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INEQUALITIES FOR THE FINITE HILBERT TRANSFORM OF
CONVEX FUNCTIONS

SILVESTRU SEVER DRAGOMIR?!:2

ABSTRACT. In this paper we obtain some new inequalities for the finite Hilbert
transform of convex functions. Applications for some particular functions of
interest are provided as well.

1. INTRODUCTION

Suppose that [ is an interval of real numbers with interior I and f:I—Ris
a convex function on I. Then f is continuous on I and has finite left and right
derivatives at each point of I. Moreover, if z, y € I and z < y, then f. (z) <
fi(x) < fL(y) < fy (y) which shows that both f’ and f! are nondecreasing
function on I. It is also known that a convex function must be differentiable except
for at most countably many points.

For a convex function f : I — R, the subdifferential of f denoted by Of is the

set of all functions ¢ : I — [—00, 00] such that ¢ (I) C R and

(1.1) f@)>f(a)+ (x—a)p(a) for any z, a € I.
It is also well known that if f is convex on I, then Jf is nonempty, f’, fi € 0f
and if ¢ € 9f, then

fL(z) <p(x) < fi(z) for any z € I.
In particular, ¢ is a nondecreasing function. If f is differentiable and convex on I ,
then 0f = {f'}.
Allover this paper, we consider the finite Hilbert transform on the open interval
(a,b) defined by

(TF) (a,bs1) PV/ I dT = lim [/ /ti

for t € (a,b) and for various classes of functions f for which the above Cauchy
Principal Value integral exists, see [12, Section 3.2] or [16, Lemma II.1.1].

For several recent papers devoted to inequalities for the finite Hilbert transform
(Tf), see [2]-[10], [13]-[15] and [17]-[18].

Now, if we assume that the mapping f : (a,b) — R is convex on (a,b), then it
is locally Lipschitzian on (a,b) and then the finite Hilbert transform of f exists in
every point t € (a,b).

The following result concerning upper and lower bounds for the finite Hilbert
transform of a convex function holds.

m (T —1)
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Theorem 1 (Dragomir et al., 2001 [1]). Let f : (a,b) — R be a convex function on
(a,b) and t € (a,b). Then we have

(1.2) Hf(t)ln(b_i

i a
< (Tf)(a,b;t)

<tlron(Zh) s rm-rwrene-a).

)10 1@ +p0-0)

t—

where ¢ (t) € [fL (t), f} (t)]. t € (a,b).

Corollary 1. Let f : (a,b) — R be a differentiable convex function on (a,b) and
t € (a,b). Then we have

(1) Hrom (32 +ro-r@+rwe-ol
< (Tf) (a.1)
<tlron(Zh) s ro-rorroe-a).
We observe that if we take ¢ = “E2, then we get from (1.3) that
(14 () - r@e g (52) -0
<) (a0 50

s”f(b)f(a;b)+;f’<a;b> (ba)}

In this paper we obtain some new inequalities for the finite Hilbert transform of
convex functions. Applications for some particular functions of interest are provided
as well.

2. INEQUALITIES FOR CONVEX FUNCTIONS

We can prove the following slightly more general result than Theorem 1.

Theorem 2. Let f : (a,b) — R be a convex mapping on (a,b). Then fort € (a,b)
and ¢ (), ¥ (t) € [f (), f} (t)] we have

(2.1)
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In particular, we have

(22) (M) - r@ge (U5 ) 00
<(Tf) (a,b; a;b>

IA

Hro-r(55) v 50 (55) 0=l

Proof. The proof is similar to the one from [1]. For the sake of completeness we
provide a proof here.
As for the mapping f : (a,0) = R, f(¢t) =1, t € (a,b), we have

b
T @bt =PV [

t—e 1 b 1
lim / dr —|—/ dr
A Y

. t—e b
E£%1+ {ln |7 —t||, 4+ In(r — t)|t+5}

dr

lim Ine—In(t—a)+1In(b—1t) —Ing
e—0+

b—t
1 t € (a,b).
a(7=1). te
Then, obviously

(Tf) (a,b; 1) 1pv/b f@—fO+F®)

S

T T—1
1 YF) - f() f (@) !
7;PV/a p— dr + - PV/a T_th

from where we get the equality

L e D=,

t—a s o T—1

for all t € (a,b).
By the convexity of f we can state that for all ¢ < ¢ < d < b we have

(2.4) %ﬁc(c) > ¢(c),

where ¢ (¢) € [ (¢), f} ()]
Using (2.5), we have

(2.5) /_E 7][ (tiii(T)dTZ/_EQD(T)dT
and
N IGENIO) ’ _
(2.6) /HET_tdTZ/HEl(t)dT—@(t)(b—t—s)
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and then, by adding (2.5) and (2.6), we get
—€ b
. V JO-f@), f<T>f<t>dT]

e—0+ t—T tre T—t

> lim [/at_ego(T)dT-Hp(t)(b—t—s)]

e—0+

:/ p(r)dr+o @) (b—1)=f() = f(a)+¢{#)(b-1).

Consequently, we have

pv/ FO =T g5 p)— f @) +00) (b—1)

and by the identity (2.3), we deduce the first inequality in (2.1).
Similarly, by the convexity of f we have fora <c<d<?b

. iy s LD =1

d—c
where 9 (¢) € [f° (¢), £1 (0)]-
Using (2.7) we may state

t—e _ t—e
/ MdTﬁ/ Y ()dr =9 (t)(t—e—a)
a -7 a
and . .
IDTO g < [* wmydr =g ) - fe+2).
t+e Tt t+e
By adding these inequalities and taking the limit, we get

lsn l [T, f<r>—f<t>d71

e—0+ t—T the T—1
< Tim [ () (t—c—a)+ f (0) —  (t+2)
=9 () (t—a)+ () - 1),
namely
pv [TOTO 4 cpya-a+ 1010
and by the identity (2.3), we deduce the second inequality in (2.1). ([l

Remark 1. We observe that for ¢ = ¢ € df we recapture the inequality (2.1). If
f s differentiable on (a,b) then we also get (1.3).

Corollary 2. Let f : (a,b) — R be a convex mapping on (a,b). Then

(2.8) ( /f i f )
b /a(Tf)(a,b;t)dt_ibia/abf(t)ln<f:s)dt
Si[f(b)b_la/abf(t)dt].
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Proof. If we take the integral mean in (2.1), we get

[a/f ln<t ) ba/b[f(t)—f(a)+¢(t)(b—t)]dt]

1
~b-

[ [ ron (-

Observe that

(Tf) (a,b;t) dt

) bia/ [f(b)—f(t)+¢(t)(t—a)]].

[ t0-1@+e®e-od

/f t)dt — b a) /f
=2</af(t)dt—f(a)(b—a)>

and
b
/ )~ £+ (¢ )
) (b—a) /f dt+/ () (t—a)dt
9 <f(b)(ba) f/ f(t)dt>
and by (2.9) we get the desired result O
We have:

Theorem 3. Let f : (a,b) — R be a convex mapping on (a,b) with finite lateral
derivatives f! (a) and f_ (b). Then fort € (a,b) we have

(2.10) %(b—a) £l (a) < %(b_a)M

t—a

s<Tf><a,b;t>_f7<f>ln<bt>
<

t—a

In particular,

atb) _ f(q
(2.11) %(b* a) f! (a) < % (b—a) %
<@ (an3?)
S%(bf )f(b)b—_fcfgb)<71r(b a) f— (b)
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Proof. We recall that if ® : I — R is a continuous convex function on the interval
of real numbers I and « € I then the divided difference function ®,, : I'\ {a} — R,

D, (t) :=[a,t; ®] := w

is monotonic nondecreasing on I \ {a}.
Using this property for the function f : (a,b) — R, we have for t € (a,b) that

fla)= () _ F(0) =) _ ()~ ()
a—t - T—1t - b—t

for any 7 € (a,b), T # t.
By the gradient inequality for the convex function f we also have

W > fi (a) for t € (a,b)
and
%<f (b) for t € (a,b).
Therefore we have the following inequality
(2.12) fi(a) < f(ti:i[(a) < f(TT):f(t) < f(bl)):{(t) < f-(b)
fort, 7 € (a,b) and T # t.
If we tale the PV in (2.12), then we get
(213) £ (@) (b a) < @ (b~ a)
fm)—f@)
v [10=
tht)( DI 0)6-a)
for t € (a,b).
Using the equality (2.3) we deduce the desired result (2.10). O

Corollary 3. With the assumptions in Theorem 8 we have

b—t T

(2.14) (b—af+ /f t_a
Sb—a/ (Tf) (a,b;t) dt — 7@/ St <f_2>dt
<! /fb) T®w<Lo—a)f ).

The proof follows by (2.10) on taking the integral mean over ¢ on [a, b].
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Proposition 1. With the assumptions in Theorem 3, the inequality (2.8) is better
than the inequality (2.14). In fact, we have the chain of inequalities

b - a
(b—a)f;(a)si/ %dt

b
<i@iaéf®ﬁ—f@>
b

gﬁ (Tf)(a,b;t)dt—b1a/abf(t)ln<b—t>dt

a ™

b
gipwwwia/fww]

b J—
siLf@Lf@siw—@ﬁw»

(2.15)

1
us

Proof. We use the following Cebysev’s inequality which states that, if g, k have the
same monotonicity (opposite monotonicity) then

I I I
2.1 th(t)dt > (<) — t)dt—— h(t)dt.
216 [e0noa @5 [soa= [ e
Now, since g (t) = w is nondecreasing on (a,b) and h(t) = b —t is de-

creasing on [a,b], then by (2.16) we have

bia/abf(b):tf(t)(b_t)dt < bia/abf(b)—f(t)dt 1 /ab(b—t)dt

b b—t b—a
RN IORNI0
- i/a A

which is equivalent to

b b B
2lf(b)—b_1a/ f(t)dt] g/ wdtv

which proves the fifth inequality in (2.15).

_ f)—f(a)
t—a

Also, since g (¢) is nondecreasing on (a,b) and h(t) = t — a is in-

creasing on [a, b], then by (2.16) we have

L)~ f(a) L= fla), 1 f°
b_a/a D Gy < b_a/a =) dtb_a/a(t—a)dt
L) = f(a)
N i/a t—a at,
which proves the second inequality in (2.15). O

We also have:
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Theorem 4. Let f: (a,b) — R be a convex mapping on (a,b). Then fort € (a,b)

(2.17) ‘(Tf) (a,b;t) — @ In <bt>

t—a

(it e df_*/f )

1 / f(t) = f(a)
<5 (t—a) [f‘(t)_t—a}

In particular,

(2.18) (Tﬁ< “;b)—j<b1a g,ﬂ) dr— o mwfhﬁh)
- [ S (1 (s9) 1 (23
Si[f@%;f() f<a+b>}

Proof. We use Griiss’ inequality for integrable functions g, h

bl /bg()h()dt—l dt—/h £)dt

-a J,

(2.19)

1
< (M =m)(N —n),

provided m < g (t) < M, n < h(t) < N for almost every t € [a,b].
Using Griiss’ inequality for increasing functions, we have

/tef(T)_f(t) (T—t)dT

T—1

o fw, 1
_A p— th—{-;—a/a (T—t)dT
§i@—s—@@—s—@{f@—d—f@%_ﬂ@—f@q

(2.20)

t—e—t a—t
and
oy | LD=LO g,
t+e Tt
NGRSO 1 ’
. p— dTb—t—E/t+E(T_t)dT
1 f)—f@#) fl+e)—f(@)
§4(b_t_8)(b_t_€)[ b—t  t+e—t }

where ¢ € (a,b) and for small € > 0.
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‘We have
[T = [T - royer
:/jf(r)dr—f(t)(t—@—a)
and
"W e [ -
/HET_tw t)dT—/HE(f(T) f(®)dr
b
- f(r)ydr—f@)(b—t—e¢).
t+e
Also
1 t—c 52—(a—t)2 (t—a+e)
t—a—a/a (r=tydr 2(t—e—a) 2
and
1 b (b=t =€ (b—t+e)
“/+E(T_t)d7-—2(bts) 2

From (2.20) we get

(2.22) /taf Ydr — f t—s—a)+t_c2l+€/tEf(TT):{(t)dT
fO)—ft—e) fla)=f @)
4(t—€—a)(t E—a){ - E— ]

while from (2.21) we get

b ) b N
f(T)dT_f(t)(b—t_E)_b ;-1-6 f(lfj]:(t)dT

t+e .

Si(b_t_s)(b—t—s) [f(bz_{(t) _f(t+6if(t)]

(2.23)

for t € (a,b) and small € > 0.
For t —a > ¢ > 0 we get from (2 22) that

(2.24) ’ / G T*t d+ /Ef dr — f ‘
f@)—f (t—s) — 1)
<4(t—5—a)[ € B a—t ]
and from (2.23) for b —t > ¢ > 0 that
1 b—t—e 1 [° f(r)—f(t)
b—t+e f() f(t)b—t+a_§ e T—1 dr
<1(b—t—€)(b—t—€) [f(b)—f(t)_f(tﬂ%)—f(t)}
— 4 b—t+e b—t €
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or, that
b B _
(2.25) ;/H f(TT)_f(t)dT b_; f()d7+f()l;i7+§
cLb-t—gb-t—¢) {f(b)—f(t) _f(t+€)—f(t)}
— 4 b—t+e b—t € '

If we add (2.24) and (2.25) and use the triangle inequality, then we get

N CoEY LUV Y o LBV (O

T—t 2 Jiue T—1

1 t=e 1 b b—t—¢
e SO0 [ e o

1 fO)—flt—¢e) fla)—[f(@)
4(t_€_a){ € a a—t }

L Llb—t-eg)b-t-¢) [f(b)—f(t) _f(t+6)—f(t)}
4 b—t+¢ b—t €

for t € (a,b) and min {t —a,b —t} > > 0.
Taking the limit over ¢ — 0+ we get

b _ t
(2.26) %PV/ f(TT)Jf(t)dertia/f df——/f
si@_@puw—fﬂjiwq+i@—o{”ﬁ;ﬂ)—h<ﬂ
for t € (a,b).

Using the identity (2.3) we get from (2.26) the desired result (2.17).

3. SOME EXAMPLES

If we consider the function expt = €', t € (a,b) a real interval, then

exp (1)

(3.1) (Texp) (a,b;t) =

[Ei (b—1t) — Ei (a —t)],
where F; is defined by

B (z) == PV/ XP() 4 seR
S

Indeed, we have

b—t b _
Ei(b—t)—Ei(a—t):PV/ Mdszpv/ exp(r—1)
a—t S

a T—1

= exp (—t) w (T exp) (a, b; t)

and the equality (3.1) is proved.
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Now, if we use the inequality (1.3) for the convex function exp on an interval of
real numbers (a, b) , then we get

1 b—t
(3.2) — {exptln (t) +expt—expa+ (b—t)exp t}
™ a

< expt

™

[Ei (b—1t) = Ei (a—1)]

IA

1 b—t
— |exptln | —— | + expb—expt + (t —a)expt
T t—a

for any t € (a,b).
This is equivalent to

(3.3) ln<f_2)+b—t+1—exp(a—t)<[Ei(b—t)—Ei(a—t)]

—a

b—t
Sln(t >+ta1+exp(bt)

for any t € (a,b).
Further, if we take t = 2£% in (3.3), then we get

(45) <[ (552) 5 (5%

b—a b—a
< ——1+4exp 5 .

(3.4) b;a—l—l—exp(—b;a)

IN

2
If we take in this inequality I’_T“ =z > 0, then we have
(3.5) —exp(—z)+2+1<E;(z) - E;(—z) <exp(z)+z—1

for any = > 0.
From the inequality (3.5) written for the function exp we have

1 expt —expa

1

. —(b— <=(b-

(36)  —(b-a)exp(a) < —(b—a) — —
<eXpt[Ei(b—t)—Ei(a—t)}—eXptln(b_t)

T s t—a

1 expb—expt 1
< —(b— —— < —(b-
_ﬁ(b a) — _ﬂ(b a) exp b,

for any t € (a,b), which is equivalent to

(3.7) (b—a)exp(a—t) < (b_a)l—e:pf(s—t)
SEi(b—t)—Ei(a—t)—ln<f:Z>
<-a) 22071 ep(h-1),

- b—t

for any ¢ € (a,b).
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If we take t = 2£2 in (3.7), then we get

—a —exp (—tza
(3.8) (b—a)exp(—b2 )<(b_a)1p2)

If we take in this inequality }”7@ =z > 0, then we have

(3.9) 2wexp(—2) < 2[1 - exp ()] < B: (x) — Er (~)
< 2[exp(z) — 1] < 2zexp(x).

Using the inequality (2.17) for the convex function exp we get

exp (t) exp (t) b—t
3.10 Eb—t)—Ei(a—t)] - —In|{ —
(310) | "2 (B 1) Bi(o— )] - 2w (T
2 epr—exptiexpt—expa
m b—t t—a
<i(t ) ; expt —expa —|—i(b ) expb —expt :
27 @& t—a 27 b—t P
for t € (a,b).
This can be written in an equivalent form as
b—t
(3.11) |[Ei(b—t)—E;(a—t)]—1In y—
5 exp(b—t)—1 1—exp(a—1)
b—t t—a
<1(t—a) 1_1—exp(a—t) +1(b—) exp(b—t)—l_1
-2 t—a 2 b—t

for t € (a,b).
Now, if in (3.11) we take ¢ = %2, then we get

[2(5) -5 (5
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namely

w0554
N (e"p(
S I

If we take 2% = z > 0 in (3.12), then we get
4 <exp (z) +exp(-z) 1)

(3.13) |[Bi (@) — B; (—2)] - — 2
< &P (z) +exp(—z) 1

- 2

for any = > 0.
We denote by ¢ (t) = ¢, the identity function.

For the function ¢! (t) = 1, with ¢ € (a,b) C (0,
(Téil) (a,b;t)

1 b -1 1 b1yt 1 b1
:fpv/ T dr:va/ 7d7+—PV/ dr
0 o T—1 s T—1 it o T—1

b— b—t 1 b
=—— — ln In ——In(-]).
mt t—a t—a mt a
If we use the 1nequahty (1 3) for the function £~! we get

o0) we have

which gives us

(3.14) 2-—

for any ¢ € (a,b).
If we take in (3.14) t = v/ab, then we get the inequality

(3.15) 2(1;-;/%) <In (Z) <2<\/‘TZ“‘>

for b > a > 0.
From the inequality (2.17) written for £=! we have

1 b Inb—1Int Int—Ina
1 —In| - 2 -
(3.16) ‘t n(a)+ ( bt t—a )’

which gives us

b Int—Ina Inb—Int 1 [(t—a)? (b-t)?
i _ <
ln(a> 2t< b—t )‘2t[ a + b ’

(3.17)
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for any ¢ € (a,b) .
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