FURTHER INEQUALITIES FOR TRIGONOMETRICALLY ρ -CONVEX FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR^{1,2}

ABSTRACT. In this paper we establish some new inequalities for trigonometrically ρ -convex functions. Applications for discrete inequalities of Jensen's type are also provided.

1. INTRODUCTION

Let I be a finite or infinite open interval of real numbers and $\rho > 0$.

In the following we present the basic definitions and results concerning the class of trigonometrically ρ -convex function, see for example [13], [14] and [3], [5], [6], [12], [15], [17] and [18].

Following [1], we say that a function $f: I \to \mathbb{R}$ is trigonometrically ρ -convex on I if for any closed subinterval [a, b] of I with $0 < b - a < \frac{\pi}{\rho}$ we have

(1.1)
$$f(x) \le \frac{\sin \left[\rho \left(b-x\right)\right]}{\sin \left[\rho \left(b-a\right)\right]} f(a) + \frac{\sin \left[\rho \left(x-a\right)\right]}{\sin \left[\rho \left(b-a\right)\right]} f(b)$$

for all $x \in [a, b]$.

If the inequality (1.1) holds with " \geq ", then the function will be called *trigono-metrically* ρ -concave on I.

Geometrically speaking, this means that the graph of f on [a, b] lies nowhere above the ρ -trigonometric function determined by the equation

 $H(x) = H(x; a, b, f) := A\cos(\rho x) + B\sin(\rho x)$

where A and B are chosen such that H(a) = f(a) and H(b) = f(b).

If we take $x = (1 - t)a + tb \in [a, b]$, $t \in [0, 1]$, then the condition (1.1) becomes

(1.2)
$$f((1-t)a+tb) \le \frac{\sin\left[\rho(1-t)(b-a)\right]}{\sin\left[\rho(b-a)\right]}f(a) + \frac{\sin\left[\rho t(b-a)\right]}{\sin\left[\rho(b-a)\right]}f(b)$$

for any $t \in [0, 1]$.

We have the following properties of trigonometrically ρ -convex on I, [1].

(i) A trigonometrically ρ -convex function $f: I \to \mathbb{R}$ has finite right and left derivatives $f'_+(x)$ and $f'_-(x)$ at every point $x \in I$ and $f'_-(x) \leq f'_+(x)$. The function f is differentiable on I with the exception of an at most countable set.

RGMIA Res. Rep. Coll. 21 (2018), Art. 29, 13 pp.

¹⁹⁹¹ Mathematics Subject Classification. 26D15, 26D10, 26D07, 26A33.

Key words and phrases. Convex functions, Trigonometrically ρ -Convex Functions, Hermite-Hadamard inequality, Integral inequalities, Jensen's discrete inequality.

S. S. DRAGOMIR

(ii) A necessary and sufficient condition for the function $f: I \to \mathbb{R}$ to be trigonometrically ρ -convex function on I is that it satisfies the *gradient* inequality

(1.3)
$$f(y) \ge f(x) \cos [\rho(y-x)] + K_{x,f} \sin [\rho(y-x)]$$

for any $x, y \in I$ where $K_{x,f} \in [f'_{-}(x), f'_{+}(x)]$. If f is differentiable at the point x then $K_{x,f} = f'(x)$.

(iii) A necessary and sufficient condition for the function f to be a trigonometrically ρ -convex in I, is that the function

$$\varphi(x) = f'(x) + \rho^2 \int_a^x f(t) dt$$

is nondecreasing on I, where $a \in I$.

(iv) Let $f: I \to \mathbb{R}$ be a two times continuously differentiable function on I. Then f is trigonometrically ρ -convex on I if and only if for all $x \in I$ we have

(1.4)
$$f''(x) + \rho^2 f(x) \ge 0$$

For other properties of trigonometrically ρ -convex functions, see [1].

As general examples of trigonometrically ρ -convex functions we can give the indicator function

$$h_{F}(\theta) := \limsup_{r \to \infty} \frac{\log \left| F\left(re^{i\theta}\right) \right|}{r^{\rho}}, \ \theta \in (\alpha, \beta),$$

where F is an entire function of order $\rho \in (0, \infty)$.

If $0 < \beta - \alpha < \frac{\pi}{\rho}$, then, it was shown in 1908 by Phragmén and Lindelöf, see [13], that h_F is trigonometrically ρ -convex on (α, β) .

Using the condition (1.4) one can also observe that any nonnegative twice differentiable and convex function on I is also trigonometrically ρ -convex on I for any $\rho > 0.$

There exists also concave functions on an interval that are trigonometrically ρ -convex on that interval for some $\rho > 0$.

Consider for example $f(x) = \cos x$ on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, then

$$f''(x) + \rho^2 f(x) = -\cos x + \rho^2 \cos x = (\rho^2 - 1)\cos x$$

which shows that it is trigonometrically ρ -convex on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ for all $\rho > 1$ and trigonometrically ρ -concave for $\rho \in (0, 1)$.

Consider the function $f: (0,\infty) \to (0,\infty), f(x) = x^p$ with $p \in \mathbb{R} \setminus \{0\}$. If $p \in (-\infty, 0) \cup [1, \infty)$ the function is convex and therefore trigonometrically ρ -convex for any $\rho > 0$. If $p \in (0, 1)$ then the function is concave and

$$f''(x) + \rho^2 f(x) = \rho^2 x^p - p(1-p) x^{p-2} = \rho^2 x^{p-2} \left(x^2 - \frac{p(1-p)}{\rho^2} \right), \ x > 0.$$

This shows that for $p \in (0, 1)$ and $\rho > 0$ the function $f(x) = x^p$ is trigonometrically ρ -convex on $\left(\frac{1}{\rho}\sqrt{p(1-p)},\infty\right)$ and trigonometrically ρ -concave on $\left(0,\frac{1}{\rho}\sqrt{p(1-p)}\right)$. Consider the concave function $f:(0,\infty) \to \mathbb{R}, f(x) = \ln x$. We observe that

$$g(x) := f''(x) + \rho^2 f(x) = \rho^2 \ln x - \frac{1}{x^2}, \ x > 0.$$

2

3

We have $g'(x) = \frac{2+\rho^2 x^2}{x^2} > 0$ for x > 0 and $\lim_{x\to 0+} g(x) = -\infty$, $\lim_{x\to\infty} g(x) = \infty$, showing that the function g is strictly increasing on $(0,\infty)$ and the equation g(x) = 0 has a unique solution. Therefore g(x) < 0 for $x \in (0, x_{\rho})$ and g(x) > 0 for $x \in (x_{\rho}, \infty)$, where x_{ρ} is the unique solution of the equation $\ln x = \frac{1}{\rho^2 x^2}$. We observe that $x_{\rho} > 1$.

In conclusion, if $\rho > 0$, then the function $f(x) = \ln x$ is trigonometrically ρ -concave on $(0, x_{\rho})$ and trigonometrically ρ -convex on (x_{ρ}, ∞) .

The following Hermite-Hadamard type inequality that was obtained in 2013 in [2].

Theorem 1. Assume that the function $f: I \to \mathbb{R}$ is trigonometrically ρ -convex on I. Then for any $a, b \in I$ with $0 < b - a < \frac{\pi}{\rho}$ we have

(1.5)
$$\frac{2}{\rho}f\left(\frac{a+b}{2}\right)\sin\left[\frac{\rho\left(b-a\right)}{2}\right] \le \int_{a}^{b}f\left(x\right)dx \le \frac{f\left(a\right)+f\left(b\right)}{\rho}\tan\left[\frac{\rho\left(b-a\right)}{2}\right].$$

The inequality (1.5) for $\rho = 1$ was obtained in 2004 by M. Bessenyei in his Ph.D. Thesis [4, Corollary 2.13] in the context of Chebyshev system (cos, sin). For a simpler proof than provided in [2] and the following related results, see [11]:

Theorem 2. Assume that the function $f: I \to \mathbb{R}$ is trigonometrically ρ -convex on I. Then for any $a, b \in I$ with $0 < b - a < \frac{\pi}{\rho}$ we have

(1.6)
$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \sec\left[\rho\left(x-\frac{a+b}{2}\right)\right] dx \le \frac{f(a)+f(b)}{2}$$

and

$$(1.7) \quad \frac{1}{2} \left[b - a + \frac{1}{\rho} \sin\left[\rho\left(b - a\right)\right] \right] f\left(\frac{a+b}{2}\right) \le \int_{a}^{b} f\left(x\right) \cos\left[\rho\left(x - \frac{a+b}{2}\right)\right] dx$$
$$\le \frac{b - a + \frac{1}{\rho} \sin\left[\rho\left(b - a\right)\right]}{2 \cos\left[\frac{\rho\left(b-a\right)}{2}\right]} \frac{f\left(a\right) + f\left(b\right)}{2}.$$

Motivated by the above results, in this paper we establish some new inequalities for trigonometrically ρ -convex functions. Applications for discrete inequalities of Jensen's type are also provided.

2. One Variable Inequalities

The following upper and lower bounds for the function f holds:

Theorem 3. Let $f : I \to \mathbb{R}$ be a twice differentiable and ρ -trigonometrically convex function on I and $[a, b] \subset I$ with $0 < b - a < \frac{\pi}{\rho}$. Then for any $x \in [a, b]$ we have

(2.1)
$$f(a) + f'_{+}(a)(x-a) - \rho^2 \int_a^x (x-t) f(t) dt$$

 $\leq f(x)$

$$\leq f(a) + f'_{-}(b)(x-a) + \rho^{2} \left[(x-a) \int_{x}^{b} f(s) \, ds + \int_{a}^{x} (t-a) f(t) \, dt \right]$$

and

4

(2.2)
$$f(b) - f'_{-}(b)(b-x) + \rho^2 \int_x^b (x-t) f(t) dt$$

$$\leq f(x)$$

$$\leq f(b) - f'_{+}(a)(b-x) + \rho^{2} \left[(b-x) \int_{a}^{x} f(s) \, ds + \int_{x}^{b} (b-t) f(t) \, dt \right].$$

Proof. Let $[a,b] \subset I$ and $t \in [a,b]$. Assume that f is differentiable at t (and this happens in all the points of [a,b] except at most a countable number of them, see (ii)). Using the monotonicity property from Introduction, (iii) we get that

$$f'(t) + \rho^2 \int_a^t f(s) \, ds \ge f'_+(a) \, ,$$

which is equivalent to

$$f'(t) \ge f'(a) - \rho^2 \int_a^t f(s) \, ds$$

for $t \in [a, b]$ with the above property.

Using the monotonicity property from (iii) we also get that

$$f'_{-}(b) \ge f'(t) + \rho^2 \int_{b}^{t} f(s) \, ds,$$

which is equivalent to

$$f_{-}^{\prime}\left(b\right)+\rho^{2}\int_{t}^{b}f\left(s\right)ds\geq f^{\prime}\left(t\right),$$

for $t \in [a, b]$ with the above property.

Therefore we have the following upper and lower bounds for the derivative

(2.3)
$$f'_{+}(a) - \rho^{2} \int_{a}^{t} f(s) \, ds \le f'(t) \le f'_{-}(b) + \rho^{2} \int_{t}^{b} f(s) \, ds$$

for $t \in [a, b]$ with the above property.

Let $x \in [a, b]$ and integrate the inequality (2.3) over t on [a, x] to get

(2.4)
$$f'_{+}(a)(x-a) - \rho^{2} \int_{a}^{x} \left(\int_{a}^{t} f(s) ds \right) dt \le f(x) - f(a)$$

 $\le f'_{-}(b)(x-a) + \rho^{2} \int_{a}^{x} \left(\int_{t}^{b} f(s) ds \right) dt.$

Integrating by parts, we have

$$\int_{a}^{x} \left(\int_{a}^{t} f(s) ds \right) dt = t \int_{a}^{t} f(s) ds \Big|_{a}^{x} - \int_{a}^{x} tf(t) dt$$
$$= x \int_{a}^{x} f(s) ds - \int_{a}^{x} tf(t) dt = \int_{a}^{x} (x-t) f(t) dt$$

5

and

$$\int_{a}^{x} \left(\int_{t}^{b} f(s) \, ds \right) dt = \int_{a}^{x} \left(\int_{a}^{b} f(s) \, ds - \int_{a}^{t} f(s) \, ds \right) dt$$
$$= (x-a) \int_{a}^{b} f(s) \, ds - \int_{a}^{x} (x-t) f(t) \, dt$$

and by (2.4) we get

$$(2.5) \quad f'_{+}(a)(x-a) - \rho^{2} \int_{a}^{x} (x-t) f(t) dt \leq f(x) - f(a)$$

$$\leq f'_{-}(b)(x-a) + \rho^{2}(x-a) \int_{a}^{b} f(s) ds - \rho^{2} \int_{a}^{x} (x-t) f(t) dt$$

$$= f'_{-}(b)(x-a) + \rho^{2}(x-a) \int_{a}^{x} f(s) ds$$

$$+ \rho^{2}(x-a) \int_{x}^{b} f(s) ds - \rho^{2} \int_{a}^{x} (x-t) f(t) dt$$

$$= f'_{-}(b)(x-a) + \rho^{2}(x-a) \int_{x}^{b} f(s) ds + \rho^{2} \int_{a}^{x} (t-a) f(t) dt,$$

for any $x \in [a, b]$, which proves (2.1).

Let $x \in [a, b]$ and integrate the inequality (2.3) over t on [x, b] to get

(2.6)
$$f'_{+}(a)(b-x) - \rho^{2} \int_{x}^{b} \left(\int_{a}^{t} f(s) ds \right) dt \le f(b) - f(x)$$

 $\le f'_{-}(b)(b-x) + \rho^{2} \int_{x}^{b} \left(\int_{t}^{b} f(s) ds \right) dt$

for any $x \in [a, b]$.

Integrating by parts, we have

$$\int_{x}^{b} \left(\int_{a}^{t} f(s) \, ds \right) dt = t \int_{a}^{t} f(s) \, ds \Big|_{x}^{b} - \int_{x}^{b} tf(t) \, dt$$

= $b \int_{a}^{b} f(s) \, ds - x \int_{a}^{x} f(s) \, ds - \int_{x}^{b} tf(t) \, dt$
= $b \int_{a}^{x} f(s) \, ds + b \int_{x}^{b} f(s) \, ds - x \int_{a}^{x} f(s) \, ds - \int_{x}^{b} tf(t) \, dt$
= $(b - x) \int_{a}^{x} f(s) \, ds + \int_{x}^{b} (b - t) f(t) \, dt$

and

$$\int_{x}^{b} \left(\int_{t}^{b} f(s) \, ds \right) dt = \int_{x}^{b} \left(\int_{a}^{b} f(s) \, ds - \int_{a}^{t} f(s) \, ds \right) dt$$
$$= (b-x) \int_{a}^{b} f(s) \, ds - (b-x) \int_{a}^{x} f(s) \, ds - \int_{x}^{b} (b-t) \, f(t) \, dt$$
$$= (b-x) \int_{x}^{b} f(s) \, ds - \int_{x}^{b} (b-t) \, f(t) \, dt = \int_{x}^{b} (t-x) \, f(t) \, dt$$

and by (2.6) we get

$$\begin{aligned} f'_{+}(a) (b-x) &- \rho^{2} (b-x) \int_{a}^{x} f(s) \, ds - \rho^{2} \int_{x}^{b} (b-t) \, f(t) \, dt \\ &\leq f(b) - f(x) \leq f'_{-}(b) \, (b-x) + \rho^{2} \int_{x}^{b} (t-x) \, f(t) \, dt \end{aligned}$$

for any $x \in [a, b]$, which is equivalent to the desired result (2.1).

Remark 1. If we take in (2.1) and (2.2) $x = \frac{a+b}{2}$, then we get

$$(2.7) \quad f(a) + \frac{b-a}{2} f'_{+}(a) - \rho^{2} \int_{a}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - t\right) f(t) dt$$
$$\leq f\left(\frac{a+b}{2}\right)$$
$$\leq f(a) + \frac{b-a}{2} f'_{-}(b) + \rho^{2} \left[\frac{b-a}{2} \int_{\frac{a+b}{2}}^{b} f(s) ds + \int_{a}^{\frac{a+b}{2}} (t-a) f(t) dt\right]$$

and

$$(2.8) \quad f(b) - \frac{b-a}{2}f'_{-}(b) + \rho^{2}\int_{\frac{a+b}{2}}^{b} \left(\frac{a+b}{2} - t\right)f(t) dt$$

$$\leq f\left(\frac{a+b}{2}\right)$$

$$\leq f(b) - \frac{b-a}{2}f'_{+}(a) + \rho^{2}\left[\frac{b-a}{2}\int_{a}^{\frac{a+b}{2}}f(s) ds + \int_{\frac{a+b}{2}}^{b}(b-t)f(t) dt\right].$$

If in (2.1) we put instead of a, $\frac{a+b}{2}$, then we get for $x \in \left[\frac{a+b}{2}, b\right]$ that

$$(2.9) \quad f\left(\frac{a+b}{2}\right) + f'_{+}\left(\frac{a+b}{2}\right)\left(x - \frac{a+b}{2}\right) - \rho^{2} \int_{\frac{a+b}{2}}^{x} (x-t) f(t) dt$$

$$\leq f(x)$$

$$\leq f\left(\frac{a+b}{2}\right) + f'_{-}(b)\left(x - \frac{a+b}{2}\right)$$

$$+ \rho^{2} \left[\left(x - \frac{a+b}{2}\right) \int_{x}^{b} f(s) ds + \int_{\frac{a+b}{2}}^{x} \left(t - \frac{a+b}{2}\right) f(t) dt\right]$$

If in (2.2) we put instead of b, $\frac{a+b}{2}$, then we get for $x \in [a, \frac{a+b}{2}]$ that

$$(2.10) \quad f\left(\frac{a+b}{2}\right) - f'_{-}\left(\frac{a+b}{2}\right)\left(\frac{a+b}{2}-x\right) + \rho^{2} \int_{x}^{\frac{a+b}{2}} (x-t) f(t) dt$$

$$\leq f(x)$$

$$\leq f\left(\frac{a+b}{2}\right) - f'_{+}(a)\left(\frac{a+b}{2}-x\right)$$

$$+ \rho^{2} \left[\left(\frac{a+b}{2}-x\right)\int_{a}^{x} f(s) ds + \int_{x}^{\frac{a+b}{2}} \left(\frac{a+b}{2}-t\right) f(t) dt\right].$$

Corollary 1. With the assumptions of Theorem 3 and for $\lambda \in [0, 1]$ we have

$$(2.11) \quad (1-\lambda) f'_{+}(a) (x-a) - \lambda f'_{-}(b) (b-x) \\ + \rho^{2} \left[\lambda \int_{x}^{b} (x-t) f(t) dt - (1-\lambda) \int_{a}^{x} (x-t) f(t) dt \right] \\ \leq f(x) - (1-\lambda) f(a) - \lambda f(b) \\ \leq (1-\lambda) f'_{-}(b) (x-a) - \lambda f'_{+}(a) (b-x) \\ + (1-\lambda) \rho^{2} \left[(x-a) \int_{x}^{b} f(s) ds + \int_{a}^{x} (t-a) f(t) dt \right] \\ + \lambda \rho^{2} \left[(b-x) \int_{a}^{x} f(s) ds + \int_{x}^{b} (b-t) f(t) dt \right]$$

for any $x \in [a, b]$. In particular, for $\lambda = \frac{1}{2}$, we get

$$(2.12) \quad \frac{1}{2} \left[f'_{+}(a) (x-a) - f'_{-}(b) (b-x) \right] \\ + \frac{1}{2} \rho^{2} \left[\int_{x}^{b} (x-t) f(t) dt - \int_{a}^{x} (x-t) f(t) dt \right] \\ \leq f(x) - \frac{f(a) + f(b)}{2} \\ \leq \frac{1}{2} \left[f'_{-}(b) (x-a) - f'_{+}(a) (b-x) \right] \\ + \frac{1}{2} \rho^{2} \left[(x-a) \int_{x}^{b} f(s) ds + \int_{a}^{x} (t-a) f(t) dt \right] \\ + \frac{1}{2} \rho^{2} \left[(b-x) \int_{a}^{x} f(s) ds + \int_{x}^{b} (b-t) f(t) dt \right]$$

for any $x \in [a, b]$.

3. Two Variable Inequalities

In this section we provide a double inequality for two independent variables that can be used to obtain Jensen's type inequalities:

7

Theorem 4. Let $f : I \to \mathbb{R}$ be a twice differentiable and ρ -trigonometrically convex function on I and $[a, b] \subset I$ with $0 < b - a < \frac{\pi}{\rho}$. Then for any $x, y \in (a, b)$ we have

$$(3.1) \quad (x-y) f'_{-}(x) + \rho^{2} \left(\int_{a}^{y} (y-t) f(t) dt + \int_{a}^{x} (t-y) f(t) dt \right)$$
$$\geq f(x) - f(y)$$
$$\geq (x-y) f'_{+}(y) - \rho^{2} \left(\int_{a}^{x} (x-t) f(t) dt + \int_{a}^{y} (t-x) f(t) dt \right)$$

Proof. Since f is ρ -trigonometrically convex function on I then by property (iii) from Introduction, we have that $f' + \rho^2 \int_a f$ is increasing and therefore the function

٠

$$F(x) := \int_{a}^{x} \left[f'(t) + \rho^{2} \int_{a}^{t} f(s) ds \right] dt$$

is convex on [a, b].

Integrating by parts, we have

$$F(x) = f(x) - f(a) + \rho^2 \int_a^x \left(\int_a^t f(s) \, ds \right) dt$$

= $f(x) - f(a) + \rho^2 \left[t \int_a^t f(s) \, ds \Big|_a^x - \int_a^x t f(t) \, dt \right]$
= $f(x) - f(a) + \rho^2 \left[x \int_a^x f(s) \, ds - \int_a^x t f(t) \, dt \right],$

for any $x \in [a, b]$. Similarly,

 $F(y) = f(y) - f(a) + \rho^{2} \left[y \int_{a}^{y} f(s) \, ds - \int_{a}^{y} tf(t) \, dt \right],$

for any $y \in [a, b]$. Also,

$$F_{+}(y) = f'_{+}(y) + \rho^{2} \int_{a}^{y} f(s) \, ds$$

for $y \in [a, b)$.

9

Since F is convex, then for any $x, y \in (a, b)$ we have

$$\begin{split} 0 &\leq F\left(x\right) - F\left(y\right) - (x - y) F'_{+}\left(y\right) \\ &= f\left(x\right) - f\left(a\right) + \rho^{2} x \int_{a}^{x} f\left(s\right) ds - \rho^{2} \int_{a}^{x} tf\left(t\right) dt \\ &- f\left(y\right) + f\left(a\right) - \rho^{2} y \int_{a}^{y} f\left(s\right) ds + \rho^{2} \int_{a}^{y} tf\left(t\right) dt \\ &- (x - y) \left(f'_{+}\left(y\right) + \rho^{2} \int_{a}^{y} f\left(s\right) ds\right) \\ &= f\left(x\right) - f\left(y\right) - (x - y) f'_{+}\left(y\right) + \rho^{2} \int_{a}^{x} (x - t) f\left(t\right) dt \\ &+ \rho^{2} \int_{a}^{y} \left[t - y - (x - y)\right] f\left(t\right) dt \\ &= f\left(x\right) - f\left(y\right) - (x - y) f'_{+}\left(y\right) + \rho^{2} \int_{a}^{x} (x - t) f\left(t\right) dt \\ &+ \rho^{2} \int_{a}^{y} (t - x) f\left(t\right) dt. \end{split}$$

In a similar manner, we get

$$f(x) - f(y) \le (x - y) f'_{-}(x) + \rho^2 \int_a^y (y - t) f(t) dt + \rho^2 \int_a^x (t - y) f(t) dt,$$

which proves the first inequality in (3.1).

which proves the first inequality in (3.1).

Remark 2. If we take $y = \frac{a+b}{2}$ in (3.1), then we get

$$(3.2) \quad \left(x - \frac{a+b}{2}\right) f'_{-}(x) + \rho^{2} \left(\int_{a}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - t\right) f(t) dt + \int_{a}^{x} \left(t - \frac{a+b}{2}\right) f(t) dt\right) \geq f(x) - f\left(\frac{a+b}{2}\right)$$

$$\geq \left(x - \frac{a+b}{2}\right)f'_{+}\left(\frac{a+b}{2}\right) - \rho^{2}\left(\int_{a}^{x} \left(x - t\right)f\left(t\right)dt + \int_{a}^{\frac{a+b}{2}} \left(t - x\right)f\left(t\right)dt\right)$$

for any $x \in (a, b)$.

4. Applications for Jensen's Discrete Inequalities

Let $f: I \to \mathbb{R}$ be a twice differentiable and ρ -trigonometrically convex function on *I* and $[a,b] \subset I$ with $0 < b-a < \frac{\pi}{\rho}$. Assume that $x_i \in [a,b]$, $p_i \ge 0$ for $i \in \{1,...,n\}$ with $\sum_{i=1}^{n} p_i = 1$ and let $\bar{x}_p := \sum_{i=1}^{n} p_i x_i \in [a,b]$, then by (2.1) and (2.2) on replacing x with x_i , multiplying with $p_i \ge 0$ and summing over $i \in \{1,...,n\}$ we get

$$(4.1) \quad f(a) + f'_{+}(a) (\bar{x}_{p} - a) - \rho^{2} \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} (x_{i} - t) f(t) dt$$

$$\leq \sum_{i=1}^{n} p_{i} f(x_{i})$$

$$\leq f(a) + f'_{-}(b) (\bar{x}_{p} - a)$$

$$+ \rho^{2} \left[\sum_{i=1}^{n} p_{i} (x_{i} - a) \int_{x_{i}}^{b} f(s) ds + \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} (t - a) f(t) dt \right]$$

and

(4.2)
$$f(b) - f'_{-}(b)(b - \bar{x}_{p}) + \rho^{2} \sum_{i=1}^{n} p_{i} \int_{x_{i}}^{b} (x_{i} - t) f(t) dt$$

$$\leq \sum_{i=1}^{n} p_{i} f(x_{i})$$

$$\leq f(b) - f'_{+}(a) (b - \bar{x}_{p}) \\ + \rho^{2} \left[\sum_{i=1}^{n} p_{i} (b - x_{i}) \int_{a}^{x_{i}} f(s) ds + \sum_{i=1}^{n} p_{i} \int_{x_{i}}^{b} (b - t) f(t) dt \right].$$

From (2.11) we get in a similar way

$$(4.3) \quad (1-\lambda) f'_{+}(a) (\bar{x}_{p}-a) - \lambda f'_{-}(b) (b-\bar{x}_{p}) \\ + \rho^{2} \left[\lambda \sum_{i=1}^{n} p_{i} \int_{x_{i}}^{b} (x_{i}-t) f(t) dt - (1-\lambda) \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} (x_{i}-t) f(t) dt \right] \\ \leq \sum_{i=1}^{n} p_{i} f(x_{i}) - (1-\lambda) f(a) - \lambda f(b) \\ \leq (1-\lambda) f'_{-}(b) (\bar{x}_{p}-a) - \lambda f'_{+}(a) (b-\bar{x}_{p}) \\ + (1-\lambda) \rho^{2} \left[\sum_{i=1}^{n} p_{i} (x_{i}-a) \int_{x_{i}}^{b} f(s) ds + \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} (t-a) f(t) dt \right] \\ + \lambda \rho^{2} \left[\sum_{i=1}^{n} p_{i} (b-x_{i}) \int_{a}^{x_{i}} f(s) ds + \sum_{i=1}^{n} p_{i} \int_{x_{i}}^{b} (b-t) f(t) dt \right]$$

for any $\lambda \in [0,1]$.

10

In particular, for $\lambda = \frac{1}{2}$, we get

$$(4.4) \quad \frac{1}{2} \left[f'_{+}(a) \left(\bar{x}_{p} - a \right) - f'_{-}(b) \left(b - \bar{x}_{p} \right) \right] \\ + \frac{1}{2} \rho^{2} \left[\sum_{i=1}^{n} p_{i} \int_{x_{i}}^{b} \left(x_{i} - t \right) f(t) dt - \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} \left(x_{i} - t \right) f(t) dt \right] \\ \leq \sum_{i=1}^{n} p_{i} f(x_{i}) - \frac{f(a) + f(b)}{2} \\ \leq \frac{1}{2} \left[f'_{-}(b) \left(\bar{x}_{p} - a \right) - f'_{+}(a) \left(b - \bar{x}_{p} \right) \right] \\ + \frac{1}{2} \rho^{2} \left[\sum_{i=1}^{n} p_{i} \left(x_{i} - a \right) \int_{x_{i}}^{b} f(s) ds + \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} \left(t - a \right) f(t) dt \right] \\ + \frac{1}{2} \rho^{2} \left[\sum_{i=1}^{n} p_{i} \left(b - x_{i} \right) \int_{a}^{x_{i}} f(s) ds + \sum_{i=1}^{n} p_{i} \int_{x_{i}}^{b} \left(b - t \right) f(t) dt \right].$$

From (3.2) we also have

$$(4.5) \quad \sum_{i=1}^{n} p_{i} \left(x_{i} - \frac{a+b}{2} \right) f'_{-} (x_{i}) \\ + \rho^{2} \left(\int_{a}^{\frac{a+b}{2}} \left(\frac{a+b}{2} - t \right) f(t) dt + \sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} \left(t - \frac{a+b}{2} \right) f(t) dt \right) \\ \ge \sum_{i=1}^{n} p_{i} f(x_{i}) - f\left(\frac{a+b}{2} \right) \\ \ge \left(\bar{x}_{p} - \frac{a+b}{2} \right) f'_{+} \left(\frac{a+b}{2} \right) \\ - \rho^{2} \left(\sum_{i=1}^{n} p_{i} \int_{a}^{x_{i}} (x_{i} - t) f(t) dt + \int_{a}^{\frac{a+b}{2}} (t - \bar{x}_{p}) f(t) dt \right).$$

Further, on replacing in (3.1) y by \bar{x}_p , x by x_i , multiplying with $p_i \ge 0$ and summing over $i \in \{1, ..., n\}$, we get the following Jensen's type discrete inequality

$$(4.6) \quad \sum_{i=1}^{n} p_i \left(x_i - \bar{x}_p \right) f'_{-} \left(x_i \right) + \rho^2 \left(\sum_{i=1}^{n} p_i \int_a^{x_i} \left(t - \bar{x}_p \right) f(t) \, dt - \int_a^{\bar{x}_p} \left(t - \bar{x}_p \right) f(t) \, dt \right) \geq \sum_{i=1}^{n} p_i f(x_i) - f(\bar{x}_p) \left(\int_a^{n} dx_i - dx_i -$$

$$\geq \rho^2 \left(\sum_{i=1}^n p_i \int_a^{x_i} (t - x_i) f(t) dt - \int_a^{\bar{x}_p} (t - \bar{x}_p) f(t) dt \right).$$

Under the above assumptions for a, b, consider the function

$$g(x) := \int_{a}^{x} (t - x) f(t) dt = \int_{a}^{x} tf(t) dt - x \int_{a}^{x} f(t) dt.$$

Then

$$g'(x) = -\int_{a}^{x} f(t) dt$$
 and $g''(x) = -f(x), x \in [a, b].$

So, if $f(x) \leq 0, x \in [a, b]$, then g is convex and by Jensen's inequality for g we have

$$\sum_{i=1}^{n} p_i \int_{a}^{x_i} (t - x_i) f(t) dt \ge \int_{a}^{\bar{x}_p} (t - \bar{x}_p) f(t) dt$$

where $x_i \in [a, b]$, $p_i \ge 0$ for $i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$. In conclusion, if $f : I \to \mathbb{R}$ is a twice differentiable and ρ -trigonometrically convex function on I and $[a, b] \subset I$ with $0 < b - a < \frac{\pi}{\rho}$ and $f(x) \leq 0, x \in [a, b]$, then we have the refinement of Jensen's inequality

(4.7)
$$\sum_{i=1}^{n} p_i f(x_i) - f(\bar{x}_p) \\ \ge \rho^2 \left(\sum_{i=1}^{n} p_i \int_a^{x_i} (t - x_i) f(t) dt - \int_a^{\bar{x}_p} (t - \bar{x}_p) f(t) dt \right) \ge 0$$

where $x_i \in [a, b]$, $p_i \ge 0$ for $i \in \{1, ..., n\}$ with $\sum_{i=1}^n p_i = 1$.

References

- [1] M. S. S. Ali, On certain properties of trigonometrically ρ -convex functions, Advances in Pure Mathematics, 2012, 2, 337-340 http://dx.doi.org/10.4236/apm.2012.25047.
- [2] M. S. S. Ali, On Hadamard's inequality for trigonometrically ρ-convex functions," accepted to appear in Theoretical Mathematics & Applications., March, 2013.
- [3] E. F. Beckenbach, Convex functions, Bulletin of the American Mathematical Society, Vol. 54, No. 5, 1948, pp. 439-460. doi:10.1090/S0002-9904-1948-08994-7
- [4] M. Bessenyei, Hermite-Hadamard-type inequalities for generalized convex functions, PhD Thesis, Univ. Debrecen, Hungary, 2004. RGMIA Monograps, [http://rgmia.org/papers/monographs/dissertatio.pdf]
- [5] F. F. Bonsall, The characterization of generalized convex functions, The Quarterly Journal of Mathematics Oxford Series, Vol. 1, 1950, pp. 100-111. doi:10.1093/qmath/1.1.100

- [6] A. M. Bruckner and E. Ostrow, Some functions classes related to the class of convex functions," *Pacific Journal of Mathematics*, Vol. 12, 1962, pp. 1203-1215.
- [7] S. S. Dragomir, An inequality improving the first Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products. J. Inequal. Pure Appl. Math. 3 (2002), no. 2, Article 31, 8 pp. [Online http://www.emis.de/journals/JIPAM/article183.html?sid=183].
- [8] S. S. Dragomir, An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2002), no. 3, Article 35. [https://www.emis.de/journals/JIPAM/images/080_01_JIPAM/080_01.pdf].
- [9] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite_hadamard.html].
- [10] S. S. Dragomir, Ostrowski type inequalities for Lebesgue integral: a survey of recent results, Australian J. Math. Anal. Appl., Volume 14, Issue 1, Article 1, pp. 1-287, 2017. [Online http://ajmaa.org/cgi-bin/paper.pl?string=v14n1/V14I1P1.tex].
- [11] S. S. Dragomir, Some inequalities of Hermite-Hadamard type for trigonometrically ρ-convex functions, Preprint RGMIA Res. Rep. Coll. 21 (2018), Art.
- [12] J. W. Green, Support, convergence, and differentiability properties of generalized convex functions, *Proceedings of the American Mathematical Society*, Vol. 4, No. 3, 1953, pp. 391-396. doi:10.1090/S0002-9939-1953-0056039-2
- [13] B. Ya. Levin, Lectures on Entire Functions, American Mathematical Society, 1996.
- [14] L. S. Maergoiz, Asymptotic Characteristics of Entire Functions and Their Applications in Mathematics and Biophysics, Kluwer Academic Publishers, New York, 2003.
- M. J. Miles, An extremum property of convex functions, American Mathematical Monthly, Vol. 76, 1969, pp. 921-922. doi:10.2307/2317948
- [16] A. Ostrowski, Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert, Comment. Math. Helv., 10 (1938), 226-227.
- [17] M. M. Peixoto, On the existence of derivatives of generalized convex functions, Summa Brasilian Mathematics, Vol. 2, No. 3, 1948, pp. 35-42.
- [18] M. M. Peixoto, Generalized convex functions and second order differential inequlities, Bulletin of the American Mathematical Society, Vol. 55, No. 6, 1949, pp. 563- 572. doi:10.1090/S0002-9904-1949-09246-7
- [19] A. W. Roberts and D. E. Varberg, Convex Functions, Academic Press, New York, 1973.

¹Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia.

E-mail address: sever.dragomir@vu.edu.au *URL*: http://rgmia.org/dragomir

²DST-NRF CENTRE OF EXCELLENCE, IN THE MATHEMATICAL AND STATISTICAL SCIENCES, SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA