
FURTHER INEQUALITIES FOR TRIGONOMETRICALLY
�-CONVEX FUNCTIONS AND APPLICATIONS

SILVESTRU SEVER DRAGOMIR1;2

Abstract. In this paper we establish some new inequalities for trigonometri-
cally �-convex functions. Applications for discrete inequalities of Jensen�s type
are also provided.

1. Introduction

Let I be a �nite or in�nite open interval of real numbers and � > 0.
In the following we present the basic de�nitions and results concerning the class

of trigonometrically �-convex function, see for example [13], [14] and [3], [5], [6],
[12], [15], [17] and [18].
Following [1], we say that a function f : I ! R is trigonometrically �-convex on

I if for any closed subinterval [a; b] of I with 0 < b� a < �
� we have

(1.1) f (x) � sin [� (b� x)]
sin [� (b� a)]f (a) +

sin [� (x� a)]
sin [� (b� a)] f (b)

for all x 2 [a; b] :
If the inequality (1.1) holds with " � "; then the function will be called trigono-

metrically �-concave on I:
Geometrically speaking, this means that the graph of f on [a; b] lies nowhere

above the �-trigonometric function determined by the equation

H (x) = H (x; a; b; f) := A cos (�x) +B sin (�x)

where A and B are chosen such that H (a) = f (a) and H (b) = f (b) :
If we take x = (1� t) a+ tb 2 [a; b] ; t 2 [0; 1] ; then the condition (1.1) becomes

(1.2) f ((1� t) a+ tb) � sin [� (1� t) (b� a)]
sin [� (b� a)] f (a) +

sin [�t (b� a)]
sin [� (b� a)] f (b)

for any t 2 [0; 1] :
We have the following properties of trigonometrically �-convex on I; [1].

(i) A trigonometrically �-convex function f : I ! R has �nite right and left
derivatives f 0+ (x) and f

0
� (x) at every point x 2 I and f 0� (x) � f 0+ (x) : The

function f is di¤erentiable on I with the exception of an at most countable
set.
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(ii) A necessary and su¢ cient condition for the function f : I ! R to be
trigonometrically �-convex function on I is that it satis�es the gradient
inequality

(1.3) f (y) � f (x) cos [� (y � x)] +Kx;f sin [� (y � x)]

for any x; y 2 I where Kx;f 2
�
f 0� (x) ; f

0
+ (x)

�
: If f is di¤erentiable at the

point x then Kx;f = f
0 (x) :

(iii) A necessary and su¢ cient condition for the function f to be a trigonomet-
rically �-convex in I, is that the function

' (x) = f 0 (x) + �2
Z x

a

f (t) dt

is nondecreasing on I; where a 2 I:
(iv) Let f : I ! R be a two times continuously di¤erentiable function on I:

Then f is trigonometrically �-convex on I if and only if for all x 2 I we
have

(1.4) f 00 (x) + �2f (x) � 0:

For other properties of trigonometrically �-convex functions, see [1].
As general examples of trigonometrically �-convex functions we can give the

indicator function

hF (�) := lim sup
r!1

log
��F �rei����
r�

; � 2 (�; �) ;

where F is an entire function of order � 2 (0;1) :
If 0 < � � � < �

� ; then, it was shown in 1908 by Phragmén and Lindelöf, see
[13], that hF is trigonometrically �-convex on (�; �) :
Using the condition (1.4) one can also observe that any nonnegative twice dif-

ferentiable and convex function on I is also trigonometrically �-convex on I for any
� > 0:
There exists also concave functions on an interval that are trigonometrically

�-convex on that interval for some � > 0:
Consider for example f (x) = cosx on the interval

�
��
2 ;

�
2

�
; then

f 00 (x) + �2f (x) = � cosx+ �2 cosx =
�
�2 � 1

�
cosx;

which shows that it is trigonometrically �-convex on the interval
�
��
2 ;

�
2

�
for all

� > 1 and trigonometrically �-concave for � 2 (0; 1) :
Consider the function f : (0;1) ! (0;1) ; f (x) = xp with p 2 Rn f0g : If

p 2 (�1; 0)[[1;1) the function is convex and therefore trigonometrically �-convex
for any � > 0: If p 2 (0; 1) then the function is concave and

f 00 (x) + �2f (x) = �2xp � p (1� p)xp�2 = �2xp�2
�
x2 � p (1� p)

�2

�
; x > 0:

This shows that for p 2 (0; 1) and � > 0 the function f (x) = xp is trigonometrically
�-convex on

�
1
�

p
p (1� p);1

�
and trigonometrically �-concave on

�
0; 1�

p
p (1� p)

�
:

Consider the concave function f : (0;1)! R; f (x) = lnx: We observe that

g (x) := f 00 (x) + �2f (x) = �2 lnx� 1

x2
; x > 0:
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We have g0 (x) = 2+�2x2

x2 > 0 for x > 0 and limx!0+ g (x) = �1; limx!1 g (x) =
1, showing that the function g is strictly increasing on (0;1) and the equation
g (x) = 0 has a unique solution. Therefore g (x) < 0 for x 2 (0; x�) and g (x) > 0
for x 2 (x�;1) ; where x� is the unique solution of the equation lnx = 1

�2x2 : We
observe that x� > 1:
In conclusion, if � > 0; then the function f (x) = lnx is trigonometrically �-

concave on (0; x�) and trigonometrically �-convex on (x�;1) :
The following Hermite-Hadamard type inequality that was obtained in 2013 in

[2].

Theorem 1. Assume that the function f : I ! R is trigonometrically �-convex on
I. Then for any a; b 2 I with 0 < b� a < �

� we have

(1.5)
2

�
f

�
a+ b

2

�
sin

�
� (b� a)

2

�
�
Z b

a

f (x) dx � f (a) + f (b)

�
tan

�
� (b� a)

2

�
:

The inequality (1.5) for � = 1 was obtained in 2004 by M. Bessenyei in his
Ph.D. Thesis [4, Corollary 2.13] in the context of Chebyshev system (cos; sin) : For
a simpler proof than provided in [2] and the following related results, see [11]:

Theorem 2. Assume that the function f : I ! R is trigonometrically �-convex on
I. Then for any a; b 2 I with 0 < b� a < �

� we have

(1.6) f

�
a+ b

2

�
� 1

b� a

Z b

a

f (x) sec

�
�

�
x� a+ b

2

��
dx � f (a) + f (b)

2

and

(1.7)
1

2

�
b� a+ 1

�
sin [� (b� a)]

�
f

�
a+ b

2

�
�
Z b

a

f (x) cos

�
�

�
x� a+ b

2

��
dx

�
b� a+ 1

� sin [� (b� a)]

2 cos
h
�(b�a)
2

i f (a) + f (b)

2
:

Motivated by the above results, in this paper we establish some new inequalities
for trigonometrically �-convex functions. Applications for discrete inequalities of
Jensen�s type are also provided.

2. One Variable Inequalities

The following upper and lower bounds for the function f holds:

Theorem 3. Let f : I ! R be a twice di¤erentiable and �-trigonometrically convex
function on I and [a; b] � I with 0 < b� a < �

� : Then for any x 2 [a; b] we have

(2.1) f (a) + f 0+ (a) (x� a)� �2
Z x

a

(x� t) f (t) dt

� f (x)

� f (a) + f 0� (b) (x� a) + �2
"
(x� a)

Z b

x

f (s) ds+

Z x

a

(t� a) f (t) dt
#
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and

(2.2) f (b)� f 0� (b) (b� x) + �2
Z b

x

(x� t) f (t) dt

� f (x)

� f (b)� f 0+ (a) (b� x) + �2
"
(b� x)

Z x

a

f (s) ds+

Z b

x

(b� t) f (t) dt
#
:

Proof. Let [a; b] � I and t 2 [a; b]. Assume that f is di¤erentiable at t (and this
happens in all the points of [a; b] except at most a countable number of them, see
(ii)). Using the monotonicity property from Introduction, (iii) we get that

f 0 (t) + �2
Z t

a

f (s) ds � f 0+ (a) ;

which is equivalent to

f 0 (t) � f 0 (a)� �2
Z t

a

f (s) ds

for t 2 [a; b] with the above property.
Using the monotonicity property from (iii) we also get that

f 0� (b) � f 0 (t) + �2
Z t

b

f (s) ds;

which is equivalent to

f 0� (b) + �
2

Z b

t

f (s) ds � f 0 (t) ;

for t 2 [a; b] with the above property.
Therefore we have the following upper and lower bounds for the derivative

(2.3) f 0+ (a)� �2
Z t

a

f (s) ds � f 0 (t) � f 0� (b) + �2
Z b

t

f (s) ds

for t 2 [a; b] with the above property.
Let x 2 [a; b] and integrate the inequality (2.3) over t on [a; x] to get

(2.4) f 0+ (a) (x� a)� �2
Z x

a

�Z t

a

f (s) ds

�
dt � f (x)� f (a)

� f 0� (b) (x� a) + �2
Z x

a

 Z b

t

f (s) ds

!
dt:

Integrating by parts, we haveZ x

a

�Z t

a

f (s) ds

�
dt = t

Z t

a

f (s) ds

����x
a

�
Z x

a

tf (t) dt

= x

Z x

a

f (s) ds�
Z x

a

tf (t) dt =

Z x

a

(x� t) f (t) dt
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and Z x

a

 Z b

t

f (s) ds

!
dt =

Z x

a

 Z b

a

f (s) ds�
Z t

a

f (s) ds

!
dt

= (x� a)
Z b

a

f (s) ds�
Z x

a

(x� t) f (t) dt

and by (2.4) we get

(2.5) f 0+ (a) (x� a)� �2
Z x

a

(x� t) f (t) dt � f (x)� f (a)

� f 0� (b) (x� a) + �2 (x� a)
Z b

a

f (s) ds� �2
Z x

a

(x� t) f (t) dt

= f 0� (b) (x� a) + �2 (x� a)
Z x

a

f (s) ds

+ �2 (x� a)
Z b

x

f (s) ds� �2
Z x

a

(x� t) f (t) dt

= f 0� (b) (x� a) + �2 (x� a)
Z b

x

f (s) ds+ �2
Z x

a

(t� a) f (t) dt;

for any x 2 [a; b] ; which proves (2.1).
Let x 2 [a; b] and integrate the inequality (2.3) over t on [x; b] to get

(2.6) f 0+ (a) (b� x)� �2
Z b

x

�Z t

a

f (s) ds

�
dt � f (b)� f (x)

� f 0� (b) (b� x) + �2
Z b

x

 Z b

t

f (s) ds

!
dt

for any x 2 [a; b] :
Integrating by parts, we haveZ b

x

�Z t

a

f (s) ds

�
dt = t

Z t

a

f (s) ds

����b
x

�
Z b

x

tf (t) dt

= b

Z b

a

f (s) ds� x
Z x

a

f (s) ds�
Z b

x

tf (t) dt

= b

Z x

a

f (s) ds+ b

Z b

x

f (s) ds� x
Z x

a

f (s) ds�
Z b

x

tf (t) dt

= (b� x)
Z x

a

f (s) ds+

Z b

x

(b� t) f (t) dt

andZ b

x

 Z b

t

f (s) ds

!
dt =

Z b

x

 Z b

a

f (s) ds�
Z t

a

f (s) ds

!
dt

= (b� x)
Z b

a

f (s) ds� (b� x)
Z x

a

f (s) ds�
Z b

x

(b� t) f (t) dt

= (b� x)
Z b

x

f (s) ds�
Z b

x

(b� t) f (t) dt =
Z b

x

(t� x) f (t) dt
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and by (2.6) we get

f 0+ (a) (b� x)� �2 (b� x)
Z x

a

f (s) ds� �2
Z b

x

(b� t) f (t) dt

� f (b)� f (x) � f 0� (b) (b� x) + �2
Z b

x

(t� x) f (t) dt

for any x 2 [a; b] ; which is equivalent to the desired result (2.1). �

Remark 1. If we take in (2.1) and (2.2) x = a+b
2 ; then we get

(2.7) f (a) +
b� a
2
f 0+ (a)� �2

Z a+b
2

a

�
a+ b

2
� t
�
f (t) dt

� f
�
a+ b

2

�
� f (a) + b� a

2
f 0� (b) + �

2

"
b� a
2

Z b

a+b
2

f (s) ds+

Z a+b
2

a

(t� a) f (t) dt
#

and

(2.8) f (b)� b� a
2
f 0� (b) + �

2

Z b

a+b
2

�
a+ b

2
� t
�
f (t) dt

� f
�
a+ b

2

�
� f (b)� b� a

2
f 0+ (a) + �

2

"
b� a
2

Z a+b
2

a

f (s) ds+

Z b

a+b
2

(b� t) f (t) dt
#
:

If in (2.1) we put instead of a; a+b2 ; then we get for x 2
�
a+b
2 ; b

�
that

(2.9) f

�
a+ b

2

�
+ f 0+

�
a+ b

2

��
x� a+ b

2

�
� �2

Z x

a+b
2

(x� t) f (t) dt

� f (x)

� f
�
a+ b

2

�
+ f 0� (b)

�
x� a+ b

2

�
+ �2

"�
x� a+ b

2

�Z b

x

f (s) ds+

Z x

a+b
2

�
t� a+ b

2

�
f (t) dt

#
:

If in (2.2) we put instead of b, a+b2 ; then we get for x 2
�
a; a+b2

�
that

(2.10) f

�
a+ b

2

�
� f 0�

�
a+ b

2

��
a+ b

2
� x
�
+ �2

Z a+b
2

x

(x� t) f (t) dt

� f (x)

� f
�
a+ b

2

�
� f 0+ (a)

�
a+ b

2
� x
�

+ �2

"�
a+ b

2
� x
�Z x

a

f (s) ds+

Z a+b
2

x

�
a+ b

2
� t
�
f (t) dt

#
:
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Corollary 1. With the assumptions of Theorem 3 and for � 2 [0; 1] we have

(2.11) (1� �) f 0+ (a) (x� a)� �f 0� (b) (b� x)

+ �2

"
�

Z b

x

(x� t) f (t) dt� (1� �)
Z x

a

(x� t) f (t) dt
#

� f (x)� (1� �) f (a)� �f (b)

� (1� �) f 0� (b) (x� a)� �f 0+ (a) (b� x)

+ (1� �) �2
"
(x� a)

Z b

x

f (s) ds+

Z x

a

(t� a) f (t) dt
#

+ ��2

"
(b� x)

Z x

a

f (s) ds+

Z b

x

(b� t) f (t) dt
#

for any x 2 [a; b] :
In particular, for � = 1

2 ; we get

(2.12)
1

2

�
f 0+ (a) (x� a)� f 0� (b) (b� x)

�
+
1

2
�2

"Z b

x

(x� t) f (t) dt�
Z x

a

(x� t) f (t) dt
#

� f (x)� f (a) + f (b)
2

� 1

2

�
f 0� (b) (x� a)� f 0+ (a) (b� x)

�
+
1

2
�2

"
(x� a)

Z b

x

f (s) ds+

Z x

a

(t� a) f (t) dt
#

+
1

2
�2

"
(b� x)

Z x

a

f (s) ds+

Z b

x

(b� t) f (t) dt
#

for any x 2 [a; b] :

3. Two Variable Inequalities

In this section we provide a double inequality for two independent variables that
can be used to obtain Jensen�s type inequalities:
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Theorem 4. Let f : I ! R be a twice di¤erentiable and �-trigonometrically convex
function on I and [a; b] � I with 0 < b� a < �

� : Then for any x; y 2 (a; b) we have

(3.1) (x� y) f 0� (x) + �2
�Z y

a

(y � t) f (t) dt+
Z x

a

(t� y) f (t) dt
�

� f (x)� f (y)

� (x� y) f 0+ (y)� �2
�Z x

a

(x� t) f (t) dt+
Z y

a

(t� x) f (t) dt
�
:

Proof. Since f is �-trigonometrically convex function on I then by property (iii)
from Introduction, we have that f 0+�2

R
a
f is increasing and therefore the function

F (x) :=

Z x

a

�
f 0 (t) + �2

Z t

a

f (s) ds

�
dt

is convex on [a; b] :
Integrating by parts, we have

F (x) = f (x)� f (a) + �2
Z x

a

�Z t

a

f (s) ds

�
dt

= f (x)� f (a) + �2
"
t

Z t

a

f (s) ds

����x
a

�
Z x

a

tf (t) dt

#

= f (x)� f (a) + �2
�
x

Z x

a

f (s) ds�
Z x

a

tf (t) dt

�
;

for any x 2 [a; b] :
Similarly,

F (y) = f (y)� f (a) + �2
�
y

Z y

a

f (s) ds�
Z y

a

tf (t) dt

�
;

for any y 2 [a; b] :
Also,

F+ (y) = f
0
+ (y) + �

2

Z y

a

f (s) ds

for y 2 [a; b):
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Since F is convex, then for any x; y 2 (a; b) we have

0 � F (x)� F (y)� (x� y)F 0+ (y)

= f (x)� f (a) + �2x
Z x

a

f (s) ds� �2
Z x

a

tf (t) dt

� f (y) + f (a)� �2y
Z y

a

f (s) ds+ �2
Z y

a

tf (t) dt

� (x� y)
�
f 0+ (y) + �

2

Z y

a

f (s) ds

�
= f (x)� f (y)� (x� y) f 0+ (y) + �2

Z x

a

(x� t) f (t) dt

+ �2
Z y

a

[t� y � (x� y)] f (t) dt

= f (x)� f (y)� (x� y) f 0+ (y) + �2
Z x

a

(x� t) f (t) dt

+ �2
Z y

a

(t� x) f (t) dt:

In a similar manner, we get

f (x)� f (y) � (x� y) f 0� (x) + �2
Z y

a

(y � t) f (t) dt+ �2
Z x

a

(t� y) f (t) dt;

which proves the �rst inequality in (3.1). �

Remark 2. If we take y = a+b
2 in (3.1), then we get

(3.2)
�
x� a+ b

2

�
f 0� (x)

+ �2

 Z a+b
2

a

�
a+ b

2
� t
�
f (t) dt+

Z x

a

�
t� a+ b

2

�
f (t) dt

!

� f (x)� f
�
a+ b

2

�

�
�
x� a+ b

2

�
f 0+

�
a+ b

2

�
� �2

 Z x

a

(x� t) f (t) dt+
Z a+b

2

a

(t� x) f (t) dt
!

for any x 2 (a; b) :

4. Applications for Jensen�s Discrete Inequalities

Let f : I ! R be a twice di¤erentiable and �-trigonometrically convex function
on I and [a; b] � I with 0 < b � a < �

� : Assume that xi 2 [a; b] ; pi � 0 for
i 2 f1; :::; ng with

Pn
i=1 pi = 1 and let �xp :=

Pn
i=1 pixi 2 [a; b] ; then by (2.1) and

(2.2) on replacing x with xi;multiplying with pi � 0 and summing over i 2 f1; :::; ng



10 S. S. DRAGOMIR

we get

(4.1) f (a) + f 0+ (a) (�xp � a)� �2
nX
i=1

pi

Z xi

a

(xi � t) f (t) dt

�
nX
i=1

pif (xi)

� f (a) + f 0� (b) (�xp � a)

+ �2

"
nX
i=1

pi (xi � a)
Z b

xi

f (s) ds+
nX
i=1

pi

Z xi

a

(t� a) f (t) dt
#

and

(4.2) f (b)� f 0� (b) (b� �xp) + �2
nX
i=1

pi

Z b

xi

(xi � t) f (t) dt

�
nX
i=1

pif (xi)

� f (b)� f 0+ (a) (b� �xp)

+ �2

"
nX
i=1

pi (b� xi)
Z xi

a

f (s) ds+
nX
i=1

pi

Z b

xi

(b� t) f (t) dt
#
:

From (2.11) we get in a similar way

(4.3) (1� �) f 0+ (a) (�xp � a)� �f 0� (b) (b� �xp)

+ �2

"
�

nX
i=1

pi

Z b

xi

(xi � t) f (t) dt� (1� �)
nX
i=1

pi

Z xi

a

(xi � t) f (t) dt
#

�
nX
i=1

pif (xi)� (1� �) f (a)� �f (b)

� (1� �) f 0� (b) (�xp � a)� �f 0+ (a) (b� �xp)

+ (1� �) �2
"

nX
i=1

pi (xi � a)
Z b

xi

f (s) ds+
nX
i=1

pi

Z xi

a

(t� a) f (t) dt
#

+ ��2

"
nX
i=1

pi (b� xi)
Z xi

a

f (s) ds+
nX
i=1

pi

Z b

xi

(b� t) f (t) dt
#

for any � 2 [0; 1] :
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In particular, for � = 1
2 ; we get

(4.4)
1

2

�
f 0+ (a) (�xp � a)� f 0� (b) (b� �xp)

�
+
1

2
�2

"
nX
i=1

pi

Z b

xi

(xi � t) f (t) dt�
nX
i=1

pi

Z xi

a

(xi � t) f (t) dt
#

�
nX
i=1

pif (xi)�
f (a) + f (b)

2

� 1

2

�
f 0� (b) (�xp � a)� f 0+ (a) (b� �xp)

�
+
1

2
�2

"
nX
i=1

pi (xi � a)
Z b

xi

f (s) ds+

nX
i=1

pi

Z xi

a

(t� a) f (t) dt
#

+
1

2
�2

"
nX
i=1

pi (b� xi)
Z xi

a

f (s) ds+
nX
i=1

pi

Z b

xi

(b� t) f (t) dt
#
:

From (3.2) we also have

(4.5)
nX
i=1

pi

�
xi �

a+ b

2

�
f 0� (xi)

+ �2

 Z a+b
2

a

�
a+ b

2
� t
�
f (t) dt+

nX
i=1

pi

Z xi

a

�
t� a+ b

2

�
f (t) dt

!

�
nX
i=1

pif (xi)� f
�
a+ b

2

�

�
�
�xp �

a+ b

2

�
f 0+

�
a+ b

2

�
� �2

 
nX
i=1

pi

Z xi

a

(xi � t) f (t) dt+
Z a+b

2

a

(t� �xp) f (t) dt
!
:

Further, on replacing in (3.1) y by �xp, x by xi; multiplying with pi � 0 and
summing over i 2 f1; :::; ng ; we get the following Jensen�s type discrete inequality



12 S. S. DRAGOMIR

(4.6)
nX
i=1

pi (xi � �xp) f 0� (xi)

+ �2

 
nX
i=1

pi

Z xi

a

(t� �xp) f (t) dt�
Z �xp

a

(t� �xp) f (t) dt
!

�
nX
i=1

pif (xi)� f (�xp)

� �2
 

nX
i=1

pi

Z xi

a

(t� xi) f (t) dt�
Z �xp

a

(t� �xp) f (t) dt
!
:

Under the above assumptions for a; b; consider the function

g (x) :=

Z x

a

(t� x) f (t) dt =
Z x

a

tf (t) dt� x
Z x

a

f (t) dt:

Then

g0 (x) = �
Z x

a

f (t) dt and g00 (x) = �f (x) ; x 2 [a; b] :

So, if f (x) � 0; x 2 [a; b] ; then g is convex and by Jensen�s inequality for g we have
nX
i=1

pi

Z xi

a

(t� xi) f (t) dt �
Z �xp

a

(t� �xp) f (t) dt

where xi 2 [a; b] ; pi � 0 for i 2 f1; :::; ng with
Pn

i=1 pi = 1:
In conclusion, if f : I ! R is a twice di¤erentiable and �-trigonometrically

convex function on I and [a; b] � I with 0 < b � a < �
� and f (x) � 0; x 2 [a; b] ;

then we have the re�nement of Jensen�s inequality

(4.7)
nX
i=1

pif (xi)� f (�xp)

� �2
 

nX
i=1

pi

Z xi

a

(t� xi) f (t) dt�
Z �xp

a

(t� �xp) f (t) dt
!
� 0

where xi 2 [a; b] ; pi � 0 for i 2 f1; :::; ng with
Pn

i=1 pi = 1:
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