O (z) + p*®, (x) = p*a" —r (1 —r)a" % = p2a"? <x2 — 7"(1p2—r)> , x> 0.
This shows that for r € (0,1) and p > 0 the function @, (x) = 2" is trigonometrically
p-convex on (% r(l—r), oo) and trigonometrically p-concave on (O, % r(l— 7“)) .

Assume that p > 0 and m, M are real numbers such that 0 < M —m < %.
We observe that if r € (—00,0) U [1,00) and [m,M] C (0,00) or r € (0,1) and
[m, M] C (% r(l— r),oo) , then @, (z) = 2" is trigonometrically p-convex on
[m, M] and by (2.1) we get

(=) Lo

;{Adeu+Akm+ﬂfﬁWM4

w4 A" fyweos [p (f — m54)]
- 2 p(MQ—M)} ’

IN

COs |:

where f: Q — [m, M] so that ", (m+M — f)", f € Ly, (Q,pn), and w > 0 p-a.e.
on €.
Under these assumptions, by making use of (2.15) we have

(42) [ rwdn=7,, [ cos[p(f~7,.)] win
Q Q
provided
1 Josin (pf) wdp
(43) fp,w = ;arctan (fQ(jos(pf)u)d/J> S [m, M] .
Finally, by utilising (2.16), we get
» [ i A vl
2 cos [ }

M7 fywsin o (£ 252)]
2 sin [ 20

+
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If r € (0,1) and [m, M] C (O, % r(l— 7‘)) , then the sign of inequality reverses
(4.1), (4.2) and (4.4).
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