
SOME INEQUALITIES OF JENSEN TYPE FOR
TRIGONOMETRICALLY �-CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish several Jensen type integral inequalities
for trigonometrically �-convex functions. Some examples for power function
and applications for continuous functions of selfadjoint operators on Hilbert
spaces are provided as well.

1. Introduction

Suppose that I is an interval of real numbers with interior �I and � : I ! R is
a convex function on I. Then � is continuous on �I and has �nite left and right
derivatives at each point of �I. Moreover, if x; y 2 �I and x < y; then �0� (x) �
�0+ (x) � �0� (y) � �0+ (y) which shows that both �

0
� and �

0
+ are nondecreasing

function on �I. It is also known that a convex function must be di¤erentiable except
for at most countably many points.
For a convex function � : I ! R, the subdi¤erential of � denoted by @� is the

set of all functions ' : I ! [�1;1] such that '
�
�I
�
� R and

(1.1) � (x) � � (a) + (x� a)' (a) for any x; a 2 I:

It is also well known that if � is convex on I; then @� is nonempty, �0�, �
0
+ 2 @�

and if ' 2 @�, then

�0� (x) � ' (x) � �0+ (x) for any x 2 �I.

In particular, ' is a nondecreasing function.
If � is di¤erentiable and convex on �I, then @� = f�0g :
Let (
;A; �) be a measurable space consisting of a set 
; a � -algebra A of parts

of 
 and a countably additive and positive measure � on A with values in R[f1g :
For a �-measurable function w : 
 ! R, with w (x) � 0 for � -a.e. (almost every)
x 2 
; consider the Lebesgue space

Lw (
; �) := ff : 
! R; f is �-measurable and
Z



jf (x)jw (x) d� (x) <1g:

For simplicity of notation we write everywhere in the sequel
R


wd� instead ofR



w (x) d� (x) :
In order to provide a reverse of the celebrated Jensen�s integral inequality for

convex functions, we obtained in 2002 [7] the following result:
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Theorem 1. Let � : [m;M ] � R! R be a di¤erentiable convex function on (m;M)
and f : 
 ! [m;M ] so that � � f; f; �0 � f; (�0 � f) f 2 Lw (
; �) ; where w � 0
�-a.e. (almost everywhere) on 
 with

R


wd� = 1: Then we have the inequality:

0 �
Z



(� � f)wd�� �
�Z




fwd�

�
(1.2)

�
Z



(�0 � f) fwd��
Z



(�0 � f)wd�
Z



fwd�

� 1

2

�
�0� (M)� �0� (m)

� Z



����f � Z



fwd�

����wd�:
We also have the following result which provides a general Fejér�s type inequality

[11] for the general Lebesgue integral [8]:

Theorem 2. Let � : [m;M ] � R! R be a convex function on [m;M ] and f : 
!
[m;M ] so that � � f; f 2 Lw (
; �) ; where w � 0 �-a.e. on 
 with

R


wd� = 1:

Then we have the inequalities:

�

�
m+M

2

�
+ '

�
m+M

2

�Z



�
f � m+M

2

�
wd�(1.3)

�
Z



(� � f)wd�

� � (m) + � (M)

2
+
� (M)� � (m)

M �m

Z



�
f � m+M

2

�
wd�;

where '
�
m+M
2

�
2
�
�0�
�
m+M
2

�
;�0+

�
m+M
2

��
:

In order to extend these results for trigonometrically �-convex functions, we need
the following preparations.
Let I be a �nite or in�nite open interval of real numbers and � > 0.
In the following we present the basic de�nitions and results concerning the class

of trigonometrically �-convex function, see for example [14], [15] and [3], [5], [6],
[12], [16], [17] and [18].
Following [1], we say that a function � : I ! R is trigonometrically �-convex on

I if for any closed subinterval [a; b] of I with 0 < b� a < �
� we have

(1.4) � (x) � sin [� (b� x)]
sin [� (b� a)]� (a) +

sin [� (x� a)]
sin [� (b� a)] � (b)

for all x 2 [a; b] :
If the inequality (1.4) holds with " � "; then the function will be called trigono-

metrically �-concave on I:
Geometrically speaking, this means that the graph of � on [a; b] lies nowhere

above the �-trigonometric function determined by the equation

H (x) = H (x; a; b;�) := A cos (�x) +B sin (�x)

where A and B are chosen such that H (a) = � (a) and H (b) = � (b) :
If we take x = (1� t) a+ tb 2 [a; b] ; t 2 [0; 1] ; then the condition (1.4) becomes

(1.5) � ((1� t) a+ tb) � sin [� (1� t) (b� a)]
sin [� (b� a)] � (a) +

sin [�t (b� a)]
sin [� (b� a)] � (b)

for any t 2 [0; 1] :
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We have the following properties of trigonometrically �-convex functions on I;
[1]:

(i) A trigonometrically �-convex function � : I ! R has �nite right and left
derivatives �0+ (x) and �

0
� (x) at every point x 2 I and �0� (x) � �0+ (x) :

The function � is di¤erentiable on I with the exception of an at most
countable set.

(ii) A necessary and su¢ cient condition for the function � : I ! R to be
trigonometrically �-convex function on I is that it satis�es the gradient
inequality

(1.6) � (y) � � (x) cos [� (y � x)] +Kx;� sin [� (y � x)]

for any x; y 2 I where Kx;� 2
�
�0� (x) ;�

0
+ (x)

�
: If � is di¤erentiable at

the point x then Kx;� = �
0 (x) :

(iii) A necessary and su¢ cient condition for the function � to be a trigonomet-
rically �-convex in I, is that the function

' (x) = �0 (x) + �2
Z x

a

� (t) dt

is nondecreasing on I; where a 2 I:
(iv) Let � : I ! R be a two times continuously di¤erentiable function on I:

Then � is trigonometrically �-convex on I if and only if for all x 2 I we
have

(1.7) �00 (x) + �2� (x) � 0:

For other properties of trigonometrically �-convex functions, see [1].
As general examples of trigonometrically �-convex functions we can give the

indicator function

hF (�) := lim sup
r!1

log
��F �rei����
r�

; � 2 (�; �) ;

where F is an entire function of order � 2 (0;1) :
If 0 < � � � < �

� ; then, it was shown in 1908 by Phragmén and Lindelöf, see
[14], that hF is trigonometrically �-convex on (�; �) :
Using the condition (1.7) one can also observe that any nonnegative twice dif-

ferentiable and convex function on I is also trigonometrically �-convex on I for any
� > 0:
There exists also concave functions on an interval that are trigonometrically

�-convex on that interval for some � > 0:
Consider for example � (x) = cosx on the interval

�
��
2 ;

�
2

�
; then

�00 (x) + �2� (x) = � cosx+ �2 cosx =
�
�2 � 1

�
cosx;

which shows that it is trigonometrically �-convex on the interval
�
��
2 ;

�
2

�
for all

� > 1 and trigonometrically �-concave for � 2 (0; 1) :
In this paper we establish several Jensen type integral inequalities for trigono-

metrically �-convex functions. Some examples for power function and applications
for continuous functions of selfadjoint operators on Hilbert spaces are provided as
well.
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2. Main Results

In the following we assume that � > 0 and m; M are real numbers such that
0 < M �m < �

� :

We have the following result:

Theorem 3. Let � : [m;M ] � R! R be a trigonometrically �-convex function on
[m;M ] and f : 
! [m;M ] so that � � f; � � (m+M � f) ; f 2 Lw (
; �) ; where
w � 0 �-a.e. on 
: Then

�

�
m+M

2

�Z



w cos

�
�

�
f � m+M

2

��
d�(2.1)

� 1

2

�Z



(� � f)wd�+
Z



� � (m+M � f)wd�
�

� � (m) + � (M)

2

R


w cos

�
�
�
f � m+M

2

��
d�

cos
h
�(M�m)

2

i :

Proof. From (1.4) we have by replacing x with m+M � x that

(2.2) � (m+M � x) � sin [� (x�m)]
sin [� (M �m)]� (m) +

sin [� (M � x)]
sin [� (M �m)]� (M)

for any x 2 [m;M ] :
If we add (1.4) with (2.11) we get

� (x) + � (m+M � x)(2.3)

� sin [� (M � x)]
sin [� (M �m)]� (m) +

sin [� (x�m)]
sin [� (M �m)]� (M)

+
sin [� (x�m)]
sin [� (M �m)]� (m) +

sin [� (M � x)]
sin [� (M �m)]� (M)

=
sin [� (M � x)] + sin [� (x�m)]

sin [� (M �m)] � (m)

+
sin [� (M � x)] + sin [� (x�m)]

sin [� (M �m)] � (M)

=
sin [� (M � x)] + sin [� (x�m)]

sin [� (M �m)] [� (m) + � (M)]

for any x 2 [m;M ] :
Observe that

sin [� (M � x)] + sin [� (x�m)]
sin [� (M �m)](2.4)

=
2 sin

h
�(M�m)

2

i
cos
�
�
�
x� m+M

2

��
2 sin

h
�(M�m)

2

i
cos
h
�(M�m)

2

i =
cos
�
�
�
x� m+M

2

��
cos
h
�(M�m)

2

i
for any x 2 [m;M ] :
Using the equality (2.4) and dividing by 2 in (2.3) we get

(2.5)
1

2
[� (x) + � (m+M � x)] �

cos
�
�
�
x� m+M

2

��
cos
h
�(M�m)

2

i �
� (m) + � (M)

2

�
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for any x 2 [m;M ] :
From (1.5) for t = 1

2 and m = u; M = v we get

�

�
u+ v

2

�
�
sin
�
�
�
v�u
2

��
sin [� (v � u)]� (u) +

sin
�
�
�
v�u
2

��
sin [� (v � u)]� (v)

=
sin
�
�
�
v�u
2

��
sin [� (v � u)] [� (u) + � (v)]

=
sin
�
�
�
v�u
2

��
2 sin

�
�
�
v�u
2

��
cos
�
�
�
v�u
2

�� [� (u) + � (v)]
=

1

cos
�
�
�
v�u
2

�� � (u) + � (v)
2

;

which implies that

(2.6) �

�
u+ v

2

�
cos

�
�

�
v � u
2

��
� � (u) + � (v)

2

for any u; v 2 I:
Now, if in (2.6) we take v = x and u = m+M � x; then we get

(2.7) �

�
m+M

2

�
cos

�
�

�
x� m+M

2

��
� 1

2
[� (x) + � (m+M � x)]

for any x 2 [m;M ] :
By taking x = f (s) ; s 2 
 in (2.5) and (2.7), we get

�

�
m+M

2

�
cos

�
�

�
f (s)� m+M

2

��
(2.8)

� 1

2
[� (f (s)) + � (m+M � f (s))]

� � (m) + � (M)

2

cos
�
�
�
f (s)� m+M

2

��
cos
h
�(M�m)

2

i
for any s 2 
:
By multiplying (2.8) with w (s) � 0 and integrate on 
; we get the desired result

(2.1). �

Corollary 1. Let � : [m;M ] � R! R be a trigonometrically �-convex function
on [m;M ] and f : [a; b] ! [m;M ] so that � � f; � � (m+M � f) ; f 2 Lw [a; b] ;
where w � 0 �-a.e. on [a; b] : Then

�

�
m+M

2

�Z b

a

w (t) cos

�
�

�
f (t)� m+M

2

��
dt(2.9)

� 1

2

"Z b

a

� (f (t))w (t) dt+

Z b

a

� (m+M � f (t))w (t) dt
#

� � (m) + � (M)

2

R b
a
w (t) cos

�
�
�
f (t)� m+M

2

��
dt

cos
h
�(M�m)

2

i :

We also have the Jensen�s type inequality:



6 S. S. DRAGOMIR

Theorem 4. Let � : [m;M ] � R! R be a trigonometrically �-convex function on
[m;M ] and f : 
! [m;M ] so that � � f; f 2 Lw (
; �) ; where w � 0 �-a.e. on 
:
Assume that

R


cos (�f)wd� 6= 0 and

(2.10) f�;w :=
1

�
arctan

�R


sin (�f)wd�R



cos (�f)wd�

�
2 [m;M ] ;

then we have:

(2.11)
Z



(� � f)wd� � �
�
f�;w

� Z



cos
�
�
�
f � f�;w

��
wd�:

Proof. By the gradient inequality (1.6) we have

(2.12) � (y) � �
�
f�;w

�
cos
�
�
�
y � f�;w

��
+Kf�;w;�

sin
�
�
�
y � f�;w

��
for any y 2 [m;M ] :
If we replace y with f (s) 2 [m;M ], multiply by w (s) � 0; with s 2 
 and

integrate on 
; we getZ



(� � f)wd� � �
�
f�;w

� Z



cos
�
�
�
f � f�;w

��
wd�(2.13)

+Kf�;w;�

Z



sin
�
�
�
f � f�;w

��
wd�:

We have, by using the de�nition of f�;w; thatZ



sin
�
�
�
f � f�;w

��
wd�

=

Z



�
sin (�f) cos

�
�f�;w

�
� sin

�
�f�;w

�
cos (�f)

�
wd�

= cos
�
�f�;w

� Z



sin (�f)wd�� sin
�
�f�;w

� Z



cos (�f)wd�

= cos
�
�f�;w

� Z



cos (�f)wd�

� R


sin (�f)wd�R



cos (�f)wd�

� tan
�
�f�;w

��
= cos

�
�f�;w

� Z



cos (�f)wd�

� R


sin (�f)wd�R



cos (�f)wd�

�
R


sin (�f)wd�R



cos (�f)wd�

�
= 0

and by using the inequality (2.13) we deduce the desired result (2.11). �
The case of functions of a real variable is as follows:

Corollary 2. Let � : [m;M ] � R! R be a trigonometrically �-convex function
on [m;M ] and f : [a; b] ! [m;M ] so that � � f; f 2 Lw [a; b] ; where w � 0 �-a.e.
on [a; b] : Assume that

R b
a
cos (�f (t))w (t) dt 6= 0 and

(2.14) f�;w :=
1

�
arctan

 R b
a
sin (�f (t))w (t) dtR b

a
cos (�f (t))w (t) dt

!
2 [m;M ] ;

then we have:

(2.15)
Z b

a

� (f (t))w (t) dt � �
�
f�;w

� Z b

a

cos
�
�
�
f (t)� f�;w

��
w (t) dt:

We have the reverse of Jensen�s inequality:
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Theorem 5. Let � : [m;M ] � R! R be a trigonometrically �-convex function on
[m;M ] and f : 
! [m;M ] so that � � f; f 2 Lw (
; �) ; where w � 0 �-a.e. on 
:
Then Z




(� � f)wd� � � (m) + � (M)

2

R


w cos

�
�
�
f � m+M

2

��
d�

cos
h
�(M�m)

2

i(2.16)

+
�(M)� � (m)

2

R


w sin

�
�
�
f � m+M

2

��
d�

sin
h
�(M�m)

2

i :

Proof. We have

sin [� (M � x)] � (m) + sin [� (x�m)] � (M)
sin [� (M �m)]

� sin [� (M � x)] + sin [� (x�m)]
sin [� (M �m)]

� (m) + � (M)

2

=
sin [� (M � x)]
sin [� (M �m)]

�
� (m)� � (m) + � (M)

2

�
+
sin [� (x�m)]
sin [� (M �m)]

�
� (M)� � (m) + � (M)

2

�
=
�(M)� � (m)

2

�
sin [� (x�m)]� sin [� (M � x)]

sin [� (M �m)]

�

=
�(M)� � (m)

2

2 sin
�
�
�
x� m+M

2

��
cos
h
�(M�m)

2

i
2 sin

h
�(M�m)

2

i
cos
h
�(M�m)

2

i
=
�(M)� � (m)

2

sin
�
�
�
x� m+M

2

��
sin
h
�(M�m)

2

i
and

sin [� (M � x)] + sin [� (x�m)]
sin [� (M �m)]

=
2 sin

h
�(M�m)

2

i
cos
�
�
�
x� m+M

2

��
2 sin

h
�(M�m)

2

i
cos
h
�(M�m)

2

i =
cos
�
�
�
x� m+M

2

��
cos
h
�(M�m)

2

i
for any x 2 [m;M ] :
Therefore

sin [� (M � x)] � (m) + sin [� (x�m)] � (M)
sin [� (M �m)](2.17)

=
cos
�
�
�
x� m+M

2

��
cos
h
�(M�m)

2

i � (m) + � (M)

2

+
� (M)� � (m)

2

sin
�
�
�
x� m+M

2

��
sin
h
�(M�m)

2

i ;

for any x 2 [m;M ] :
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Now, let s 2 
 and by using the identity (2.17) for x = f (s) we have, by
multiplying with w (s) � 0 and integrating, that

� (m)
R


w sin [� (M � f)] d�+�(M)

R


w sin [� (f �m)] d�

sin [� (M �m)](2.18)

=
�(m) + � (M)

2

R


w cos

�
�
�
f � m+M

2

��
d�

cos
h
�(M�m)

2

i
+
�(M)� � (m)

2

R


w sin

�
�
�
f � m+M

2

��
d�

sin
h
�(M�m)

2

i :

From the de�nition (1.4) we have

(2.19) � (f (s)) � sin [� (M � f (s))]
sin [� (M �m)] � (m) +

sin [� (f (s)�m)]
sin [� (M �m)] � (M)

for any s 2 
 .
If we multiply this inequality by w (s) � 0 and integrate, we getZ




(� � f)wd�

�
� (m)

R


w sin [� (M � f)] d�+�(M)

R


w sin [� (f �m)] d�

sin [� (M �m)]
and by (2.18) we deduce the desired result (2.16) �

The case of functions of a real variable is as follows:

Corollary 3. Let � : [m;M ] � R! R be a trigonometrically �-convex function
on [m;M ] and f : [a; b] ! [m;M ] so that � � f; f 2 Lw [a; b] ; where w � 0 �-a.e.
on [a; b] : ThenZ b

a

� (f (t))w (t) dt � � (m) + � (M)

2

R b
a
w (t) cos

�
�
�
f (t)� m+M

2

��
dt

cos
h
�(M�m)

2

i(2.20)

+
�(M)� � (m)

2

R b
a
w (t) sin

�
�
�
f (t)� m+M

2

��
dt

sin
h
�(M�m)

2

i :

3. Applications for Selfadjoint Operators

We denote by B (H) the Banach algebra of all bounded linear operators on
a complex Hilbert space (H; h�; �i) : Let A 2 B (H) be selfadjoint and let '� be
de�ned for all � 2 R as follows

'� (s) :=

8<: 1; for �1 < s � �;

0; for � < s < +1:
Then for every � 2 R the operator

(3.1) E� := '� (A)

is a projection which reduces A:
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The properties of these projections are collected in the following fundamental
result concerning the spectral representation of bounded selfadjoint operators in
Hilbert spaces, see for instance [13, p. 256]:

Theorem 6 (Spectral Representation Theorem). Let A be a bounded selfadjoint
operator on the Hilbert space H and let a = min f� j� 2 Sp (A)g =: minSp (A) and
b = max f� j� 2 Sp (A)g =: maxSp (A) : Then there exists a family of projections
fE�g�2R, called the spectral family of A; with the following properties

a) E� � E�0 for � � �0;
b) Ea�0 = 0; Eb = I and E�+0 = E� for all � 2 R;
c) We have the representation

A =

Z b

a�0
�dE�:

More generally, for every continuous complex-valued function ' de�ned on R
there exists a unique operator ' (A) 2 B (H) such that for every " > 0 there exists
a � > 0 satisfying the inequality




' (A)�

nX
k=1

'
�
�0k
� �
E�k � E�k�1

�




 � "
whenever 8>>>><>>>>:

�0 < a = �1 < ::: < �n�1 < �n = b;

�k � �k�1 � � for 1 � k � n;

�0k 2 [�k�1; �k] for 1 � k � n

this means that

(3.2) ' (A) =

Z b

a�0
' (�) dE�;

where the integral is of Riemann-Stieltjes type.

Corollary 4. With the assumptions of Theorem 6 for A; E� and ' we have the
representations

' (A)x =

Z b

a�0
' (�) dE�x for all x 2 H

and

(3.3) h' (A)x; yi =
Z b

a�0
' (�) d hE�x; yi for all x; y 2 H:

Theorem 7. Let A be a bounded selfadjoint operator on the Hilbert space H
and let a = min f� j� 2 Sp (A)g =: minSp (A) and b = max f� j� 2 Sp (A)g =:
maxSp (A) : Let � : J � R! R be a trigonometrically �-convex function on J ,
f : I ! J , w : I ! [0;1) continuous functions and such that [a; b] � I and
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f ([a; b]) � [m;M ] � J where 0 < M �m < �
� : Then

(3.4) �

�
m+M

2

�
w (A) cos

�
�

�
f (A)� m+M

2

��
� 1

2
[� (f (A)) + � (m+M � f (A))]w (A)

� � (m) + � (M)

2
sec

�
� (M �m)

2

�
w (A) cos

�
�

�
f (A)� m+M

2

��
and

(3.5) � (f (A))w (A)

� � (m) + � (M)

2
sec

�
� (M �m)

2

�
w (A) cos

�
�

�
f (A)� m+M

2

��
+
�(M)� � (m)

2
csc

�
� (M �m)

2

�
w (A) sin

�
�

�
f (A)� m+M

2

��
:

in the operator order of B (H) :

Proof. For small " > 0; since � is continuous an hEtx; xi (with x 2 H) is of bounded
variation on any closed interval, the Riemann-Stieltjes integrals exists in the fol-
lowing inequalities obtained from (2.1)

(3.6) �

�
m+M

2

�Z b

a�"
w (t) cos

�
�

�
f (t)� m+M

2

��
d hEtx; xi

� 1

2

"Z b

a�"
� (f (t))w (t) d hEtx; xi+

Z b

a�"
� (m+M � f (t))w (t) d hEtx; xi

#

� � (m) + � (M)

2

R b
a�" w (t) cos

�
�
�
f (t)� m+M

2

��
d hEtx; xi

cos
h
�(M�m)

2

i ;

for any x 2 H:
By taking the limit over "! 0+ in (3.6) and utilising Corollary 4, we deduce

�

�
m+M

2

��
w (A) cos

�
�

�
f (A)� m+M

2

��
x; x

�
� 1

2
[h� (f (A))w (A)x; xi+ h� (m+M � f (A))w (A)x; xi]

� � (m) + � (M)

2



w (A) cos

�
�
�
f (A)� m+M

2

��
x; x

�
cos
h
�(M�m)

2

i
for any x 2 H; which is equivalent to the desired operator inequality (3.4).
The inequality (3.5) follows in a similar way from the inequality (2.16). �

The following result also holds:

Theorem 8. With the assumptions of Theorem 7 and if

(3.7) f�;w;A;x :=
1

�
arctan

�
hsin (�f (A))w (A)x; xi
hcos (�f (A))w (A)x; xi

�
2 [m;M ] ;
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and hcos (�f (A))w (A)x; xi 6= 0 for x 2 H; then

(3.8) h� (f (A))w (A)x; xi
� �

�
f�;w;A;x

� 

w (A) cos

�
�
�
f (A)� f�;w;A;x1H

��
x; x

�
:

The proof follows by the integral inequality (2.11) in a similar manner to the one
from Theorem 7 and we omit the details.

4. Examples for Power Function

Consider the function �r : (0;1) ! (0;1) ; �r (x) = xr with r 2 Rn f0g : If
r 2 (�1; 0)[[1;1) the function is convex and therefore trigonometrically �-convex
for any � > 0: If r 2 (0; 1) then the function is concave and

�00r (x) + �
2�r (x) = �

2xr � r (1� r)xr�2 = �2xr�2
�
x2 � r (1� r)

�2

�
; x > 0:

This shows that for r 2 (0; 1) and � > 0 the function �r (x) = xr is trigonometrically
�-convex on

�
1
�

p
r (1� r);1

�
and trigonometrically �-concave on

�
0; 1�

p
r (1� r)

�
:

Assume that � > 0 and m; M are real numbers such that 0 < M � m < �
� :

We observe that if r 2 (�1; 0) [ [1;1) and [m;M ] � (0;1) or r 2 (0; 1) and
[m;M ] �

�
1
�

p
r (1� r);1

�
; then �r (x) = xr is trigonometrically �-convex on

[m;M ] and by (2.1) we get�
m+M

2

�r Z



w cos

�
�

�
f � m+M

2

��
d�(4.1)

� 1

2

�Z



frwd�+

Z



(m+M � f)r wd�
�

� mr +Mr

2

R


w cos

�
�
�
f � m+M

2

��
d�

cos
h
�(M�m)

2

i ;

where f : 
! [m;M ] so that fr; (m+M � f)r ; f 2 Lw (
; �) ; and w � 0 �-a.e.
on 
:
Under these assumptions, by making use of (2.15) we have

(4.2)
Z



frwd� � fr�;w
Z



cos
�
�
�
f � f�;w

��
wd�;

provided

(4.3) f�;w :=
1

�
arctan

�R


sin (�f)wd�R



cos (�f)wd�

�
2 [m;M ] :

Finally, by utilising (2.16), we getZ



frwd� � mr +Mr

2

R


w cos

�
�
�
f � m+M

2

��
d�

cos
h
�(M�m)

2

i(4.4)

+
Mr �mr

2

R


w sin

�
�
�
f � m+M

2

��
d�

sin
h
�(M�m)

2

i :
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If r 2 (0; 1) and [m;M ] �
�
0; 1�

p
r (1� r)

�
; then the sign of inequality reverses

in (4.1), (4.2) and (4.4).
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